
MINIX4RT: Real-Time Interprocess Communications Facilities

Pablo A. Pessolani

Departamento de Sistemas de Información

Facultad Regional Santa Fe - Universidad Tecnológica Nacional

ppessolani@hotmail.com

Abstract

MINIX4RT is an extension of the well-known MINIX Operating System that adds Hard Real-Time services in a

new microkernel but keeping backward compatibility with standard MINIX versions.

Interprocess Communications provides a mechanism to make Operating System extensible, but they must be

Priority Inversion free for Real-Time applications. As MINIX Interprocess Communications primitives does not

have this functionality, new primitives were added to the Real-Time microkernel. This article describes the Real-

Time Interprocess Communications facilities available on MINIX4RT, its design, implementation, performance

tests and their results.

Keywords: Real-Time, Interprocess Communications, Priority Inheritance, Priority Inversion.

Resumen

MINIX4RT es una extensión del conocido Sistema Operativo MINIX que incorpora servicios de Tiempo Real

Estricto en un nuevo microkernel pero manteniendo compatibilidad con las versiones anteriores del MINIX

estándar.

La Comunicación entre Procesos es un mecanismo que permite hacer extensible a un Sistema Operativo, pero

debe estar libre de Inversión de Prioridades para ser utilizado en aplicaciones de Tiempo Real. Como las

primitivas de MINIX no disponen de esta funcionalidad, se incorporaron nuevas primitivas de Comunicación

entre Procesos al microkernel de Tiempo Real. El presente artículo describe las facilidades de Comunicaciones

entre Procesos en Tiempo Real disponibles en MINIX4RT, su diseño, implementación, tests de desempeño y sus

resultados.

Keywords: Tiempo Real, Comunicaciones Entre Procesos, Herencia de Prioridades, Inversión de Prioridades.

89

1 INTRODUCTION

MINIX4RT (previously named RT-MINIXv2) [1, 2] is a Real-Time (RT) version of the well known

MINIX [3] Operating System (OS) designed to teach concepts on RT-programming, in particular,

those related to RT-kernels; but it can be usable as a serious system on resource-limited computers.

It can be used to experiment with novel OS policies and mechanisms, and evaluate the impact of

architectural innovations.

The key difference between time sharing OS and RTOS is the need for deterministic timing

behavior in the RTOS. Deterministic timing means those OS services consume only known and

expected amounts of time. Inter-process communication (IPC) by message passing is one of the

central paradigms of most microkernel-based and other Client/Server architectures. It helps to

increase modularity, extendibility, security and scalability, and it is the key feature for distributed

systems and applications [4]. Therefore, IPC primitives of a RTOS need to have deterministic

execution and blocking times.

The design constrains for MINIX4RT were:

- Compatibility with MINIX: All processes that run on MINIX must run on MINIX4RT

without modifications and sensible performance impact.

- Minimal MINIX source code changes: As MINIX is often used in OS design courses,

students have deep knowledge of its source code. Reducing the source code changes keep

the student’s experience to learn a MINIX based RTOS. Most new code must be added in

separated functions with few changes in the original MINIX code. This also helps for

easier system updates when new versions of MINIX are released.

- Source Code readability: As MINIX4RT is focused for academic uses, its source code

must be easily understood, perhaps sacrificing performance.

As a microkernel based OS, MINIX4RT has a loosely layered structure with client-server

communication between the layers using Message Passing. Two methods can be used to message

transferences:

- With buffering: The message is sent to a data structure like a RT-Mach port [5] or a

Message Queue that stores it until a process receives it.

- Without buffering: The message is sent to a process and the sender must wait to transfer

the message until the message is received. This method is known as rendezvous.

Tanenbaum selects the rendezvous approach for MINIX. It has the following semantics:

- When a sender calls the send() primitive but the receiver is not waiting that message,

the sender is blocked until the receiver calls the receive() primitive for that sender.

- When a receiver wants to receive() a message but it has not been sent, the receiver is

blocked until the sender calls send() for that message.

Rendezvous approach is fine in a time-sharing environment because it is very rare that two or more

messages are queued into a Message Queue and the average queue length would be less than one

[5] but it can not be used for asynchronous communications among processes.

MINIX’s kernel hides interrupts turning them into messages, but interrupts are asynchronous

events. When a Input/Output (I/O) device rises an interrupt, its handler traps it, and will try to

send() a message to an I/O Task. If the I/O Task is not waiting for that message, the handler must

90

register this fact and will try to send() the message latter because the kernel can not be blocked.

This approach does not help too much for the implementation of communications protocols where

messages can flow in bottom-up manner triggered by interrupts.

In a RT-environment, several messages can be sent to a queue waiting to be received. MINIX4RT

IPC uses unidirectional communication channels called Message Queues (MQ) consisting of

priority lists that holds messages in RT-kernel space. The messages have fixed sizes and strict copy

to value semantics. MQs handle messages in priority order and guarantee message delivery in a

timely fashion, as Kitayama, Nakajima, and Tokuda [5] propose for Real-Time Mach ports. The

number of messages that a MQ can store must be specified for each RT-process at creation time.

The rest of this work is organized as follows. Section 2 introduces on MINIX4RT. Section 3

presents background information about MINIX IPC primitives. Section 4 presents the proposed RT-

IPC model. Section 5 and Section 6 are about basic data structures used for RT-IPC named Message

Queue Entries and Message Queues. Section 7 describes RT-IPC primitives. Performance

evaluation and related works are detailed in Section 8. Finally, Section 9 presents conclusions and

future works.

2 OVERVIEW OF MINIX4RT

MINIX4RT provides the capability of running Real-Time and Non Real-Time (NRT) processes on

the same machine. The RT-processes are executed when necessary no matter what MINIX is doing.

The RT-microkernel works by treating the MINIX OS kernel as a task been executed under a small

RTOS based on software emulation of interrupt control hardware. In fact, MINIX is like the idle

process for the RT-microkernel been executed only when there are not any RT-processes to run.

When MINIX tells the hardware to disable interrupts, the RT-microkernel intercepts the request,

records it, and returns to MINIX. If one of these “disabled” interrupts occurs, the RT-microkernel

records its occurrence and returns without executing the MINIX interrupt handler. Later, when

MINIX enables interrupts, all handlers of the recorded interrupts are executed.

The major features of MINIX4RT are summarized as follows:

Layered Architecture: MINIX4RT has a layered architecture that helps to change a component
without affecting the others.

Real-Time Sub-kernel: A RT-microkernel that deals with interrupts, IPC, time management and
scheduling is installed below MINIX kernel. The advantage of using a microkernel for RTOS is that

the preemptability is better, the size of the kernel becomes much smaller, and the addition/removal

of services is easier.

Timer/Event Driven Interrupt Management: Device Driver writers can choice among two
strategies of RT-Interrupt management.

Fixed Priority Hardware Interrupt Processing: A priority can be assigned to each hardware
interrupt that let service then in priority order.

Two Stages Interrupt Handling: Interrupt can be serviced in two stages. The hardware interrupt
handler (inside interrupt time) performs the first part of the needed work and a software Interrupt

handler (outside interrupt time) does the remaining work.

Fixed Priority Real-Time Scheduling: Each process has an assigned priority. The RT-kernel
schedules them in priority order with preemption.

91

Periodic and Non-Periodic RT-processing: A period can be specified for a periodic process; the
RT-microkernel schedules it on period expiration.

Timer Resolution Management Detached from MINIX Timer: A Timer interrupt of 50 Hz is
emulated for the MINIX kernel even though the hardware Timer interrupt has a higher frequency.

Process and Interrupt Handlers Deadline Expiration Watchdogs: The use of watchdog
processes is a common use strategy to deal with malfunctioning RT-processes. When a process does

not perform its regular function in a specified time (deadline) another process (watchdog) is

signaled to take corrective actions.

Software Timers: There are system facilities named Virtual Timers (VT) used for time-related
purposes as alarms, timeouts, periodic processing, etc. One particular feature of MINIX4RT is that

it handles software timer actions in priority order.

Statistics and Real-Time Metrics: There are several facilities to gather information about the
system status and performance.

Only NRT-process can be created and terminated under MINIX4RT. The RT-kernel does not add

new System Calls to create RT-processes. On the other hand, a NRT-process is converted into a

RT-process using the mrt_set2rt() System Call. Therefore a RT-process is managed by the RT-

kernel and blocked for the MINIX kernel and, a NRT-process is managed by the MINIX kernel and

blocked for the RT-kernel. Before converting a process, several parameters (as priority, period,

watchdog, etc.) must be passed to the RT-kernel using the mrt_setpattr() System Call.

3 OVERVIEW OF MINIX IPC

Message transfer is the basic mechanism that MINIX uses to communicate Tasks, Servers and

Users’ processes and to notify hardware interrupt occurrence.

The IPC primitives implemented as kernel functions are [3]:

- mini_send(caller, destination, msg): A message is copied from the caller’s message

buffer pointed by msg to the destination’s message buffer if destination process it is

blocked waiting for that message, otherwise the caller process is blocked.

- mini_rec(caller, sender, msg): If the sender process is blocked trying to send a

message to the caller process, the message is copied from the sender’s buffer to the buffer

pointed by msg and the sender process is unblocked, otherwise the caller process is

blocked.

4 MINIX4RT IPC MODEL

Sometimes there are programming needs to control the system behavior on message transfers. A

different policy can be applied to messages sent to request services from those messages used by

Servers to reply that requests. MINIX uses the same mini_send() primitive for both operations

without distinguish among them.

The use of the same function for service requests, service replies, signal interrupts, etc. does not

help for the application of policies for each kind of action.

A RT-process managed by the RT-kernel can not use MINIX IPC primitives because:

92

- mini_send() and mini_rec() kernel functions could change the RT-process to a ready

state for the MINIX kernel, therefore would be selected to execute by the NRT-scheduler

ignoring all its RT-execution attributes.

- As MINIX IPC does not support different behaviors for mini_send(), any priority

inversion avoidance protocol can be applied on it.

- If a RT-process make a request to a NRT-process using mini_send(), the RT-process

must wait for the reply until NRT-process will run at NRT-priority. This is a case of

Unbounded Priority Inversion.

As a RT-process can not use MINIX IPC primitives, it is inhibited of making any MINIX System

Calls except exit().

MINIX4RT offers a variety of new Kernel Calls that let apply different policies depending on the

kind of message transfer. The term Kernel Calls is used to distinguish among OS RT-services

against System Calls that provides standard services. RT-IPC Kernel Calls have the following

features:

- Synchronous/Asynchronous message transfers using Message Queues.

- Configurable Message Queue size.

- Different behavior for requests, replies, signals and interrupt notifications.

- Synchronous primitives timeout support.

- Configurable dequeueing policy (Priority order or FIFO order).

- Basic Priority Inheritance Protocol [6] support to avoid Unbounded Priority Inversion.

- Sending timestamps and message IDs can be retrieved by the receiver. Sender’s

attributes are stored into the message header (priority, process type, process deadline, etc).

To eliminate the buffer allocation delay, the RT-kernel reserves a memory space (called the System

Message Pool) where messages are stored.

A MQ of a specified size is allocated for the process when it is converted into a RT-process. A MQ

has a bounded capacity that quantifies its ability to store messages. A field named pmq into the

process descriptor is filled with a pointer to the MQ allocated for the process; therefore a RT-

process can only have one MQ.

5 THE MESSAGE QUEUE ENTRY DESCRIPTOR

The message data structure defined in MINIX (see Section 5.1.1) does not include the fields

necessary for Real-Time message operations. MINIX4RT defines a new data structure named

Message Queue Entry Descriptor (MQE) that includes useful fields to conform MQs (see Figure 1).

A MQE descriptor have the following structure and type definitions:

struct MRT_mqe_s {
 mrt_msgd_t msgd; /* A Message Descriptor */
 int index; /* A Message Queue Entry ID */
 MRT_vtimer_t *pvt; /* Virtual Timer that handle the message timeout*/
 link_t link; /* link pointer to be used in MQ and Free Lists */
 };
typedef struct MRT_mqe_s MRT_mqe_t;

93

Figure 1: Message Queue Entry Descriptor.

The index field identifies the MQE. The pvt field is pointer to a Virtual Timer used to handle

message timeouts. Linked lists management functions use the link field to insert/remove the MQE

into/from a MQ or the System Message Pool implemented as a Free list.

5.1 Message Descriptor Data Structure

MINIX4RT defines a Message Descriptor Data Structure that is composed by a Message Payload

Data Structure and a Message Header Data Structure described in the following sections.

5.1.1 Message Payload Data Structure

MINIX has six messages payload types defined as:

typedef struct {int m1i1, m1i2, m1i3; char *m1p1, *m1p2, *m1p3;} mess_1;
typedef struct {int m2i1, m2i2, m2i3; long m2l1, m2l2; char *m2p1;} mess_2;
typedef struct {int m3i1, m3i2; char *m3p1; char m3ca1[M3_STRING];} mess_3;
typedef struct {long m4l1, m4l2, m4l3, m4l4, m4l5;} mess_4;
typedef struct {char m5c1, m5c2; int m5i1, m5i2; long m5l1, m5l2, m5l3;}mess_5;
typedef struct {int m6i1, m6i2, m6i3; long m6l1; sighandler_t m6f1;} mess_6;

MINIX4RT defines it Message Payload Data Structure equals to the MINIX message payload (see

Figure 1).

The sizes of message elements will vary, depending upon the architecture of the machine.

5.1.2 Message Header Data Structure

The RT-kernel needs more information to describe message attributes as the priority, the sender's

deadline and the message type, but other fields are useful for RT-applications. The Message Header

Data Structure includes those fields and is defined as follows:

94

struct mrt_mhdr_s{
 mrtpid_t src; /* source process */
 mrtpid_t dst; /* destination process */
 unsigned int mtype; /* what kind of message is it */
 lcounter_t mid; /* message ID */
 scounter_t seqno; /* msg sequence nbr */
 lcounter_t tstamp; /* sent timestamp */
 priority_t priority; /* sender's priority */
 lcounter_t deadline; /* sender's deadline */
 };
typedef struct mrt_mhdr_s mrt_mhdr_t;

The src and dst fields reference to the message source and destination processes. The mtype is a

code of what kind of message is it. The RT-kernel sets the mid field with the current number of

messages sent by it. The seqno is the sequence number of the message sent by the source process.

The tstamp field is the message timestamp in Timer ticks. The priority field is the sender’s priority,

and the deadline field is the sender’s deadline.

6 THE MESSAGE QUEUES

A Message Queue Descriptor let the RT-kernel organize MQEs. A MQ descriptor is defined as

follows:

struct MRT_msgQ_s {
 int index; /* message queue ID */
 int size; /* message queue size */
 unsigned int flags; /* message queue policy flags */
 int owner; /* msg queue owner */
 long delivered; /* total # of msgs delivered */
 long enqueued; /* total # of msgs enqueued */
 int inQ; /* current messages enqueued */
 int maxinQ; /* message queue size */
 link_t link; /* links to other MQs */
 plist_t plist; /* Priority lists of MQEs including bitmap*/
};
typedef struct MRT_msgQ_s MRT_msgQ_t;

The index field identifies the MQ. The size is the number of MQEs that the MQ can store. The flags

field specifies the message queue policy and status flags as priority or FIFO order. The owner field

is the MQ owner process. The delivered and enqueued fields are statistical fields. The inQ field

counts the number of MQEs enqueued, and maxinQ counts the maximum number of message

enqueued. Linked lists management functions use the link field to insert/remove the MQs into/from

process descriptor and MQ Free list. The plist field is a Priority List explained in Section 6.1.

6.1 Message Queue Management

To manage the MQs the RT-kernel uses several data structures (see Figure 2):

- A Priority List data structure: It is composed by a set of MQE lists (one list assigned

for each priority level)

95

- A bitmap with one bit assigned for each priority: A bit set means that the related list

has at least one message. Initially, all the bits are cleared indicating that all lists are empty.

- An attribute flag: Used to control the behavior of queue management algorithms

according to an established policy.

On MQE enqueuing operations, the priority-th bit in the bitmap is set and the MQE is appended to

the Priority List in accordance with its priority field.

Finding the highest priority MQE in the MQ is therefore only a matter of finding the first bit set in

the bitmap. Because the number of priorities is fixed, the time to complete a search is constant and

unaffected by the number of enqueued MQE in the Priority List.

Figure 2: Message Queue Management Data Structures.

7 REAL-TIME IPC KERNEL CALLS

In many RT-applications, there are resources that must be shared among processes in a way that

prevents more than one process from using the resource at the same time (mutual exclusion).

Priority inversion is the term used to describe a situation where a process is waiting for a lower

priority process to free a shared, exclusive use resource.

The Unbounded Priority Inversion is one serious problem in RT-systems. There has been developed

many mechanisms to avoid it. The priority inversion problem in Client/Server communication is

more serious one, since the length of priority inversion tends to be much longer than that of

synchronization.

Sha, Rajkumar and Lehosky [7] suggest two protocols to avoid the priority inversion problem. One

is the Basic Priority Inheritance Protocol (BPIP); the other is the Priority Ceiling Protocol (PCP).

The BPIP potentially requires priorities to be modified when processes make requests. A Server

process may inherit the priority of a higher priority Client process even though the Server is not

executing that Client request.

96

To achieve the correct behavior and be compliance with BPIP, priority inheritance needs to be a

transitive operation. Therefore, the RT-kernel must search across the chain of requested processes

to apply the priority inheritance until it finds the process that has no pending requests. MINIX4RT

provides RT-IPC primitives that are compliance with the BPIP offering a deterministic timing

behavior.

7.1 mrt_rqst() Kernel Call

The mrt_rqst() Kernel Call sends a request message to a RT-process through a MQ in a

synchronous manner specifying a timeout.

If the destination process is waiting for the message, it is copied from the caller’s message buffer to

the destination’s process message buffer. The destination process inherits the caller's priority if it is

higher than its owns.

If destination process is not waiting for the message, the request is enqueued in the MQ owned by

the destination process, and the caller is blocked until the message is received. The destination

process and all other processes requested directly and indirectly by the destination process inherit

the caller's priority if it is higher than they own.

A timeout in Timer ticks can be specified to wait for the request message will be sent. A special

value of MRT_NOWAIT can be specified to return without waiting if the destination process is not

blocked receiving the message. To wait until the destination process will receive the message,

MRT_FOREVER must be specified as timeout. If the timeout expired the message is removed from

the destination’s MQ, the caller process is unblocked returning and E_MRT_TIMEOUT error code

and the priority of the destination process is set to the highest priority message into its MQ or its

base priority specified in the MRT_setpattr() System Call..

7.2 mrt_arqst() Kernel Call

The mrt_arqst() Kernel Call sends a request message to a process through a MQ in an asynchronous

manner.

If the destination process is waiting for the message, it is copied from the caller’s message buffer to

the destination’s process message buffer. The destination process inherits the caller's priority if it is

higher than its owns. If destination process is not waiting for the message, the request is enqueued

into the destination’s MQ, and the caller returns without waiting for the message will be received.

The destination process and all other processes requested directly and indirectly by the destination

process inherit the caller's priority if it is higher than they own.

7.3 mrt_reply() Kernel Call

The mrt_reply() Kernel Call sends a message to a process through a MQ in an asynchronous

manner. It can be used for replies in a bottom-up way (i.e. Server to Client).

If the destination process is blocked waiting for the reply, the message is copied from the caller’s

memory the destination’s message buffer and destination process is unblocked. If the destination

process is not blocked waiting for the message, the reply is enqueued in the destination's MQ.

At last, the caller’s priority is set to the highest priority message in its MQ or to its base priority if

its MQ is empty.

97

7.4 mrt_uprqst() Kernel Call

The mrt_uprqst() Kernel Call sends a message to a process through a MQ in an asynchronous

manner. Proxy like tasks can use it to make requests coming from remote processes in a bottom-up

way. Its behavior is like mrt_arqst() but the priority is passed as a function parameter.

7.5 mrt_sign() Kernel Call

The mrt_sign() Kernel Call sends a message to a process through a MQ in an asynchronous manner.

It can be used by the tasks to sign processes in a bottom-up way. It behavior is like mrt_arqst() but

the destination process priority remains unchanged.

7.6 mrt_rcv() kernel Call

The mrt_rcv() Kernel Call is used to receive a message. The caller searches for a message from the

specified source into its MQ with the retrieving policy of the MQ (Priority or FIFO order). If there

are no message from that source, the caller is blocked. If the source process is blocked trying to

send the message in a synchronous manner it is unblocked.

The caller process can specify a timeout to unblock itself. If any message is received from the

source in the specified period it returns E_MRT_TIMEOUT error code.

7.7 mrt_rqrcv() kernel Call

The mrt_rqrcv() Kernel Call optimize the performance of the common operations of send a request

message to a Server process and waits for the reply message. It saves two context switches for the

caller process.

8 PERFORMANCE EVALUATION AND RELATED WORKS

This section describes IPC tests performed on MINIX4RT and their results. The IPC performance

was tested on 20000 message transfers and four kinds of system setups/policies (see Table 1).

Table 1: Setups and Policies of IPC Performance Tests

Test Name With Timeout Priority Queue/FIFO Priority Inheritance

NoVT/FIFO/NoInH No FIFO No BPIP

VT/FIFO/NoInH Yes FIFO No BPIP

VT/Prio/NoInH Yes Priority Queue No BPIP

VT/Prio/InH Yes Priority Queue BPIP

The tests were performed under different kinds of loads on the tested system (see Figure 3):

1. Without Load (NOLoad): All unneeded processes are killed before the test.

2. CPU Load(CPULoad): A script loads the CPU without any I/O operation.

3. I/O Disk Load(HDLoad): A process access files on the hard disk.

4. I/O RS232e Load (RSLoad): A file transfer over the serial port at 19200 Kbps.

98

Figure 3: Message Transfer Time.

Table 2 presents Message Transfer Time values.

Table 2: Message Transfer Time [microseconds]

 NoVT/FIFO/NoInH VT/FIFO/NoInH VT/Prio/NoInH VT/Prio/InH

NOLoad 83,10 88,85 84,70 97,00

LoadCPU 78,40 84,80 92,40 92,75

LoadDISK 78,40 84,75 93,20 92,65

LoadRS 82,40 91,25 84,45 94,45

The Programmable Interval Timer was set up at 1000[Hz]. This fact implies the execution of the

Timer Interrupt Service Routing 1000 times by second adding an important overhead to the

measurements but presents a more realistic scenario. Other tests performed on MINIX4RT showed

an average Timer Interrupt Service Time of 32[µs].

The equipment used for the tests was an IBM Model 370C Notebook, Intel® DX4 75 MHz, AT

Bus, Memory 8 MB, and MINIX4RT (Kernel 12052006). In spite of the equipment is quite old , it

allows performance comparisons against reports of other systems [5, 8] with similar hardware.

MINIX4RT presents better results than RT-MACH [5], but remarkable differences exist against

QNX [8]. QNX provides priority based message queueing, but it only supports synchronous

communications mode.

As Sacha’s [8] reports, message transfer time on QNX consumes about 22 [microseconds] that is

three times lower than on MINIX4RT and RT-MACH, but those values rise up to 205

[microseconds] when pipes are used.

9 CONCLUSIONS AND FUTURE WORKS

MINIX has proved to be a feasible testbed for OS development and extensions that could be easily

added to it. In a similar way, MINIX4RT has an architecture that can be used as a starting point for

adding RT-services. In spite of it was designed for an academic environment, it can be optimized

TEST: Message Time [microseconds]

Client : mrt_rqrcv()

Server: mrt_rcv(); mrt_reply()

0,00

20,00

40,00

60,00

80,00

100,00

120,00

NOLoad LoadCPU LoadDISK LoadRS

NoVT/FIFO/NoInH

VT/FIFO/NoInH

VT/Prio/NoInH

VT/Prio/InH

99

for production systems even in embedded systems. MINIX4RT combines Hard Real-Time with the

standard MINIX platform so time sensitive control algorithms can operate together with

background processing without worrying about interference.

Latest development version of MINIX4RT includes two new facilities for specific purposes with

lower overhead than message transfer primitives:

- RT-semaphores: Used for mutual exclusion and synchronization of RT-processes

- RT-FIFOs: Used for variable-size data transfers among RT-Interrupt Service Routines

and RT-Tasks.

MINIX4RT algorithms were developed to minimize priority inversion to meet applications with

strict timing constrains. A sample of that is the use of Priority Lists on Message Queues and the

implementation of the Basic Priority Inheritance Protocol.

The RT-microkernel has basic features as Interrupt Management, Process Management, Time

Management, RT-IPC and Statistics gathering making it a good choice to conduct coding

experiences in Real-Time Operating Systems courses.

REFERENCES

[1] Pessolani, Pablo A, “RT-MINIXv2: Architecture and Interrupt Handling”, 5
th
 Argentine

Symposium on Computing Technology, 2004.

[2] Pessolani, Pablo A., “RT-MINIXv2: Real-Time Process Management and Scheduling”, 6
th

Argentine Symposium on Computing Technology, 2005.

[3] Tanenbaum Andrew S., Woodhull Albert S., “Sistemas Operativos: Diseño e Implementación”

2da Edición, ISBN 9701701658, Editorial Prentice-Hall , 1999.

[4] Jochen Liedtke, “Improving IPC by Kernel Design”, 14th ACM Symposium on Operating

System Principles (SOSP) 5th-8th December, Asheville, North Carolina, 1993.

[5] Takuro Kitayama, Tatsuo Nakajima, and Hideyuki Tokuda, “RT-IPC: An IPC Extension for

Real-Time Mach”, School of Computer Science, Carnegie Mellon University, Japan Advanced

Institute of Science and Technology, 1993.

[6] Mark W. Borger, Ragunathan Rajkumar. “Implementing Priority Inheritance Algorithms in an

Ada Runtime System”, Technical Remailbox . CMU/SEI-89-TR-15. ESD-TR-89-23. Software

Engineering Institute Carnegie Mellon University, 1989.

[7] Sha, L., Lehoczky, J.P., and Rajkumar, R. “Priority Inheritance Protocols: An Approach to

Real-Time Synchronization”. Tech. Rept. CMU-CS-87-181, Carnegie Mellon University,

Computer Science Department, 1987.

[8] Krzysztof M. Sacha, “Measuring the Real-Time Operating System Performance”, Institute of

Control and Computation Engineering, Warsaw University of Technology, Poland, 1995.

100

