
Proposal of an Ontology Based Web Search Engine

Adrián Ponce, Claudia Deco, Cristina Bender

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Universidad Nacional de Rosario

Av. Pellegrini 250, 2000 Rosario, Argentina

adrianvp@gmail.com, deco@fceia.unr.edu.ar, bender@fceia.unr.edu.ar

Abstract

When users search for information in a web site, sometimes they do not get what they want.

Assuming that the scope where the search take place works fine, there are some problems caused by

the way the user interact with the system, others that refer to characteristics of the language used,

and others caused by the lack or nonexistent semantics in web documents. In this work, we propose

a web search engine of a particular web site that uses ontologies and information retrieval

techniques. Although the architecture we propose is applicable to any domain, the experimentation

was done in a tourism web site. The results show a substantial improvement in the effectiveness of

the search, with a gain of 33% in Precision.

Keywords: ontologies, web information retrieval

1. INTRODUCTION

Nowadays, many web sites handle a big amount of information. These web sites usually have a

search engine that allows users to locate and access information in a fast and direct way, without

having to browse all the web site. However, sometimes users do not get what they want. These

unfruitful searches can happen because of a set of factors that affect search results.

One of the problems found is this scenario is that different documents can use different words to

refer to a same concept, and therefore, when keyword search is done, the system will not retrieve all

documents that refer to a same concept. These problems are caused by synonyms and it is called

synonymy of terms. Moreover, the input terms of a query can have multiple meanings, and search

engines can not interpret what the user wanted to search, retrieving non-relevant documents. This

problem is called polysemy of terms. Other problem appears in large document collections, where a

big amount of results is retrieved and it is essential that the engine order them by some kind of

ranking [1]. However, this order cannot coincide with the user’s expectations, and a possible

desired result can be relegated because of a lower ranking. Studies show that most users do not look

more than the 100 first results. Moreover, the first 30 are considered the most important [2].

The objective of this work is to improve a web search engine using Semantic Web tools and

Information Retrieval techniques for searching a web site. The goal is to solve and/or reduce the

problems mentioned earlier and consequently to improve the effectiveness of the search. For this

purpose, we introduce a controlled vocabulary to reduce synonymy and polysemy, stemming to

normalize the vocabulary used in the system and therefore increasing the amount of retrieved

documents, and lastly we improve the search precision with the use of ontologies. To evaluate our

proposal we implement a prototype applied to a tourism web site as a specific domain. We verify

search improvements measuring its effectiveness in terms of Precision and number of retrieved

documents.

2. BASIC CONCEPTS

Information Retrieval deals with representation, storage, organization and access to information

items [3]. Information Retrieval systems perform searches over a collection of documents written in

natural language [4]. The goal is to retrieve information from the collection, with the aim to satisfy

the user's information needs.

The documents are indexed by the terms that they contain. The process of generation,

construction and storing documents representations is called indexing and as a result, we obtain

inverted indexes [5]. An inverted index allows fast access to documents that contains a specific

term. For this purpose, it maintains a register for each term in the document collection, which in its

simplest form consists in the term name and the list of documents where that term occurs. For the

inverted index generation usually non-significant words (stopwords) are first eliminated. In

addition, inflectional and derived forms of a word are reduced to a common form. This last process

is called stemming [6]. Stopwords are removed during text analysis of documents and from user

queries, because they do not add significant information to the search. The stemming technique

helps to normalize the vocabulary of the information retrieval system, increasing the number of

retrieved documents for a user query.

To make easy the retrieval of particular documents, metadata can be used. Metadata are

structured data that describe characteristics of information entities and help in the identification,

discovery and manipulation of those entities [7]. Metadata information ought to belong to a

controlled vocabulary. A controlled vocabulary or thesaurus is a list of words and phrases carefully

selected. It solves the problem caused by synonymy and polysemy forcing each concept to be

described by a unique allowed term. Consequently, they reduce the ambiguity of natural language

and ensure consistency of the vocabulary [8].

The evaluation of an information retrieval system is based on the notion of relevant and non-

relevant documents. A document is relevant, if the user perceives that it contains information of

value with respect to his information needs [1]. The typical indicators to measure the effectiveness

in information retrieval are Precision and Recall. Precision is the fraction of retrieved documents

that are relevant. Recall is the fraction of relevant documents that are retrieved. When it comes to

web searching, Precision is measured over fixed amounts of first retrieved documents. For Recall

computation, the total amount of relevant documents retrieved and non-retrieved is needed.

However, in the web is impossible to know the total amount of relevant documents that exists. So it

is often used the amount of retrieved documents as an alternative measure. We will refer to it here

as Recall*.

A method for enhancing search performance is query expansion [9]. Query expansion is the

process of adding new terms to a given user query, in an attempt to provide better contextualization

and the hope to retrieve documents, which are more useful to the user [3]. During the expansion,

new terms are added, replaced or even discarded. These terms can be extracted from dictionaries,

thesaurus or ontologies that can be dependant or not from the corpus of documents.

An ontology is an explicit specification of a conceptualization [10]. A conceptualization is an

abstract and simplified vision of the world (or domain) that when it is specified, a formal

description is done. This allows that ontologies can be interpreted by machines and can make

reasoning about them. Ontologies consist in a set of classes, relations, instances and axioms.

Classes represent concepts that belong to the domain that describes the ontology. Relations

represent an association between elements of the ontology. Instances are used to represent particular

elements of a class. Axioms are statements that are assumed to be true. The Web Ontology

Language (OWL) is the language for writing ontologies recommended as standard by the World

Wide Web Consortium (W3C). It is divided in three types: OWL Lite, OWL DL and OWL Full;

each one provides different levels of semantics expressivity. OWL Lite allows the construction of

taxonomy of classes, express equalities, inequalities and simple restrictions. OWL DL allows

maximum expressivity, maintaining computational completeness and decibility of the reasoning.

OWL Full has the maximum expressivity but there are no computational guaranties.

3. SEARCH ARCHITECTURE

The proposed search architecture is shown on Figure 1. It consists on a web search engine, an

inverted index, an ontology and a collection of web documents. These web documents are annotated

with metadata extracted from the ontology.

Figure 1: Search architecture

A web search engine has three main components: a crawler, an indexer and a search engine. The

crawler collects information from an annotated collection and stores it in a local repository. The

indexer processes that repository and generates an inverted index from it, using a controlled

vocabulary extracted from the ontology. The input queries are expanded with information extracted

from the ontology, and then, they are sent to the search engine. This engine uses the inverted index

to answer the query and it returns the results to the user.

The ontology is specific to the web site application domain. In this work, a tourism web site from

Argentina is used. This ontology is used for web documents annotation process, for index

generation and for query expansion. Web documents annotation process inserts additional

information (metadata), to facilitate the retrieval of documents being annotated. For this purpose,

documents are classified according to the ontology taxonomy. The classification process is hard to

automate. In this work, we have decided to do it manually. The difficulty is that web documents

must be classified by their underlying content and not by terms that they contain. Once the

document was classified, it is annotated with metadata that consist in a list with the name of the

ontology classes, subclasses and possibly individuals that classify the document. The annotated

metadata is indexed under a common field, which allows querying the index for documents that

contain a particular value in that field. This information is used during the query expansion to

retrieve documents and to improve precision.

To reduce synonymy, user query terms and documents terms are restricted, to the ones that

belong to a controlled vocabulary. Its terms consist of ontology named classes, because they

designate the concepts used in the domain. The restriction is done replacing each term that can be

associated to an ontology concept, by the controlled vocabulary term, which designates that

concept. In the case of user queries, the replacing takes place during query expansion, whereas in

the case of documents, during index generation (the preferred term is indexed). The lists of words

that can be associated to a concept are maintained by the developer and are inserted into the

ontology by means of annotation properties. For example, given the ontology class Accommodation,

which determines the controlled vocabulary term Accommodation, could be annotated by the words:

hostel, hotel, inn, camping, etc. The use of a controlled vocabulary and stemming has by collateral

effect the lost of exact queries. To deal with this problem, it is decided the indexing of all document

terms under other index field to query it, in the case of exact queries.

The query expansion strategy consists in two steps. In the first step, the input words are replaced

by the controlled vocabulary terms, whenever is possible. In a second step, related terms generated

from the ontology are added to the possible modified query. The aim of these related terms is to

retrieve documents that deal about the associated concepts with the query terms and to improve the

ranking of most important documents under consideration. For this purpose, the document

annotated with metadata is searched by those terms, because they classify a document by the

underlying concepts.

3.1 Ontology Design

The ontology was created with Protégé-OWL version 3.3.1 (protege.stanford.edu/) ontology

editor. To define the tourism domain taxonomy, concepts were identified and then, they are

represented by means of classes. These classes are organized in the hierarchy shown on Figure 2.

Figure 2: Tourism Ontology

In this ontology, sibling classes are disjoint to assure that an individual can belong to only one of

them. In OWL, the properties represent binaries relations over individuals. The object properties are

associations between individuals. The annotation properties can be used to annotate information

(metadata) into classes, individuals and properties. The added information can be a literal, an URI

or an individual as well. In the Tourism ontology, we use the annotation property "term" to add

information by literals of type XMLSchema#string into the classes. The objective is to add lists of

equivalent terms to the ones that belong to the controlled vocabulary.

In Figure 3 the graphic of classes, properties and restrictions that belong to the Tourism ontology.

Classes are represented by rectangles and the properties by arrows. The asterisks at the side of a

property name represent multiple cardinality.

Figure 3: Classes, properties and restrictions

Individuals are used to do a more accurate classification of particular documents and lately

annotate them with respect to this classification. Moreover, when they are combined with the query

expansion, allows the retrieval of more accurate information. In this ontology, 450 individuals were

inserted.

3.2 Query Expansion

When a user submits a query, the query expansion process begins. Firstly, the user input query is

transformed by the system into a Nutch syntax query, before applying the query expansion process.

Secondly, keyword substitution and stemming is done, and a Lucene engine syntax search

expression is generated using Nutch’s default approach for searching. Lastly, additional query terms

are added from ontological information associated to the substituted input query. The additional

terms are used to query the category field of the inverted index, with the goal of retrieving those

documents that deal about concepts associated with the input query terms and also to increase the

relevance of particular retrieved documents. The process is shown on Figure 4.

These additional terms are obtained from the input query terms that can be associated with an

ontology class or individual, and the application of an algorithm for the query processing that uses a

particular heuristic. This heuristic has the goal of obtaining additional information from the input

query terms.

Figure 4: Query Expansion

To this purpose, it can reason using the ontology considering the following cases:

− There is only one input query term that can be associated to a class or individual: then the

class or the individual name is returned respectively.

− The input query terms are associated to two classes (i.e. class1 and class2 in that order):

i) If a class (i.e. class1) is subclass of the other (class2), it returns the name of the first one

(class1), because it is more specific than the other is, and therefore, it is considered as a

more accurate information.

ii) If none of them is subclass of the other, and exists relationships of type R(xi,yi) or

R'(yi,xi) such that individuals xi and yi are instances of class1 and class2 respectively,

then the name of those xi will be returned. This is because generally, leftmost query

search terms are more important (in this case class1). Otherwise, both classes names are

returned, because more accurate information cannot be obtained from the query terms.

For example, if the associated classes are City and State, and if there exists a part-of

relationship between their individuals, then the heuristic will return the cities names that

are part of the state.

− The query terms are associated with a class and an individual:

i) If the individual is an instance of the class, the heuristic returns the individual name

because in this case the class name would be redundant information. For example, if the

class is Country and the individual Argentina (Country instance), then Argentina is

returned, because it can be inferred from the ontology that Argentina is a Country.

ii) If the individual is not an instance of the class, and exists relationships of type

R(xi,individual) and R'(individual,xi) such that individuals xi are instance of the class,

then the heuristic returns the name of those xi; otherwise returns null. For example, if the

class is City, the individual is Argentina and R is the relationship part-of, then the names

of cities that are part of Argentina would be returned.

− The query terms are associated with two individuals (i.e. individual1 and individual2 in that

order): if there is a relationship between both individuals, it returns individual1, because it is

considered that generally the leftmost term of the query search is the most important;

otherwise, it returns null.

Query expansion example:

Let us suppose that the user input query is “locations of the state of Misiones”. The prototype

first removes all the Stopwords and adds a “+” to the remaining terms, to specify that they are

required terms:

+location +state +misiones

Then it replaces the keywords of the default search field (content) when it is possible, and applies

the stemming algorithm. Assuming that city is the term of the controlled vocabulary associated with

the word location, then the following expression constitutes the Nutch default approach for

searching:

+(url:locat anchor:locat content:cit title:locat host:locat)

+(url:stat anchor:stat content:stat title:stat host:stat)

+(url:mision anchor:mision content:mision title:mision host:mision)

url:"locat stat mision"~1000

anchor:"locat stat mision"~4

content:"cit stat mision"~1000

title:"locat stat mision"~1000

host:"locat stat mision"~1000

The top three clauses, that are required, consult the url, anchor, content, title and host index

fields, and determine the set of documents to rank. The default conjunction operator is OR. This

also applies to the expressions of type <field>:<value> that are inside brackets, and therefore,

every document that satisfy some of those expressions will be retrieved for ranking. The last five

clauses are proximity search clauses that are not required (i.e. without “+”). Their only goal is to

increase the ranking of retrieved documents, when the searched terms are separated by a certain

distance (notated as ~1000 and ~4). The distance is the maximum number of terms by which the

query search terms can be found separated inside a document.

The next step is to add additional terms that are generated from the ontology. The final query sent

to the search engine is showed in Figure 5.

1

2

3

4

5

6

7

8

9

+(url:locat anchor:locat content:cit title:locat host:locat

category:city category:state category:pmisiones)

+(url:provinci anchor:stat content:stat title:stat host:stat

category:city category:state category:pmisiones)

+(url:mision anchor:mision content:mision title:mision host:mision

category:city category:state category:pmisiones)

url:"locat stat mision"~1000

anchor:"locat stat mision"~4

content:"cit stat mision"~1000

title:"locat stat mision"~1000

host:"locat stat mision"~1000

category:eldorado category:obera category:posadas category:puertoiguazu

Figure 5: Final query for the example

In the example query, the classes City, State and the individual that corresponds to the State of

Misiones, pmisiones, are associated to the query terms, and the terms category:city, category:state

and category:pmisiones are generated. These terms are added to each required clause (lines 1, 2 and

3 in Figure 5). Now the set of retrieved documents will include those that are annotated with such

metadata. At the end, it is added new clauses generated from heuristic returned terms, that impact

only in the ranking of retrieved documents. In other words, it is added line 9 in Figure 5. This

increases the relevance of retrieved documents that deals about cities, which are part of the state of

Misiones.

Nutch lets the use of boost factors for each query field (not shown for easier the example

understanding). These factors give a measure of the relevance assigned to each field in the moment

of ranking computation. In this work, it is considered that the category fields are more relevant than

the others. Therefore, they are assigned a greater boosting factor. This is because a category metatag

characterizes a document by its content and not only by the occurring terms. Category terms that

appear in the required clauses are assigned a boost factor value of 5, whereas for non required

clauses it is assigned a value of 1000. With this last boost factor, it is accomplished a considerably

impact over document scoring, and therefore, increasing document ranking.

4. RELATED WORK

In [11], in the retrieval model used, terms vectors are ontology instances instead of words that

belong to the document vocabulary. Several heuristics are applied during query expansion, with the

aim of dealing with ontologies imperfections, such as lack of semantics, ambiguity terms,

incomplete ontologies, etc. Then, for each one of the heuristics, independent queries are created and

sent to the search engine. Finally, the result is generated from combining results from independent

queries. The metadata are generated automatically from the ontology during the index generation,

and therefore, they are not inserted into the documents.

OWLIR [12] is a system designed for the retrieval of documents that contains either plain text or

semantics tags in RDF and OWL. The system takes text documents as input, annotates them using

the ontology and then indexes them. It performs full text search and field search. Moreover, it can

infer additional semantics relationships, using the ontology and document metadata.

Swoogle [13] is an information retrieval system for RDF and OWL documents that reside in the

web. It is designed for the automatic discovering of such documents (with a web crawler), indexing

document metadata and answering queries about them. Moreover, the system presents interfaces for

interacting with web services, people and software agents.

In [14] an architecture for the retrieval of individual document sections that belong to a particular

domain is presented. Metadata are used for the identification of such sections, allowing the user to

perform structured searches from a predefined set of categories that are maintained in an ontology.

The system consists in an indexer, an ontology, and a relational database engine. The indexer

represents documents in XML syntax and compares them to predefined categories in the ontology.

When matching occurs, a database table register is created. To search for information, user queries

are translated first to SQL, and then are solved in the relational engine.

5. PROTOTYPE IMPLEMENTATION

To implement the proposed architecture, the web search engine Nutch
1
 was chosen. It is based on

the Apache Lucene information retrieval library, and it allows to extend its functionalities by means

of plug-ins. Nutch is free and it is developed in Java, which implies portability to the most known

operating systems. The interaction with the ontology was implemented using Jena2
2
 framework

1 Nutch, Open Source Search: http://lucene.apache.org/nutch/
2 Jena2, A Semantic Web Framework for Java: http://jena.sourceforge.net/

ontology API, in conjunction with the SPARQL
3
 query language. For the reasoning process it was

used the Jena2 reasoners and its inference API. The Spanish stemmer was implemented from the

Apache Lucene and Snowball
4
 projects. The stemming algorithm is a Porter-like

5
 stemming

algorithm, and it is used during index generation and during the user query processing.

The metadata processing, the index generation with controlled vocabulary, the query expansion

process and the Spanish stemmer were implemented as Nutch plug-ins. Moreover, two new

functionalities were added to the user graphic interface, with the aim of helping the user during the

search task. One of them is the "Related search" field. With this option, the user can perform new

searches from information inferred from the ontology with respect to the input query. The other

functionality is given by the "Other search" field, with the goal of dealing with problems that are

introduced by ambiguity terms. These ambiguity problems appear when the system tries to associate

an ontology resource with a keyword or phrase, when there is more than one candidate for this

association. To this purpose, the system shows the user a set of dropdown lists that allows him to

reformulate the query and therefore, to perform a more accurate query.

6. EXPERIMENTATION

The experimentation was performed in a tourism web site of Argentina. The ontology was built

from this web site. A corpus of 2500 manually annotated web pages was prepared.

For evaluation purpose, Precision at 10, 30 and 50 results were registered and the amount of

retrieved documents (Recall*), over a set of 10 queries. These queries were solved using different

configurations, to see effects on the system with the introduction of a particular functionality. Table

4 shows Precision and Recall* for the web search engine working with the default configuration

(Nutch); with controlled vocabulary restriction (Nutch VC); with the use of Spanish stemming

algorithm (Nutch+Stem); with the simultaneous use of controlled vocabulary and stemming

(Nutch+VC+Stem); and lastly, when it uses query expansion (Nutch+QE).

In general, it is observed that there is very low increase in the amount of retrieved documents

with Nutch VC. This indicates that the vocabulary used in documents is consistent with respect to

the input query terms.

There are not noticeable changes between Nutch and Nutch VC, when it comes to Precision.

Table 4: Experimentation results

The use of Stemming (Nutch+Stem) increases considerably the amount of retrieved documents. It

is observed a slightly decrease of Precision for some searches, and a slightly gain for others. Both

3 SPARQL Query Language for RDF: http://www.w3.org/TR/rdf-sparql-query/
4 Snowball, a language for stemming algorithms: http://snowball.tartarus.org/
5 Porter Stemming Algorithm: http://tartarus.org/~martin/PorterStemmer/index.html

configurations Nutch+VC+Stem and Nutch+Stem increase the amount of retrieved documents with

respect to Nutch default. In terms of Precision, there is not a clear trend for this indicator.

The configuration Nutch+QE increases the amount of retrieved documents more than other

configurations, because it includes those documents that refer concepts associated with user query

terms, and therefore there can be documents in which the query terms do not occur. It is also

observed a significant increase in the search Precision at 10, 30 and 50 results, achieving 100% of

Precision for some cases. When no concept is associated to the input query terms as in the query

“gaucho”, Nutch+QE presents the same values of Precision and Recall* that are obtained for

Nutch+VC+Stem. This is because there is no concept/individual that belongs to the ontology that

can be associated with the query term “gaucho”, which means that during query expansion, the

system does not add terms of type “category” that either increases the amount of retrieved

documents or improves Precision.

Figure 6 shows the average amount of retrieved documents for each configuration. For

(Nutch+QE), it is observed a Recall* value that doubles the one obtained with Nutch default.

Figure 7 shows the average Precision values for each system configuration at 10, 30 and 50 results.

Figure 6: Recall*

Figure 7: Precision at 10, 30 y 50

In the three cases, Nutch with query expansion (Nutch+QE) presents a Precision increase of

about 33% with respect to Nutch default. In summary, the combination of Nutch with query

expansion shows higher Precision and Recall* values with respect to Nutch default. In other words,

this means that the effectiveness of searches is improved with the proposed architecture.

7. CONCLUSIONS

Experimentation results show a substantial improvement of search effectiveness, with a gain of

near 33% in Precision and a Recall* of about the double with respect to the Nutch default behavior.

The use of a controlled vocabulary, transparently improves the user experience, because it hides

specific domain knowledge from the user. It also maintains the consistency of the vocabulary used

in every document that is part of the web site, which leads to reduce synonymy and polysemy.

Furthermore, this technique and stemming help to regularize the system vocabulary, and increase

the amount of retrieved documents. The metadata classifies web documents, categorizing them with

the use of the ontology's taxonomy. This semantics enrichment allows the retrieval of documents

that can be considered as non-relevant by a conventional platform. The ontology was used for the

definition of the controlled vocabulary, generation of the metadata, during the query expansion, and

to deal with ambiguity terms.

More and more information is handled by web sites. Therefore, keyword searching that offers

most of information retrieval systems sometimes is not enough. The introduction of ontology

semantics, not only can improve the information retrieval effectiveness, but also lets the

organization and comprehension of a web site content, to the point that, this content can be

automatically processed by machines or software agents.

As future work, we propose the automatic document annotation, the reuse of existent ontologies

to describe the application domain. Another issue is the use of a lexical database instead of the table

of equivalent terms associated to the controlled vocabulary terms. As a complement during the

query expansion process, a relevance feedback module can be added.

REFERENCES

[1] C. Manning, P. Raghavan, H. Schutze. “An Introduction to Information Retrieval”. Cambridge

University Press, UK, 2007.

[2] M. Busby. “Learn Google: All About Search Engines”. Wordware Publishing, 2003.

[3] R. Baeza-Yates, B. Ribeiro-Neto. “Modern Information Retrieval”. Addison Wesley, UK,

1999.

[4] E. Voorhees. “Natural Language Processing and Information Retrieval”. In Information

Extraction: Towards Scalable, Adaptable Systems, pp.32-48, Springer, Germany, 1999.

[5] A. Singhal. "Modern information retrieval: A brief overview". Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, vol. 24, no. 4, pp. 35-42, 2001.

[6] M. F. Porter. “Snowball, a Language for Stemming Algorithms”, October 2001:

http://snowball.tartarus.org/texts/introduction.html

[7] American Library Association, Task Force on Metadata. Summary Report, June 1999:

http://www.libraries.psu.edu/tas/jca/ccda/tf-meta3.html

[8] F. W. Lancaster. “El Control del Vocabulario en la Recuperación de Información”. Ed.

Universidad de Valencia, España, 1995.

[9] E. N. Efthimiadis. "Query Expansion". Annual Review of Information Science and

Technology (ARIST), vol. 31, pp. p121-87, 1996.

[10] T. R. Gruber. "Toward Principles for the Design of Ontologies Used for Knowledge Sharing".

International Journal Human-Computer Studies Vol. 43, Issues 5-6, p.907-928, 1995

[11] G. Nagypàl. "Improving Information Retrieval Efectiveness by Using Domain Knowledge

Stored in Ontologies". FZI Research Center for Information Technologies at the University of

Karlsruhe, pp. 780-789, Germany, 2005.

[12] U. Shah, T. Finin, A. Joshi, J. May_eld, and R. S. Cost. “Information Retrieval on the

Semantic Web”. In Proceedings of the Eleventh International Conference on Information and

Knowledge Management, pp 461-468, New York, USA, 2002.

[13] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. Doshi, and J. Sachs.

“Swoogle: a Search and Metadata Engine for the Semantic Web”. In Proceedings of the

Thirteenth ACM international Conference on information and Knowledge Management, pp.

652-659, New York, USA, 2004.

[14] S. R. El-Beltagy, A. Rafea, Y. Abdelhamid. “Using Dynamically Acquired Background

Knowledge for Information Extraction and Intelligent Search”. In Intelligent Agents for Data

Mining and Information Retrieval, Idea Group Publishing, pp. 195-206, USA, 2004.

