
Performance Predictability of Divide and Conquer Skeletons

Fernando Saez Marcela Printista

LIDIC

Universidad Nacional de San Luis.

Ejército de los Andes 950, San Luis, Argentina.

e-mail:fbfsaez@unsl.edu.ar, mprinti@unsl.edu.arg
Abstract

Parallel divide and conquer computations, encompassing a wide variety of applications, can be modeled
and encapsulated as a high level primitive called skeleton.

The paper deals with a skeleton designed for parallel divideand conquer algorithms that provide hyper-
cubical communications among processes The paper also introduces an accurate timing model designed for
prediction of proposed primitive. The timing analysis model presented here still characterizing the commu-
nication time through architecture parameters but introduces a few novelties. The proposal is to introduce
different kinds of components to the analytical model by associating a performance constant for each specific
conceptual block of the skeleton. The trace files obtained from the execution of the resulting code using the
skeleton are used by lineal regression techniques giving us, among other information, the values of the param-
eters of those blocks. An extended example showing the relative accuracy of the proposed approach concludes
the paper.

Keywords: Paralellism, Parallel Model, Skeleton, Timing Analysis, Divide and Conquer

1 INTRODUCTION

Traditionally, parallel programs are designed using low-level message passing libraries, such as PVM
or MPI. Message passing provides the two key aspects of parallel programming: (1) synchronization
of processes and (2) communications between processes. However, programmers still encountered
difficulties because these interfaces force to deal with low-level details, and their functions are too
complicated to use for a nonexpert parallel programmer.

Many attempts have been undertaken to hide parallelism behind some kind of abstraction in order
to free the programmer from the burden of dealing with low level issues.

There is an alternative model of parallel programming that avoids communications and synchro-
nization problems and restricts the form in which the parallel computation can be expressed. The
model provides programming constructors:skeletons, that directly they correspond to frequent paral-
lel patterns. The user expresses parallelism using a set of basic predefined forms with solution to the
mapping and restructuring problems. We consider the motivations of this approach with more detail
in the next section. The rest of the paper is organized as follows. The section 3 describes the Divide
and Conquer Skeleton. The section 4 describes the performance predictability of a skeleton and in
section 5 we discuss an instance model of hypercube divide and conquer skeleton. A case of study
is presented in section 6. The results are showed in section 7and the conclusions are presented in
section 8.

2 MOTIVATION

An alternative to the parallel programming is to provide a set of high-level abstractions which provides
support for the mostly used parallel paradigms. A programming paradigm is a class of algorithms that
solve different problems but have the same control structure. Programming paradigms usually encap-
sulate information about useful data and communication patterns, and an interesting idea is to provide
such abstractions in the form of programming templates or skeletons. In parallel context, the essence
of this programming methodology is that all programs have a parallel component that implements a
pattern or paradigm (provided by the skeletons) and a specific component of an application (in charge
of the user). After the recognition of parallelizable partsand an identification of the appropriate algo-
rithm, a lot of developing time is wasted on programming routines closely related to the paradigm and
not the application itself. With the aid of a good set of efficiently programmed interaction routines
and skeletons, the development time can be reduced significantly. The skeleton hides from the user
the specific details of the implementation and allows the user to specify the computation in terms of
an interface tailored to the paradigm.

To develop a specific application, the programmer/user chooses one or several skeletons, cus-
tomizes them for the application and, finally, composes customized components together to obtain
the executable target program. For example, we are familiarwith concepts such as ”pipeline”, ”pro-
cessors farms”, ”divide and conquer”, ”dynamic programming”, ”simulating annealing” and, more
recently, those related with optimization problems. Before a new problem, we may try to formulate
a solution in one of these well known styles. Since we alreadyknow how to implement the essential
computational structure of each technique, it will only be necessary to introduce problem specific
details to obtain a parallel version.

3 ABSTRACTION PRIMITIVE: DIVIDE AND CONQUER SKELETON

The Divide and Conquer approach (DC) finds the solution of a problemx by dividingx in subprob-
lemsx0 andx1. This procedure is applied recursively to solve a problem where subproblems are
smaller versions of the original problem. In this typical structure, the two subproblems can be done
in parallel (Fig. 1). Infinite recursion is prevented using apredicatetrivial. If this predicate returnsTRUE, the function
onquer is applied to solve the problem directly without any furtherdivision.
At the ending of the procedure, the function
ombine is used for merge the subsolutions in a general
solution.
1 procedure DC(p: Problem, r: Result)
2 begin
3 if trivial(p) then conquer(p, r);
4 else
5 begin
6 divide(p, p0, p1);
7 do in parallel (DC(p0,r0), DC(p1,r1));
9 combine(r, r0, r1);
10 end;
11 end;

Figure 1:ParallelD&C approach

From the experience obtained in the programming skeletal, especially in the design of different
skeletons [7, 5], we have implemented a versatile parallelDivide and Conquer skeleton [6] .

The skeleton is written in C and we chose MPI (message passinginterface) to avoid introduce new
sintaxis.

The prototype for skeletonDC Call is as follows:

void DC_Call(typeDC Type, int Weight, mInteraction IM,
TPF_trivial Itrivial, TPF_conquer Iconquer,
TPF_divide Idivide, TPF_combine Icombine,
TPF_secuencial Isecuencial,
TypeN *In,int SizeBufferIn, int SizeDataTypeIn,
TypeN *Out, int SizeBufferOut,
int SizeDataTypeOut, MPI_Comm comm)

The parameters number in the call to the skeletonDC Call, may look a little complex, but this
long parameter list allows substantial flexibility, which will bring benefits in different domains. The
first parameter (an enumerate type) specifies the type of algorithm to be used, which will depend
of the specific problem to solve. In this work, we explore Hypercube Divide and Conquer,HDC.
This type provides a structure with hypercubical communications among processes. It generates,
recursively, a binary tree of groups of processes whose leaves consist of only one process. The
number of processes in each branch is halved at each level andits interactions within a level occur
between pairs of processes which will have the same rank (in distinct groups) at the next level down.

There are other types ofDC algorithms, such as Classical Divide and Conquer, Divide and Con-
quer with Embarrassing Divisibility and Divide and Conquerwith Trivial Combine Operation. In the
first type of algorithm, the input is presented in only one processor. When the computation reaches
the division phase, the processor will communicate the subproblems to the available processors and
it will continue with its subproblem. In the Divide and Conquer with Embarrassing Divisibility type,
the communication is not necessary. This structure is common in many algorithms whose data are
totally distributed. Examples are the scalar product and the balanced matrix multiplication. In the
third type, once the final point of recursion is reached, the leave processes will have the solution to
the total problem in a distributed way. For example, mergesort has a trivial divide operation.

The body of the routinestrivial, sequential, divide and
ombine are described by functions and
they will need to be implemented by the user.

4 PERFORMANCE PREDICTABILITY

A computational model is an abstract computing tool used to reason about computation. Algorithm
complexity depends on the computational model in which the algorithm is defined. Some models are
necessarily elaborate and include a large number of parameters. There are other models of complexity
likeLogP orBSP , characterizing the performance of distributed machines through a few architecture
parameters but they incur in a considerable loss of accuracy[3].

The advantage of using skeleton is the availability of a formal framework for reasoning about
programs. In addition, cost measure can be associated with skeletons, thus enabling performance
considerations. The timing analysis model presented here still characterizing the communication
time through architecture parameters but introduces a few novelties.

The proposal is to introduce different kinds of components to the analytical model by associating
a performance constant for each specific conceptual block ofthe skeleton.

The proposed parallel computational model considers a cluster made up by a set ofP processing
elements and memories connected through a network. The computation in the model involves three
kinds of components:� Common pattern of paradigm: sequence of local operations needed to implement the paradigm.� User functions of paradigm: sequence of operations on localdata needed to implement the

application.

� Communications: exchange of data among two or more processes in one or more processors.

Some of these components can be dropped in some type of skeleton, therefore, a skeleton model
is characterized by the way it does each of the three previouscomponents.

In conclusion, the model is characterized by the tuple:(�sk;�f1; :::;�fn; g; l; P) (1)

The conceptual blocks�fi will depend on the specific application and, in this case, they will be
obtained by means of a description provided by the designer of the application.

Associated with these components there are cost functions.The function�sk corresponds to the
time invested in computation by the skeleton (implementation of paradigm), the function�Ex
 is the
analytical communication model and it plays an important role in prediction of the execution time of
parallel applications on parallel machine and functions�fi are associated to the cost of each specific
function involved in the particular skeleton (user functions). The cost
 of a skeleton is given by:
SK;P = F (�sk; �f1 ; :::; �fn; �Ex
) (2)

The values of�sk; �fi and�Ex
 typically depend on the number of processorsP and on the problem
sizeSIZE.

The time�Ex
 predicts the time invested in communications. In addition to P andSIZE, it de-
pends on the value of two determinants parameters to evaluate computational capacity of a parallel
machine. In skeletons like Hypercube Divide and Conquer (HDC) where many sources are contin-
uously sending data to many processors, we use an average data full throughputgfull and a latencyl, both dependent onP . In this case the communication bottleneck is the transfer capacity of the
network.

In skeletonDC Call, �Ex
(K; g(full;P); lP) represents the data exchange phase, and it can be
formuled by means of the following equation:�Ex
(K; g(full;P); lP) = tsend(K; g(full;P); lP) + tre
v(K; g(full;P); lP)

wheretsend andtre
v respectively denote the time to send and receive a block containingK con-
tiguous data units. Our communication model is linear, representanting the communication time by a
linear function of the message size:tsend(K; g(full;P); lP) = (lP +K � g(full;P))tre
v(K; g(full;P); lP) = (lP +K � g(full;P))

The communication time can be summarized as follows:�Ex
(K; g(full;P); lP) = 2 � ((lP +K � g(full;P)))
The parameters needed to design the model are not only architecture dependent(P; l; g) but also

it must be reflect skeletal characteristics (�sk, �fi). The dependence of the architecture allowed in
the cost functions is in the coefficients defining each particular function. Thus, once the analysis
for a given architecture has been completed, the predictions for a new architecture can be obtained
replacing in the formulas the function coefficients.

5 PERFORMANCE PREDICTABILITY OF HYPERCUBE DIVIDE AND
CONQUER SKELETON

Next, we present and verify an accurate timing parallel model of computation developed to analyze
and to predict performance ofHDC algorithms using the skeletonDC Call.

In order to achieve an instance model ofHDC, we need to describe the cost functions. As we
have previously seen, a divide and conquer problem needs to define five specific functions:trivial,
onquer, divide,
ombine andsequential. We do not include costs associated with taskstrivial
and
onquer since they do not make a significant contribution to execution time whenSIZE much
bigger thanP .

The parallel time of anHDC algorithm with input sizeSIZE can be formulated as a function of
five parameters:
HDC;P (SIZE) = F (�HDC ; �Div; �Comb; �Seq; �Ex
) (3)

The communication time of a cluster ofP processors can be described by machine-dependent pa-
rameters:g, the time needed to send one data word into the communicationnetwork, or to receive one
word, in the asymptotic situation of continuous message traffic andl, the latency or startup cost. They
are well known in parallel models area, and they are easy to obtain from any cluster. So, associated
to the stage of communication between partners there is a cost function �Ex
(SIZE; g; l; P) which
gives us a time prediction invested for communications in terms of number of processors (P) in the
work group and the lengths of messages involved.

In this case,�HDC is considered zero because�HDC is insignificant compared to other compo-
nents affecting the overall. Next, we need to find a differentproportionality constant (cost) for each
specific function.

The time
HDC;P (SIZE) taken byP processors using the skeletonDC Call is recursively de-
fined by the formula:
HDC;P (SIZE) = maxi=1;:::;Pf�Div;i(SIZE)g+ maxi=1;:::;Pf
HDC;P (SIZE2)g+maxi=1;:::;Pf�Ex
;i(K0; g; l)g+ maxi=1;:::;Pf�Comb;i(SIZE)g
HDC can be derived by successive substitution:
HDC;P (SIZE2) = maxi=1;:::;Pf�Div;i(SIZE2)g+ maxi=1;:::;Pf
HDC;P (SIZE4)g+maxi=1;:::;Pf�Ex
;i(K1; g; l)g+ maxi=1;:::;Pf�Comb;i(SIZE2)g
HDC;P (SIZE4) = maxi=1;:::;Pf�Div;i(SIZE4)g+ maxi=1;:::;Pf
HDC;P (SIZE8)g+maxi=1;:::;Pf�Ex
;i(K2; g; l)g+ maxi=1;:::;Pf�Comb;i(SIZE4)g

And so on. When processors finish the recursion, the time is given by:
HDC;P (SIZE2(log P)�1) = maxi=1;:::;Pf�Div;i(SIZE2(log P)�1)g+ maxi=1;:::;Pf
HDC;P (SIZE2log P)g+maxi=1;:::;Pf�Ex
;i(K(log P)�1; g; l)g + maxi=1;:::;Pf�Comb;i(SIZE2(log P)�1)g

After logP division steps, the algorithm resolves each subproblem in asequential form:
HDC;P (SIZE2log P) = maxi=1;:::;Pf�Seq;i(SIZE2log P)g
The cost of an algorithm is simply the sum of the costs of its components:
HDC;P (SIZE) = (log P)�1Xj=0 maxi=1;:::;Pf�Div;i(SIZE2j)g+ (log P)�1Xj=0 maxi=1;:::;Pf�Comb;i(SIZE2j)g+ (log P)�1Xj=0 maxi=1;:::;Pf�Ex
;i(kj ; g; l)g+ maxi=1;:::;Pf�Seq;i(SIZE2log P)g

5.1 Measuring Communication Performance

Different proposals can be used to determine�Ex
. For example, it would be valid to take as�Ex
 the
empirical set of linear by pieces functions obtained from Abandahs [2] or Arruabarrenas [4] studies,
where latency and bandwidth are considered depending on thecommunication pattern. On other
hand, it would be valid to evaluate the effective latency andthroughput of message transmissions
using a classical round-trip test (also called a ping-pong test) between two machines. The ping-pong
test measures the time needed for a message of a given length to go from one machine to the other
and to come back immediately.

The timming model presented characterizing the communication time through architecture param-
eters and message size. It assumes a linear by pieces behaviour in the message size of the functions in�Ex
. However, this behaviour can be non-linear in the numberP of processors (i.e. broadcast usually
have a logarithmic factor inP).

To obtain the architecture parameters, we used micro-benchmarks [1]. they were run in a dedicated
fashion, i.e. no other user programs or unnecessary system services were allowed to run during the
benchmarking. We considered two micro-benchmarks to measure; (1) The worst casel (latency) and
(2) The worst casegfull, measured for data full all-to-all collective communication (throughput). Each
one of them was calculated for two different methods; (1) Letthe message size vary and (2) Let the
number of messages vary.

The Figure 2 shows the parameters for the clusterLIDIC. The cluster consisting of 14 networked
nodes, each one a Pentium IV of 3.2 GHz and 1 GB of Ram. The nodesare connected together by
Ethernet segments and a Switch Linksys srw2024 of 1 GB. The base software on cluster include a
Debian etch SO, and MPICH 2 1.0.6. In both graphics, they-value corresponds to the time it takes
for a single integer (32-bit word) to be delivered. Note the latency increases much faster than the
throughput decreases. Also note that the scale of the y-axesdiffer a factor1000. One may conclude
that latency becomes the most important factor when the number of processors grows.

Next sections exemplify the use of the model to predict the time spent by aHDC algorithm.

6 CASE STUDY: CONNECTED COMPONENT

The problem of connected component is usually considered one of the most elementary graph prob-
lems. It try to find all connected components of an undirectedgraphG = (V;E) of jV j = N nodes

 0

 50

 100

 150

 200

 250

 300

 350

 2 4 6 8 10 12

La
te

nc
y (

m
icr

os
ec

.)

Number of Processors

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12

Th
ro

ug
hp

ut
 (n

an
os

ec
.)

Number of Processors

Figure 2:Latency and Throughput on Cluster LIDIC

2

1 3 4

5 6

7 8 9

Figure 3: Example of a graph

andjEj = M edges. The connected components ofG are the sets of nodes such that all nodes in each
set are mutually connected (reachable by some path), and no two nodes in different sets are connected.

As a case of study we propose a parallel divide and conquer algorithm to identify subgraphs of
the graph in which the nodes of the subgraph are connected.

We use a simpleedges list to represent the graph. IfG = (V;E) is a graph, its edges list is a
structureXMx2, where each edgeei = (u; v) 2 E, u < v, is stored inX[i℄, andX[i; 0℄ = u yX[i; 1℄ = v. The algorithm takes as input the edges list of a graphG (N nodes andM edges) stored
in a generic structureV e
torInput. The procedure keeps for each node in the graph, all other nodes
which it has an edge to (theadjacency list of a node). The algorithm produces as output a vectorV e
torOutput, where each elementV e
torOutput[j℄ for 1 � j � N will store the root of the
connected component forvj.

The following main program shows the connected components algorithm using the skeletonDC Call:
Algorithm ParallelConnectedComponent()

initPar(&VectorInput,&VectorOutput,N,M);
DC_Call(HDC, 2, &trivial, &conquer, ÷, &combine, &secuencial, MPI_COMM_WORLD,

&VectorInput, M, sizeof(edge), &VectorOutput, N, sizeof(int));

The first argument is used to specify theD&C type. In this case, it is a Hypercube Divide and
Conquer algorithm. The second parameter indicates the ramification factor. ForHDC,Weight must
be equal to2 (the number of activities generated in the division phase).The next five arguments are
used to introduce the specific code of application (user functions).

Here, we give a little example to show how the parallel algorithm works when using four proces-
sors. Consider the graph as shown in the Figure 3, wherejEj = M = 9 andjV j = N = 9.

The edges list< (1; 2); (2; 3); (1; 3); (4; 5); (5; 6); (6; 7); (4; 7); (5; 7); (8; 9) > is stored inVector-
Input.

The proceduredivide divides the edges list in two of aboutn=2 edges each. Each of which is
then solved by applying the same approach recursively. Oncewe have reached a base case (trivial), a
functionconquer is applied to find the roots of the connected components of itssubedges list.

In the above example,VectorOutput associated to processorPi would then look like:� P1 : < 1; 1; 1; 4; 5; 6; 7; 8; 9 >

� P2 : < 1; 2; 3; 4; 4; 4; 7; 8; 9 >� P3 : < 1; 2; 3; 4; 5; 4; 4; 8; 9 >� P4 : < 1; 2; 3; 4; 5; 6; 5; 8; 8 >
WhereV e
torOutput associatedPi contains the roots of the connected components of its subedges

partition. For example, in the processorP1, the node1, 2 and3 in the graphG belong to the same
subgraph with root in node1.

Then, the functioncombine can just merge this sublist with its level partner to producea new root
vector of connected components. After the firstmerge, theVectorOutputs will be as follows:� P1 : < 1; 1; 1; 4; 4; 4; 7; 8; 9 >� P2 : < 1; 1; 1; 4; 4; 4; 7; 8; 9 >� P3 : < 1; 2; 3; 4; 4; 4; 4; 8; 8 >� P4 : < 1; 2; 3; 4; 4; 4; 4; 8; 8 >

After the lastmerge, theVectorOutputs will be as follows:� P1 : < 1; 1; 1; 4; 4; 4; 4; 8; 8 >� P2 : < 1; 1; 1; 4; 4; 4; 4; 8; 8 >� P3 : < 1; 1; 1; 4; 4; 4; 4; 8; 8 >� P4 : < 1; 1; 1; 4; 4; 4; 4; 8; 8 >
The list identifies the root of each connected component. It can be seen that the root of a compo-

nent is the member node with lowest visitation index.

7 MEASURING OF D&C FUNCTIONS OF CONNECTED COMPONENT

To predict the time ofHDC algorithms is necessary to estimate the execution time of each function
implemented by the user (divide,
ombine andsequential) on the cluster.

The algorithm takes as input two parameters: the number of nodes (N) and edges (M). Each
parameter affects in some way to the specific function. In thefunctiondivide, the number of edges
of the graph plays a fundamental role to estimate the cost. Onthe other hand, the number of nodes
determines the behavior for function
ombine. The functionsequential is affected by both variables.

Multivariate statistics refers to a group of inferential techniques that have been developed to handle
situations where sets of variables are involved as predictors of performance. We make use of statistical
analysis for determining model coefficients.

A model relating the experimental execution time of function divide to a set of independent vari-
ables is:TDiv = Div0 +Div1 �M where1 andM are the basis functions of the model andDivi will
be estimated by the parameter estimation algorithm. Linearleast-squares models (LSQ) estimate the
coefficientsDiv0 andDiv1 to minimize the squared sum of errors between predicted and experimen-
tal values of functiondivide. The execution time model of function
ombine is obtained in a similar
way: TComb = Comb0 + Comb1 �N , whereComb0 andComb1 are their unknown coefficients.

Each data in the trace file is used like input for regression techniques to find coefficients that
achieve the best approximation to the real function.

The functionsequential has a cost ofO(2N + M). To build an adjacency list, it requiresN
operations, then it makes aDFS (Depth-First Search) algorithm to find the connected components.

SIZE TDiv TComb
100 0.000003 0.000029
500 0.000013 0.000130
1000 0.000021 0.000274
2000 0.000042 0.000609
4000 0.000080 0.001279
8000 0.0000157 0.002374
16000 0.000313 0.004199
32000 0.000623 0.006922

.

Table 1: Trace file of experimental execution times of functionsdivide and
ombine
From our algorithm,DFS with adjacency list requires time proportional toO(N +M). The table
2 shows a sample of invested time for functionsequential. We can see it is linear in the size of the
structure. The values ofSeq0, Seq1 andSeq2 will be obtained from regression techniques and they
conform the coefficients ofTSeq = Seq0 + Seq1 �N + Seq2 �M .N M TSeq N M TSeq

4000 4000 0.000960 16000 4000 0.001182
4000 8000 0.01804 16000 8000 0.002264
4000 16000 0.003624 16000 16000 0.004386
4000 32000 0.008119 16000 32000 0.009350
8000 4000 0.001065 32000 4000 0.001411
8000 8000 0.002029 32000 8000 0.002537
8000 16000 0.003962 32000 16000 0.004929
8000 32000 0.008445 32000 32000 0.010441

Table 2: Trace file of real execution times of functionsequential
The table 3 shows the estimated values for approximation functionsdivide,
ombine andsequential.

In all cases, the coefficients of determination exceed95%.division Div0 Div1 (R2)1:94e�08 2:25e�06 99%
ombine Comb0 Comb1 (R2)2:19e�07 2:32e�03 95%sequential Seq0 Seq1 Seq2 (R2)
0 1:35e�07 4:60e�07 98%

Table 3: Numerical value of coefficients

Results

We performed initial experiments. The table 4 shows the execution time for several problem sizes
using 8 processors.

To predict performance of some instances, the prediction model
HDC;P (Size) was resolved us-
ing models and coefficients shown in section5. Like an example, we use the model to predict the

P N M TPar
8 1024000 512000 1.719770
8 1024000 1024000 1.844182
8 1024000 2048000 2.102299
8 2048000 512000 3.002905
8 2048000 1024000 3,128890
8 2048000 2048000 3.504908

Table 4: Times to find connected component using parallel algorithm

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1.55

 1.6

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006 1.6e+006 1.8e+006 2e+006

Ti
m

e
(s

ec
.)

Count of edges(M)

P = 4 and N = 1024000

measured time
predicted time

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 200000 400000 600000 800000 1e+006 1.2e+006 1.4e+006 1.6e+006 1.8e+006 2e+006

Ti
m

e
(s

ec
.)

Count of vertices(N)

P = 8 and M = 2048000

measured time
predicted time

Figure 4:Measured Time vs Predicted Time for different configurations.

execution time to find connected components for a graphG = (V;E) with jV j = N = 1024K yjEj =M = 2048K using8 processors.
To estimate the time spent in communication, we instantiatetEx
 with the number of words (32-

bit) to communicate by each recursion level and the architecture parameters (l andg). For this prob-
lem, each algorithm recursion level always communicates the whole root’s vector, this is1024K of
32-bits words.2Xj=0 maxi=1;:::;8f�Ex
;i(1024K; 1:51 � 10�7; 2:43 � 10�4)g = 3 � 2 � (0:000243 + 1024K � 1:51 � 10�7)= 3 � 2 � (0:000243 + 0:154624) = 0:929202

The predicted time to solve the connected components of a graphG is the sum of the time invested
for each component function:
HDC;8(1024K; 2048K) = 1:916492

In this particular prediction the error was8; 83%. (Predicted = 1.916492 versus Observed=
2.102299, see table 4). Errors are basically due to the lack of accuracy for the communication com-
ponent.

The figure 4 shows a comparison between predicted time and thetraces obtained for several con-
figurations. The results were very near to the expectable behaviour.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we first described the skeletonDC Call. It provides high-level abstraction for pro-
gramming divide and conquer algorithms, easing the expression of parallelism, communication, and

synchronization. The results obtained using the skeleton described in this paper prove it to be suit-
able to handle the class of problems parallel divide and conquer. The application programmers benefit
from proposed skeleton, which hides much of the complexity of managing parallel divide and conquer
algorithms. We believe that preserving the semantics of thesequential divide and conquer program
is a key point to achieve the objective to alleviating the difficulties in the development of parallel
applications.

Besides this, the paper also presents and verifies an accurate timing model to predict the perfor-
mance of the proposed primitive on a clusters of processors.The parameters needed to design the
model are not only architecture dependent(P; l; g) but also it must be reflect skeletal characteristics.
The dependence of the architecture allowed in the cost functions is in the coefficients defining each
particular function of the skeletonDC Call. Thus, once the analysis for a given architecture has
been completed, the predictions for a new architecture can be obtained replacing in the formulas the
function coefficients. We used statistical analysis for determining analytical model coefficients. The
multivariate techniques described here are particularly applicable because of the large number of sam-
ples the system allows to obtain. In this way, the programmers are provided with a high level primitive
whose different implementations have a well-understood behaviour and predictable efficiency.

Future work should concentrate in describing other abstraction primitives and to extend the skele-
ton’s portability to support both shared and distributed memory architectures.

ACKNOWLEDGMENTS

We wish to thank the Universidad Nacional de San Luis, the ANPCYT and the CONICET from which
we receive continuous support.

REFERENCES

[1] Mpiedupack 1.0. available at http://www.math.uu.nl/people/bisseling/edupack/mpiedupack1.0.tar.

[2] Davidson E.S. Abandah, G.A.Modeling the Communication Performance of the IBM SP2. Proc.
10th IPPS., 1996.

[3] Printista A.M. Modelos de Predicci’on en Computaci’on Paralela. Thesis of Magister submitted
to the Universidad Nacional del Sur., 2001.

[4] Arruabarrena A. Beivide R. Gregorio J.A. Arruabarrena,J.M. Assesing the Performance of the
New IBM-SP2 Communication Subsystem. IEEE Parallel and Distributed Technology. pp 12-22.,
1996.

[5] C. Rodriguez Len F. Piccoli, M. Printista.Dynamic Hypercubic Parallel Computations. Proceed-
ing (466) Parallel and Distributed Computing and Systems, 2005.

[6] M. Printista F.D. Saez.Programacin Paralela Esqueletal. XIII Congreso Argentino de Ciencias
de la Computacin, Corrientes and Resistencia, Argentina, October 2007.

[7] M. Printista J.G. Zanabria, F. Piccoli.Hypercubic Comunications in MPI. Tesis submited for
UNSL, 2005.

