Wor kshop de Investigadores en Ciencias de | a Conputaci én W CC 2002

A Framework for Defining and Checking Constraints in
Requirement Gathering and Definition

Rodolfo Gémez and Pablo Fillottrani

Departamento de Ciencias e Ingenieria de la Computacion
Universidad Nacional del Sur, Bahia Blanca, Argentina
[rgomez, prf]@cs.uns.edu.ar

1 Introduction

Requirements capture user needs about a system [KG99]. They stand for those functional and
nonfunctional attributes the system must posses to be considered correct. Requirements also
dictate how the system should respond to user interaction. Therefore, they play a very important
role in software development. They state what the system should do for the user to be satisfied,
and therefore they lead all development stages in the lifecycle. They are used to communicate
user needs to all people involved in the development process, the system architecture is built
upon them and the testing stage uses them as satisfaction criteria.

Requirement gathering is the activity of bringing requirements together, requirement defini-
tion is the activity of documenting requirements and organizing them into something under-
standable and meaningful, i.e. a requirement specification. Unfortunatly these tasks are quite
difficult. Users usually cannot precise what they want from the system. Usually there are more
than one user of the system and many conflictive views appear about what the system should
do. Frequently, even if the users agree in system functionality, they are not able to see the “big
picture” and the specification is incomplete. It is also possible for requirements to be stated
by someone who’s not the real user of the system, for example company managers. This may
results in requirements that express interactions that do not add real value to users.

Another problem with requirements is that they evolve while users are learning about their
needs. Hence, requirements suffer a lot of changes until they can be precisely defined. Also,
requirement gathering itself can be a difficult task if users do not have enough time to be
properly interviewed, or they are reluctant to cooperate in this process. Finally, requirement
specification itself may be cumbersome as it often has no more structure than a simple list.
Because this list tries to capture every requirement, including those which add no value to the
user real needs, its volume become unmanageable by subsequent development stages (e.g. design
and testing).

All difficulties just mentioned result in a poor quality requirement specification, with re-
dundant, inconsistent and even incomplete requirements. Recently, UML’s use cases and use
diagrams has been adopted as a succesfull methodology in requirement gathering and definition
[KG99]. They have helped to solve the problems we have previously mentioned and are still

1

Pagi na 286

Wor kshop de Investigadores en Ciencias de | a Conputaci én W CC 2002

useful to drive the entire software development process [[JRI9b].

Despite the many advantages use cases offer in requirement definition, we feel this process
can be improved by letting requirement redundancy, inconsistence and incompleteness to be
automatically controlled as much as possible. The proposed framework should benefit from use-
cases structure for discovering patterns expressing redundancy, inconsistence and incompleteness.
Also, the framework will be a tool for analysts as it will allow the evolution of requirement
definition to be automatically controlled and verified.

2 Use cases in Requirement Gathering and Definition

Use cases [IJR99a] are text descriptions of the interactions between some outside actors and the
computer system. An actor represents a coherent set of roles that users of use cases play when
interacting with these use cases. Typically, an actor represents a role that a human, a hardware
device, or even another system plays with a system. Use case diagrams are graphical depictions
of the relationships between actors and use cases and between two use cases.

Use cases play an important role in requirement gathering and definition. The interactions
that use cases illustrate form the basis of most of the requirements that must be documented.
They are effective communication vehicles between analysts and users. Generally, functional
requirements can be put into terms of interaction between the actors and the application. Non-
functional requirements, such as performance, extensibility and maintainability, can often be
stated in terms of use case stereotypes [[JR99a]. Use cases also provides requirement traceabil-
ity through the lifecycle because they are a building block for system design, units of work,
construction iterations, test cases and delivery stages. Finally, use cases discourage premature
design because these faults become quite evident when appearing into the use case structure.

Briefly, a use-case driven approach to requirement gathering proceeds as follows [KG99]. Use
cases go through a series of refinement iterations until they are complete. Those that model the
most valuable functions for the user are identified first. These cases are usually incomplete as
they only express brief descriptions of particular interactions. As they are refined, they are added
basic course of events, alternative course of events, scenarios, preconditions, postconditions, etc.
Last steps of refinement have to do with use case diagrams as a whole, where opportunities for
merging use cases with similar functionality, reusing and generalization are looked for.

3 Improving requirement gathering and definition

Requirement gathering still relies on the analyst abilities for discovering inconsistences, redun-
dancy and incompleteness in requirements. Of course, all of these problems have become much
more tractable by use cases, but we think there are some ways in which the process can be
improved. The goal of our research is to define a framework based on use cases which allow the
requirement specification evolution to be automatically controlled and verified.

Use cases become more detailed through refinement iterations. The next iteration completes
or corrects the previous one. However, it would be useful for the analyst to define controls to be

Pagi na 287

Wor kshop de Investigadores en Ciencias de | a Conputaci én W CC 2002

carried on while the use case evolves.

Advantages appear when the analyst wishes a given use case diagram semantics to be an
invariant with respect to subsequent iterations. These invariants include, for example, actors
e.g., in the form of “this actor cannot perform operation A before operation B has be completed”,
use case relationships e.g., in the form of “actors can never interact with use case A before they
have finished with use case B”, politics (or business rules as called in [KG99]) e.g., in the form
of “use case diagrams should never contain more than 5 actors and 10 use cases, otherwise they
must be decomposed” and use case structure e.g., in the form of “all preconditions stated for
a use case must be provided as postconditions of other previously-performed use cases”. Other
benefits become clear when analysts postpone some details for future iterations, but they know
enough about these details to be documented in the current iteration. For example, the analyst
could adorn the use case diagram with a comment expressing that a new actor should be added
in the next iteration.

We are currently developing a framework that help analysts to automatically define and
maintain the sort of controls they could be interested on during the requirement gathering and
definition activities. Roughly, we can compare this framework with a CASE tool in the sense
that it will allow the visualization, edition and maintenance of requirement gathering deliverables
such as use cases and use case diagrams. Beside that, the focus of our research is concerned
with other, paramount features. We think this framework should provide a language which has
to be expressive enough to define useful controls while at the same time be capable of automatic
verification. For instance, a possible research line may consider executable logics as definition
languages and model checkers as verification procedures (see e.g. [BBC199] and [Hol97]).

As an overview of the framework possibilities, consider the following. Firstly, the framework
could provide controls over invariants, alerting the analyst if they are not met in new iterations.
For example, a previously defined actor could interact with a different use case by adopting a
semantics that is inconsistent with that it was originally defined for. Secondly, the framework
could remind the analyst about postponed details, such as refining a new actor in the next use
case iteration. Finally, it could identify opportunities for reducing redundancy in requirements
by finding flows of events which are common to various use cases. Therefore, it would be possible
for the analysts to merge the cases or derive a new use case with common functionality.

We are warned about the existent of related work in the area of formal specifications. How-
ever, these works seem not to be at the level of abstraction which is present in requirement
gathering. For example, RSL, the formal specification language of RAISE (Rigorous Approach
to Industrial Software Engineering) [GRO92], [GRO96] is useful for modeling design specifi-
cations, i.e. a contract between the system architect and the implementors or for modeling
component specifications, i.e. a contract between the user of the program module and the mod-
ule developer. The major difference between the requirement gathering process our research is
concerned about and the process adressed by RSL has to do with inputs. Requirements adressed
by use cases come directly from users, so they are much more general, abstract and unestruc-
tured than those adressed by RSL, where refinement activities such as analysis and design have
transformed these requirements in documents which are more structured, specific and complete.
Indeed, we expect our framework to be capable of managing incomplete specifications.

Other work that is worthy to be mentioned is OCL (Object Constraint Language) [WK99).
This language is used to define constraints over both elements of UML models and elements

Pagi na 288

Wor kshop de Investigadores en Ciencias de | a Conputaci én W CC 2002

of the UML metamodel. We still have to investigate if this language can be directly used or
otherwise be extended as a mean to specify those controls we are concerned about in requirement
gathering. For example, it is possible that preconditions and postconditions for use cases could
be specified in OCL to a certain extent, but it is likely OCL does not provide the means for
managing common flows of events among use cases.

Our research, then, is currently focused on discovering what kind of controls are useful for
the analyst when designing use cases. Then we have find to how these controls are related to
use case diagrams. Once these steps are finished, it will be possible to define the expressiveness
required for defining and maintaining the controls.

References

[BBC'99] N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, B. Sipma, and T. Uribe.
Verifying Temporal Properties of Reactive Systems: A STeP Tutorial. Formal Methods
in System Design, 1999.

[GRO92] GROUP, T. R. M. The RAISE Specification Language. Prentice-Hall, 1992.
[GRO96] GROUP, T. R. M. The RAISE Development Method. Prentice-Hall, 1996.

[Hol97] Gerard Holzmann. The Model Checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5), 1997.

[IJR99a] Grady Booch Ivar Jacobson and James Rumbaugh. The Unified Modeling Language
User Guide. ACM Press, Addison-Wesley, 1999.

[IJRI9b] Grady Booch Ivar Jacobson and James Rumbaugh. The Unified Software Development
Process. ACM Press, Addison-Wesley, 1999.

[KG99] Daryl Kulak and Eamonn Guiney. Use Cases, Requirements in Context. ACM Press,
Addison-Wesley, 1999.

[WK99] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley, 1999.

Pagi na 289

