Per formance Predictability of Divide and Conquer Skeletons

Fernando Saez Marcela Printista

LIDIC
Universidad Nacional de San Luis.
Ejército de los Andes 950, San Luis, Argentina.
e-mail: {bfsaez@und.edu.ar, mprinti@uns.edu.ar }

Abstract

Parallel divide and conquer computations, encompassingla variety of applications, can be modeled
and encapsulated as a high level primitive called skeleton.

The paper deals with a skeleton designed for parallel digiad conquer algorithms that provide hyper-
cubical communications among processes The paper alsalirtes an accurate timing model designed for
prediction of proposed primitive. The timing analysis miogeesented here still characterizing the commu-
nication time through architecture parameters but inttedua few novelties. The proposal is to introduce
different kinds of components to the analytical model byagging a performance constant for each specific
conceptual block of the skeleton. The trace files obtainerhfthe execution of the resulting code using the
skeleton are used by lineal regression techniques givingmeng other information, the values of the param-
eters of those blocks. An extended example showing theuelatcuracy of the proposed approach concludes
the paper.

Keywords: Paralellism, Parallel Model, Skeleton, Timingalysis, Divide and Conquer

1 INTRODUCTION

Traditionally, parallel programs are designed using lewel message passing libraries, such as PVM
or MPI. Message passing provides the two key aspects ofiplgpabgramming: (1) synchronization
of processes and (2) communications between processesevidgvwprogrammers still encountered
difficulties because these interfaces force to deal withlwel details, and their functions are too
complicated to use for a nonexpert parallel programmer.

Many attempts have been undertaken to hide parallelisnmbednime kind of abstraction in order
to free the programmer from the burden of dealing with lovelessues.

There is an alternative model of parallel programming thatds communications and synchro-
nization problems and restricts the form in which the patalbmputation can be expressed. The
model provides programming constructoskel etons, that directly they correspond to frequent paral-
lel patterns. The user expresses parallelism using a setsaf predefined forms with solution to the
mapping and restructuring problems. We consider the mtativa of this approach with more detail
in the next section. The rest of the paper is organized aswsll The section 3 describes the Divide
and Conquer Skeleton. The section 4 describes the perfosraedictability of a skeleton and in
section 5 we discuss an instance model of hypercube divideanquer skeleton. A case of study
is presented in section 6. The results are showed in sectaord the conclusions are presented in
section 8.

2 MOTIVATION

An alternative to the parallel programming is to providetzo$@igh-level abstractions which provides
support for the mostly used parallel paradigms. A programgrparadigm is a class of algorithms that
solve different problems but have the same control stracterogramming paradigms usually encap-
sulate information about useful data and communicatiotepat, and an interesting idea is to provide
such abstractions in the form of programming templates elesins. In parallel context, the essence
of this programming methodology is that all programs havarltel component that implements a
pattern or paradigm (provided by the skeletons) and a specdifnponent of an application (in charge
of the user). After the recognition of parallelizable pamsl an identification of the appropriate algo-
rithm, a lot of developing time is wasted on programming irceg closely related to the paradigm and
not the application itself. With the aid of a good set of effidly programmed interaction routines
and skeletons, the development time can be reduced significdhe skeleton hides from the user
the specific details of the implementation and allows the tesepecify the computation in terms of
an interface tailored to the paradigm.

To develop a specific application, the programmer/user sd®o@ne or several skeletons, cus-
tomizes them for the application and, finally, composesausted components together to obtain
the executable target program. For example, we are famiirconcepts such as "pipeline”, "pro-
cessors farms”, "divide and conquer”, "dynamic programghjrisimulating annealing” and, more
recently, those related with optimization problems. Befamew problem, we may try to formulate
a solution in one of these well known styles. Since we alrdamhw how to implement the essential
computational structure of each technique, it will only E@ssary to introduce problem specific
details to obtain a parallel version.

3 ABSTRACTION PRIMITIVE: DIVIDE AND CONQUER SKELETON

The Divide and Conquer approacR () finds the solution of a problem by dividing z in subprob-
lemsx, andx;. This procedure is applied recursively to solve a problenenatsubproblems are
smaller versions of the original problem. In this typicalsture, the two subproblems can be done
in parallel (Fig. 1). Infinite recursion is prevented usingradicaterivial. If this predicate returns
T RUFE, the functionconquer is applied to solve the problem directly without any furtlrision.

At the ending of the procedure, the functiemmbine is used for merge the subsolutions in a general
solution.

1 procedure DC(p: Problem r: Result)

2 begin

3 if trivial (p) then conquer(p, r);

4 el se

5 begi n

6 di vide(p, pO, pl);

7 do in parallel (DC(p0O,r0), DC(pl,rl));

9 conbine(r, r0, rl);
10 end;
11 end;

Figure 1:ParallelD&C approach

From the experience obtained in the programming skeletak@ally in the design of different
skeletons [7, 5], we have implemented a versatile paielde and Conquer skeleton [6] .

The skeleton is written in C and we chose MPI (message pasgarface) to avoid introduce new
sintaxis.

The prototype for skeletoPC' _Call is as follows:

void DC Call (typeDC Type, int Weight, minteraction IM
TPF_trivial Itrivial, TPF_conquer |conquer,
TPF_di vide Idivide, TPF_conbi ne |conbine,
TPF_secuenci al | secuenci al,
TypeN *In,int SizeBufferln, int SizeDataTypeln,
TypeN *Qut, int SizeBufferQut,
int SizeDataTypeQut, MPI_Comm conmm

The parameters number in the call to the skeldiar C'all, may look a little complex, but this
long parameter list allows substantial flexibility, whichiMaring benefits in different domains. The
first parameter (an enumerate type) specifies the type ofitlgoto be used, which will depend
of the specific problem to solve. In this work, we explore Hyppde Divide and Conquef/ DC'.
This type provides a structure with hypercubical commuiocs among processes. It generates,
recursively, a binary tree of groups of processes whosee$eawnsist of only one process. The
number of processes in each branch is halved at each levéisaimteractions within a level occur
between pairs of processes which will have the same rankgimdt groups) at the next level down.

There are other types @ C algorithms, such as Classical Divide and Conquer, Divide@on-
guer with Embarrassing Divisibility and Divide and Conqueth Trivial Combine Operation. In the
first type of algorithm, the input is presented in only onegassor. When the computation reaches
the division phase, the processor will communicate the sidd@ms to the available processors and
it will continue with its subproblem. In the Divide and Coreqwith Embarrassing Divisibility type,
the communication is not necessary. This structure is commanany algorithms whose data are
totally distributed. Examples are the scalar product aedbdanced matrix multiplication. In the
third type, once the final point of recursion is reached, davé processes will have the solution to
the total problem in a distributed way. For example, mergdsas a trivial divide operation.

The body of the routines-ivial, sequential, divide andcombine are described by functions and
they will need to be implemented by the user.

4 PERFORMANCE PREDICTABILITY

A computational model is an abstract computing tool use@&son about computation. Algorithm
complexity depends on the computational model in which therdghm is defined. Some models are
necessarily elaborate and include a large number of paeasadthere are other models of complexity
like Log P or BS P, characterizing the performance of distributed machinesigh a few architecture
parameters but they incur in a considerable loss of accyicy

The advantage of using skeleton is the availability of a farframework for reasoning about
programs. In addition, cost measure can be associated kathatens, thus enabling performance
considerations. The timing analysis model presented hérelsaracterizing the communication
time through architecture parameters but introduces a tawlties.

The proposal is to introduce different kinds of componeathe analytical model by associating
a performance constant for each specific conceptual blottkeagkeleton.

The proposed parallel computational model considers aezlusade up by a set d? processing
elements and memories connected through a network. Theutatign in the model involves three
kinds of components:

e Common pattern of paradigm: sequence of local operatioedateto implement the paradigm.

e User functions of paradigm: sequence of operations on ldatd needed to implement the
application.

e Communications: exchange of data among two or more pros@ssee or more processors.

Some of these components can be dropped in some type ofskele¢refore, a skeleton model
is characterized by the way it does each of the three preziomponents.
In conclusion, the model is characterized by the tuple:

(Tsk,Tfl,...,Tfn,g,l,P) (l)

The conceptual block¥ ;, will depend on the specific application and, in this casey thidl be
obtained by means of a description provided by the desidrtbeapplication.

Associated with these components there are cost functibims.functionr,, corresponds to the
time invested in computation by the skeleton (implemeatatif paradigm), the functiong,.. is the
analytical communication model and it plays an importatd no prediction of the execution time of
parallel applications on parallel machine and functiopsire associated to the cost of each specific
function involved in the particular skeleton (user funogd. The cosf2 of a skeleton is given by:

QSK,P = F(Tsk; Thiy oo Thas TEIC) (2)

The values ofy, 75, andrg,, typically depend on the number of processBrand on the problem
sizeSIZFE.

The timerg,. predicts the time invested in communications. In additm®tandSTZF, it de-
pends on the value of two determinants parameters to eeatoatputational capacity of a parallel
machine. In skeletons like Hypercube Divide and ConqéEb () where many sources are contin-
uously sending data to many processors, we use an averagitiahroughputy,; and a latency
[, both dependent of?. In this case the communication bottleneck is the transdpacity of the
network.

In skeletonDC_Clall, Tp..(K, gisun,p), lp) represents the data exchange phase, and it can be
formuled by means of the following equation:

TEee(K, 9(fur,pys P) = tsend(K, 9(funr,p)s Ip) + treco (K, 9(gunr,p); L)

wheret,.,q andt,.., respectively denote the time to send and receive a bloclkatong K con-
tiguous data units. Our communication model is linear,espntanting the communication time by a
linear function of the message size:

tsend (I, g(pun,pys lp) = (Ip 4+ K % g(fuu,p))
treco (IS, g(pu,py> lp) = (Ip 4+ K % g(fuu,p))

The communication time can be summarized as follows:

Teze(K, g(rutt,p), IP) = 2% (Ip + K * g(fun,p)))

The parameters needed to design the model are not onlyestthié dependertf, [, ¢) but also
it must be reflect skeletal characteristids,{, T,). The dependence of the architecture allowed in
the cost functions is in the coefficients defining each paldicfunction. Thus, once the analysis
for a given architecture has been completed, the predgfimna new architecture can be obtained
replacing in the formulas the function coefficients.

5 PERFORMANCE PREDICTABILITY OF HYPERCUBE DIVIDE AND
CONQUER SKELETON

Next, we present and verify an accurate timing parallel mofleomputation developed to analyze
and to predict performance &f DC' algorithms using the skeletanC'_Call.

In order to achieve an instance model®DC', we need to describe the cost functions. As we
have previously seen, a divide and conquer problem needsfittedive specific functionstrivial,
conquer, divide, combine and sequential. We do not include costs associated with tasksial
andconquer since they do not make a significant contribution to executime whenS7ZE much
bigger thanP.

The parallel time of arlf DC' algorithm with input size5 77 F can be formulated as a function of
five parameters:

QHDC’,P(SIZE) = F(THD07 TDivs TComb> 7-Seqa 7—E‘xc) (3)

The communication time of a cluster Bfprocessors can be described by machine-dependent pa-
rametersy, the time needed to send one data word into the communiaagiovork, or to receive one
word, in the asymptotic situation of continuous messadgédr@nd(, the latency or startup cost. They
are well known in parallel models area, and they are easytrofrom any cluster. So, associated
to the stage of communication between partners there istdwudion 7,.(SIZFE, g,1, P) which
gives us a time prediction invested for communications imsgeof number of processor#) in the
work group and the lengths of messages involved.

In this caseygpc is considered zero becau¥g;p¢ is insignificant compared to other compo-
nents affecting the overall. Next, we need to find a diffeoportionality constant (cost) for each

specific function.
The timeQype p(SIZE) taken byP processors using the skeletdr'_Call is recursively de-
fined by the formula:

SIZE
Qupc,p(SIZE) = maXP{TDiu,i(SIZE)} + maXP{QHDo,P()+
B i

i=1,..., 1,..., 2

SIZE SIZE SIZE
Qupo,p() = i:fm{ip{mm,i(5 +i=r{1,3.3«.7.(,P{QHDO,P(Tt
SIZE
Z_:rlnﬁ)iP{TE‘a:c,i(Kly 9,0} + Z_:rln,;.l.).(,P{TOomb,i(T)}
SIZE SIZE SIZE
Qupe,p() = max _{Tpu,()} + max {Qupc,p(3+
4 i=1,...,P i=1,...,P
SIZE
(nax {7mee,i(K2, 0,0} + | max {reomp,i(— —)}
And so on. When processors finish the recursion, the timevengy:
SIZE SIZE SIZE
QHDO,P(W) = i:rln,fl.).(,P{TDiv,i(m)} + i:fil,?_i_fip{QHDo,P(oz P)}

SIZE
r{laXP{TEmc,i(K(log Py—1,9, D)} + i:r{laXP{TComb,i(m)}

i=1,.., P 20T =1,

After log P division steps, the algorithm resolves each subproblensegaential form:

SIZE SIZE
QHDO,P(W) = _:r{laXP{TSefl i(Siog 7 olog P)}

The cost of an algorithm is simply the sum of the costs of itegonents:

(log P)—1 (log P)—1

SIZE SIZE
Qupc,p(SIZE) = Z ,max {TDwz(T)}+ Z [max {Toombz(T)}
j=0 j=0
(log P)—1

SIZE
+ Z .ma‘x {TBzc,i(kj, 9,1)} + r{lax {TSEW(ngP)}

........

5.1 Measuring Communication Performance

Different proposals can be used to determipg.. For example, it would be valid to take ag,. the
empirical set of linear by pieces functions obtained fromaAdbahs [2] or Arruabarrenas [4] studies,
where latency and bandwidth are considered depending onaifmenunication pattern. On other
hand, it would be valid to evaluate the effective latency #mdughput of message transmissions
using a classical round-trip test (also called a ping-p@&sg) tbetween two machines. The ping-pong
test measures the time needed for a message of a given lengphftom one machine to the other
and to come back immediately.

The timming model presented characterizing the communitétme through architecture param-
eters and message size. It assumes a linear by pieces hahaulte message size of the functions in
Teze- HOWever, this behaviour can be non-linear in the nunibef processors (i.e. broadcast usually
have a logarithmic factor i#).

To obtain the architecture parameters, we used micro-eants [1]. they were run in a dedicated
fashion, i.e. no other user programs or unnecessary systefices were allowed to run during the
benchmarking. We considered two micro-benchmarks to nmeagl) The worst cask(latency) and
(2) The worst casgy,,;;, measured for data full all-to-all collective communicati{throughput). Each
one of them was calculated for two different methods; (1)thetmessage size vary and (2) Let the
number of messages vary.

The Figure 2 shows the parameters for the clusfdp/C'. The cluster consisting of 14 networked
nodes, each one a Pentium IV of 3.2 GHz and 1 GB of Ram. The revédesonnected together by
Ethernet segments and a Switch Linksys 8024 of 1 GB. The base software on cluster include a
Debian etch SO, and MPICH 2 1.0.6. In both graphics,j#walue corresponds to the time it takes
for a single integer (32-bit word) to be delivered. Note thtehcy increases much faster than the
throughput decreases. Also note that the scale of the ydiffesa factor1000. One may conclude
that latency becomes the most important factor when the puniftprocessors grows.

Next sections exemplify the use of the model to predict e tspent by & DC' algorithm.

6 CASE STUDY: CONNECTED COMPONENT

The problem of connected component is usually consideredbthe most elementary graph prob-
lems. It try to find all connected components of an undiregieghG = (V, E) of |V| = N nodes

350 m
- —] 250 [~
250 | |
_ w0
| g
g =200 | | E
| B S |
L q & —
B " 100 [
100

Figure 2:Latency and Throughput on Cluster LIDIC

Figure 3: Example of a graph

and|E| = M edges. The connected component&@re the sets of nodes such that all nodes in each
set are mutually connected (reachable by some path), amdonwoodes in different sets are connected.

As a case of study we propose a parallel divide and conqueritiim to identify subgraphs of
the graph in which the nodes of the subgraph are connected.

We use a simpledges list to represent the graph. @ = (V, E) is a graph, its edges list is a
structureX .2, where each edge = (u,v) € E, u < v, is stored inX[i], and X[i,0] = u Yy
X|[i, 1] = v. The algorithm takes as input the edges list of a gr@gfiv nodes and\/ edges) stored
in a generic structur® ector Input. The procedure keeps for each node in the graph, all othexsnod
which it has an edge to (thedjacency list of a node). The algorithm produces as output a vector
VectorOutput, where each elementectorOutput[j] for 1 < j < N will store the root of the
connected component for.

The following main program shows the connected componégsithm using the skeletoRC' _Call:

Al gorithm Paral | el Connect edConponent ()
i ni t Par (&Vector | nput, &/ectorQut put, N, M ;
DC Cal | (HDC, 2, &trivial, &onquer, ÷, &conbine, &secuencial, MPI_COW WORLD,
&Vectorlnput, M sizeof(edge), &VectorQutput, N, sizeof(int));

The first argument is used to specify th&C' type. In this case, it is a Hypercube Divide and
Conquer algorithm. The second parameter indicates thdicaton factor. FoiH DC', Weight must
be equal t@ (the number of activities generated in the division pha$ég next five arguments are
used to introduce the specific code of application (usertions).

Here, we give a little example to show how the parallel altponiworks when using four proces-
sors. Consider the graph as shown in the Figure 3, witgre- M =9 and|V| =N =9.

The edges lisk (1,2),(2,3),(1,3),(4,5),(5,6),(6,7),(4,7),(5,7), (8,9) > is stored invVector-

I nput.

The procedurelivide divides the edges list in two of abou/2 edges each. Each of which is
then solved by applying the same approach recursively. @edeave reached a base case/al), a
functionconquer is applied to find the roots of the connected components stiivedges list.

In the above exampl&/ctor Output associated to processBy would then look like:

e P:<1,1,1,4,5,6,7,8,9 >

e Py:<1,2,3,4,4,4,7,8,9 >
e Py:<1,23,4,54,4,89>

o Py:<1,2,3,4,56,58,8 >

WhereV ector Output associated®; contains the roots of the connected components of its s@sedg
partition. For example, in the processBr, the nodel, 2 and3 in the graphG belong to the same
subgraph with root in nodée.

Then, the functiorrombine can just merge this sublist with its level partner to prodacew root
vector of connected components. After the firetge, the Vector Outputs will be as follows:

o Pp:<1,1,1,4,4,4,7,8,9 >
o Py:<1,1,1,4,4,4,7,89 >
o P3:<1,2,3,4,4,4,4,88 >

o Py:<1,2,3,4,4,4,4,8,8 >

After the lastmerge, theViector Outputs will be as follows:
e P:<1,1,1,4,4,4,4,8,8 >
e Pr:<1,1,1,4,4,4,4,8,8 >
e P3:<1,1,1,4,4,4,4,8,8 >

o Pyi<1,1,1,4,4,4,4,8,8 >

The list identifies the root of each connected componenaritle seen that the root of a compo-
nent is the member node with lowest visitation index.

7 MEASURING OF D& C FUNCTIONS OF CONNECTED COMPONENT

To predict the time off DC' algorithms is necessary to estimate the execution timeaf &anction
implemented by the useti{vide, combine andsequential) on the cluster.

The algorithm takes as input two parameters: the number dé$¢V) and edgesA/). Each
parameter affects in some way to the specific function. Irfuhetion divide, the number of edges
of the graph plays a fundamental role to estimate the costth®wther hand, the number of nodes
determines the behavior for functioambine. The functionsequential is affected by both variables.

Multivariate statistics refers to a group of inferentialhiaiques that have been developed to handle
situations where sets of variables are involved as predicfgperformance. We make use of statistical
analysis for determining model coefficients.

A model relating the experimental execution time of funetivide to a set of independent vari-
ables is:Tp;, = Divy, + Div, * M wherel andM are the basis functions of the model abéy; will
be estimated by the parameter estimation algorithm. Lilesat-squares models (LSQ) estimate the
coefficientsDivy, and Div, to minimize the squared sum of errors between predicted gpelienen-
tal values of functionlivide. The execution time model of functiembine is obtained in a similar
way: Teoms = Comby + Comby x N, whereComby, andComb; are their unknown coefficients.

Each data in the trace file is used like input for regressichrigjues to find coefficients that
achieve the best approximation to the real function.

The functionsequential has a cost o (2N + M). To build an adjacency list, it requires
operations, then it makesiaF'S (Depth-First Search) algorithm to find the connected corepts

SIZE TD'L"U TC’omb
100 0.000003 0.0000209
500 0.000013 0.000130

1000 0.000021 0.000274
2000 0.000042 0.000609
9
4
9
2

4000 0.000080 0.00127
8000 0.0000157 0.00237
16000 0.000313 0.00419
32000 0.000623 0.00692

Table 1: Trace file of experimental execution times of fumsidivide andcombine

From our algorithm D F'S with adjacency list requires time proportional@ N + M). The table

2 shows a sample of invested time for functiaquential. We can see it is linear in the size of the
structure. The values dfeqy, Seq; and Seq, will be obtained from regression techniques and they
conform the coefficients dfseq = Seqy + Seq; * N + Seqy x M.

N M Tseq N M Toeq

4000 4000 0.000960] 16000 4000| 0.001182
4000 8000| 0.01804 | 16000 8000| 0.002264
4000 16000 0.003624| 16000 16000 0.004386
4000 32000 0.008119| 16000 32000 0.009350
8000 4000 | 0.001065/ 32000 4000/ 0.001411
8000 8000| 0.002029| 32000 8000| 0.002537
8000 16000 0.003962| 32000 16000 0.004929
8000 32000 0.008445| 32000 32000 0.010441

Table 2: Trace file of real execution times of functieuential

The table 3 shows the estimated values for approximatiactiumsdivide, combine andsequential.
In all cases, the coefficients of determination exc&gd.

division Divy Div, (R?)
1.94e79% 2.25¢7% 99%

combine | Comby, Comb; (R?)
2.19¢797 2.32¢793 95%

sequential | Seqq Seq, Seq (R?)
0 1.35¢79 4.60e7°7 98%

Table 3: Numerical value of coefficients

Results

We performed initial experiments. The table 4 shows the @e&a time for several problem sizes
using 8 processors.

To predict performance of some instances, the predictiote{®; pc p(Size) was resolved us-
ing models and coefficients shown in sectionLike an example, we use the model to predict the

N M TPar
1024000 512000 1.719770
1024000 1024000 1.844182
1024000 2048000 2.102299
2048000 512000 3.002905
2048000 1024000 3,128890
2048000 2048000 3.504908

00 0O 00 00 0 0o I

Table 4: Times to find connected component using paralleralgn

ccccccccccccccccccc

Figure 4:Measured Time vs Predicted Time for different configuration

execution time to find connected components for a g@ps (V, E) with |V| = N = 1024K y
|E| = M = 2048 K using8 processors.

To estimate the time spent in communication, we instantiatewith the number of words (32-
bit) to communicate by each recursion level and the architegarameterd @ndg). For this prob-
lem, each algorithm recursion level always communicatesathole root’s vector, this i$024 K of
32-bits words.

2
Z max {7pgc,(1024K, 1.51 10 7243107} = 3%2x(0.000243 + 1024K % 1.51 % 10™")

= 3% 2x%(0.000243 + 0.154624) = 0.929202

The predicted time to solve the connected components ofdngfas the sum of the time invested
for each component function:

Qupes(1024K, 2048K) = 1.916492

In this particular prediction the error was83%. (Predicted = 1.916492 versus Observed=
2.102299, see table 4). Errors are basically due to the laakauracy for the communication com-
ponent.

The figure 4 shows a comparison between predicted time artdaites obtained for several con-
figurations. The results were very near to the expectablaviebr.

8 CONCLUSIONSAND FUTURE WORK

In this paper, we first described the skeleton’ Call. It provides high-level abstraction for pro-
gramming divide and conquer algorithms, easing the exjresd parallelism, communication, and

synchronization. The results obtained using the skeleescribed in this paper prove it to be suit-
able to handle the class of problems parallel divide and eend he application programmers benefit
from proposed skeleton, which hides much of the compleXitganaging parallel divide and conquer
algorithms. We believe that preserving the semantics ofédugiential divide and conquer program
is a key point to achieve the objective to alleviating thdidifties in the development of parallel
applications.

Besides this, the paper also presents and verifies an aet¢umang model to predict the perfor-
mance of the proposed primitive on a clusters of processbing. parameters needed to design the
model are not only architecture depend@hiti, g) but also it must be reflect skeletal characteristics.
The dependence of the architecture allowed in the costifurgts in the coefficients defining each
particular function of the skeletoPC_Call. Thus, once the analysis for a given architecture has
been completed, the predictions for a new architecture easbbained replacing in the formulas the
function coefficients. We used statistical analysis foed®eining analytical model coefficients. The
multivariate techniques described here are particulgbfieable because of the large number of sam-
ples the system allows to obtain. In this way, the progransraer provided with a high level primitive
whose different implementations have a well-understodb@ur and predictable efficiency.

Future work should concentrate in describing other abstraprimitives and to extend the skele-
ton’s portability to support both shared and distributedmogy architectures.

ACKNOWLEDGMENTS

We wish to thank the Universidad Nacional de San Luis, the @XP and the CONICET from which
we receive continuous support.

REFERENCES

[1] Mpiedupack 1.0. available at http://www.math.uu.eldple/bisseling/edupack/mpiedupackl.0.tar.

[2] Davidson E.S. Abandah, G.Alodeling the Communication Performance of the IBM SP2. Proc.
10th IPPS., 1996.

[3] Printista A.M. Modelos de Predicci’ on en Computaci’ on Paralela. Thesis of Magister submitted
to the Universidad Nacional del Sur., 2001.

[4] Arruabarrena A. Beivide R. Gregorio J.A. Arruabarredayl. Assesing the Performance of the
New IBM-SP2 Communication Subsystem. IEEE Parallel and Distributed Technology. pp 12-22.,
1996.

[5] C. Rodriguez Len F. Piccoli, M. Printist&ynamic Hypercubic Parallel Computations. Proceed-
ing (466) Parallel and Distributed Computing and Systeri652

[6] M. Printista F.D. SaezProgramacin Paralela Esqueletal. XlIIl Congreso Argentino de Ciencias
de la Computacin, Corrientes and Resistencia, Argentingglier 2007.

[7] M. Printista J.G. Zanabria, F. PiccoliHypercubic Comunications in MPI. Tesis submited for
UNSL, 2005.

