
A functional Approach for On Line Analytical Processing

Claudia Necco, Luis Quintas ∗
Instituto de Matemáticas y Fı́sica Aplicada (I.M.A.S.L.)

Universidad Nacional de San Luis
Ejército de los Andes 950
5700 San Luis - Argentina

ayesha@unsl.edu.ar

J. Nuno Oliveira
Departamento de Informática

Universidade do Minho
4700 Braga - Portugal

Abstract

This paper describes an approach to On Line Analytical Processing (OLAP), expresed in the declarative pro-
gramming paradigm.

We define a collection of functions that capture some of the functionality currently provided by multidimen-
sional database product. This is done by defining operations which allow for classifying and reducing relations
(tables). Suitably combined, these operations will make possible to carry out the multidimensional analysis
of a relational database, and make possible the declarative specification and optimization of multidimensional
database queries.

The library works over an abstract model of the relational database calculus as defined by Maier, written in
the style of model-oriented formal specification in the functional language Haskell (details can be found in [8].

Keywords: functional programming, declarative programming, relational data model, on line analytical pro-
cessing, multidimensional analysis.

Resumen
Este paper describe una aproximación al Procesamiento Analı́tico On Line (OLAP), desarrollado en el paradigma
de la programación declarativa.

Definimos un conjunto de funciones que capturan algunas de las funcionalidades actualmente provistas
por las bases de datos multidimensionales existentes. Esto es realizado definiendo operaciones que permiten
clasificar y reducir relaciones (tablas). Dichas operaciones, convenientemente combinadas, permitirán llevar
a cabo el análisis multidimensional de una base de datos relacional, junto con la especificación declarativa y
optimización de las correspondientes consultas multidimensionales sobre dicha base.

La biblioteca provista trabaja sobre un modelo abstracto del cálculo de base de datos relacionales tal como
ha sido definido por Maier,escrito en un estilo de especificación formal orientada al modelo en el lenguaje
funcional Haskell (más detalles pueden encontrarse en [8])

Palabras claves: Programación Funcional, Programación Declarativa, Modelo de Datos Relacional, Proce-
samiento Analı́tico On Line, Análisis Multidimensional.

∗This work was carried out in the frame of the following Research Projects: 1- Program Understanding an
Re-engineering: Calculi and Applications funded by the Portuguese Science and Technology Foundation (Grant
POSI/CHS/44304/2005). 2- PROYECTO P-319002- Decisión Artificial, Uso de Autómatas en Problemas de Decisión. -
I.M.A.S.L., U.N.S.L

148

1 INTRODUCTION

Codd proposed the concept of On-Line Analytical Processing (OLAP) for rendering enterprise data
in multidimensional perspectives, performing on-line analysis of data using mathematical formulas
or more sophisticated statistical analyses, and consolidating and summarizing data [3], [4].

OLAP call for sophisticated on-line analysis, something for which the traditional relational model
[2] offers little support. Several vendors have already developed OLAP products, but many of these
suffer from the following limitations: they do not support a comprehensive “query” language similar
to SQL; viewing data in multi-dimensional perspectives involves treating certain attributes as dimen-
sional parameters and the remaining ones as measures, and then analyzing them as a “function” of
the parameters; and, finally, unlike for the relational model, there is no precise, commonly agreed,
conceptual model for OLAP or the so-called multidimensional databases (MDD) (see [5], [1], [6]).

We present a comprehensive, simple conceptual model for OLAP that treat dimensions and mea-
sures symmetrically.

The structure of the paper as follows: Section 2 introduces elementary concepts and terminology
which are used throughout the paper. Section 3 sketches a formal model for database relational data.
Section 4 contains a very brief comparison between relational and multidimensional tables. Section
5 presents the functionality necessary for OLAP-based aplications. The last section present some
conclusions and future work.

2 CATEGORICAL SUPPORT

Categories. A category consists of a collection of objects and a collection of arrows. Each arrow
f :: a→ b has a source object a and a target object b. Two arrows f and g can be composed to form a
new arrow g · f , if f has the same target object as the source object of g. This composition operation
is associative. Furthermore, for each object a there is a so-called identity arrow ida :: a→ a, which is
the unit of composition.

Our base category is called Types and has types as objects and functions as arrows. Arrow
composition is function composition (.) and the identity arrows are represented by the polymorphic
function id.

Functors. Functors are structure-preserving mappings between categories. Polymorphic datatypes
are functors from Types to Types. In Haskell, functors can be defined by a type constructor f of kind
∗ → ∗, mapping objects to objects, together with a higher-order function fmap, mapping arrows to
arrows. This is provided as a constructor class in the Haskell Prelude (the standard file of primitive
functions) as follows:

class Functor f where
fmap :: (a→ b)→ (f a→ f b)

The arrow action of a functor must preserve identity arrows and distribute over arrow composition.
For functors from Types to Types, this means that the following equations must hold:

fmap id = id

149

fmap (f · g) = (fmap f) · (fmap g)

Bifunctors. The product category Types× Types consists of pairs of types and pairs of functions.
We can define functors from Types × Types to the base category Types in Haskell. These functors
are called bifunctors. A (curried) bifunctor in Haskell is a type constructor of kind ∗→∗→∗, together
with a function bmap. The following constructor class Bifunctor was made available:

class Bifunctor f where
bmap :: (a→ c)→ (b→ d)→ (f a b→ f c d)

Products. Categorical products are provided in Haskell by the type constructor for pairs (a, b) (usu-
ally written as Cartesian product a × b in mathematics) and projections fst and snd (resp. π1 and
π2 in standard mathematical notation). Type constructor (,) is extended to a bifunctor in the obvious
way:

instance BiFunctor (,) where
bmap f g = f × g

where
(×) :: (a→ b)→ (c→ d)→ (a, c)→ (b, d)
(f × g) = split (f · fst) (g · snd)

and combinator split :: (a→ b)→ (a→ c)→ a→ (b, c) behaves as follows: split f g x = (f x, g x).

Sums. Categorical sums are defined in the Haskell Prelude by means of type constructor

data Either a b = Left a | Right b

together with a function either :: (a → b) → (c → b) → Either a c → b satisfying the following
equations:

(either f g) · Left = f
(either f g) ·Right = g

Type constructor Either is extended to a bifunctor by providing the following instance of bmap:

(+) :: (a→ b)→ (c→ d)→ Either a c→ Either b d
(f + g) (Left a) = Left (f a)
(f + g) (Right b) = Right (g b)

instance BiFunctor Either where
bmap f g = f + g

The popular notations 〈f, g〉, [f, g] and F f (where F is a functor) will be adopted interchangeably
with split f g, either f g and fmap f , respectively.

150

Invertible arrows. An arrow f :: b→a is said to be right-invertible (vulg. surjective) if there exists
some g :: a→ b such that f · g = ida. Dually, g is said to be left-invertible (vulg. injective) if there
exists some f such that the same fact holds. Then type b is said to “represent” type a and we draw:

a

g

&&≤ b

f

gg

where g and f are called resp. the representation and abstraction functions. An isomorphism f ::
b → a is an arrow which has both a right-inverse g and a left-inverse h — a bijection in set theory
terminology. It is easy to show that g = h = f−1. Type a is said to be isomorphic to b and one writes
a ∼= b.

Isomorphisms are very important functions because they convert data from one “format” to an-
other format losing information. These formats contain the same “amount” of information, although
the same datum adopts a different “shape” in each of them. Many isomorphisms useful in data ma-
nipulation can be defined [10], for instance function swap :: (a , b) → (b , a) which is defined by
swap = 〈π2, π1〉 and establishes the commutative property of product, a× b ∼= b× a.

3 MODELING RELATIONAL DATA

Collective datatypes. Our model of relational data will be based on several families of abstractions,
including collective datatypes such as finite powersets (Pa) and finite partial mappings (a ⇀ b).
These are modeled as Haskell polymorphic algebraic types (that is, algebraic type definitions with
type variables) based on finite lists [a], see Set a and Pfun a b in Table 1, respectively. Both abstrac-
tions contain an equality relation and an ordering relation. The latter instantiates to set inclusion (⊆)
and partial function definedness, respectively.

The finite sets model assumes invariant φ (Set l)
def
= length l = card(elems l), where length

is Haskell standard and card(inal) and elem(ent)s have the usual set-theoretical meaning. Partial
mappings require an extra invariant ensuring a functional dependence on sets of pairs 1:

fdp
def
= (⊆ {1}) · rng · (id ⇀ card) · collect (1)

Table 1 summarizes the Haskell modules defined for these datatypes.

Relational Database Model. An n-ary relation in mathematics is a subset of a finite n-ary prod-
uct A1 × . . . × An, which is inhabited by n-ary vectors 〈a1, . . . , an〉. Each entry ai in vector t =
〈a1, . . . , an〉 is accessed by its position’s projection πi : A1× . . .×An→Ai. This, however, is not ex-
pressive enough to model relational data as this is understood in database theory [7]. Two ingredients
must be added, whereby vectors give place to tuples: attribute names and NULL values. Concerning
the former, one starts by rendering vectorial indices explicit, in the sense of writing e.g. t i instead of
πi t. This implies merging all datatypes A1 to An into a single coproduct type A =

∑n
i=1 Ai and then

represent the n-ary product as :

A1 × . . .× An

r
,,

≤ (
∑n

i=1 Ai)
n

f

ll

1collect :: P(a× b)→ (a ⇀ Pb) converts a relation into a set-valued partial function and rng :: (a ⇀ b)→Pb is the
usual range function.

151

Finite Sets Partial Functions
Datatypes: data Set a = Set [a] data Pfun a b = Map[(a, b)]
Constructors: emptyS, sings, puts, prods bottom, singpf, putpf

ltos collect

Deletions: gets getpf

Observers: ins, nins, incls, card compatible, incompatible

allS allPf

Filters: filterS

Operations: inters, unions, diffs, plus, pfzip plus, pfinv, restn, restp

flatr, flatl, slstr, srstr, sextl, sextr pfzip, pfzipWith

zipS, zipWithallS

Folds: foldS foldPf

Functor: fmapS

Bifunctor: bmapPf

Others: the, stol, elems, card dom, rng, aplpf

unzipS tnest, discollect, mkr, bpfTrue, bpfFalse

pfunzip

Table 1: Finite sets and partial functions: datatypes and functions implemented.

under representation function 2 r 〈aj〉j=1..n
def
= λj.(ij aj) which entails invariant

φ t
def
= ∀j = 1, . . . , n, t j = ij x : x ∈ Aj

Note that j = 1, . . . , n can be written j ∈ n, where n = {1, . . . , n} is the initial segment of the natural
numbers induced by n. Set n is regarded as the attribute name-space of the model 3.

As a second step in the extension of vectors to tuples, we consider the fact that some attributes
may not be present in a particular tuple, that is, NULL values are allowed 4:

(
∑

i∈n

Ai + 1)n

which finally leads to tuples as inhabitants of

Tuple = (n ⇀
∑

i∈n

Ai)

thanks to isomorphism A ⇀ B ∼= (B + 1)A [9]. This models tuples of arbitrary arity (up to
n attributes), including the empty tuple. For notation economy, for every X ⊆ n, we will write
Tuple X as a shorthand for X ⇀

∑
i∈X Ai.

Tuple is the basis for the Haskell model of database relations presented in Table 2. Relations
(Relation) are sets of tuples sharing a common attribute schema (SchemaR). A rather complex
invariant ensuring that tuples are well and consistently typed is required, which is omitted here for
economy of presentation. This and other details of this model can be found in [8].

2Injections ij=1,n are associated to the n-ary coproduct. Left and Right in Haskell correspond to i1 and i2, respec-
tively.

3The fact that this can be replaced by any isomorphic collection of attribute names of cardinality n has little impact in
the modelling, so we stick to n.

4Think of 1 as the singleton type {NULL}.

152

Relations
Datatypes: type Tuple = Pfun IdAttr Value

type SchemaR = Pfun IdAttr AttrInfo
type IdAttr = String
type Tuples = Set Tuple
data Relation = Rel { schema::SchemaR, tuples::Tuples}
data AttrInfo = InfA { ifKey::Bool, defaultV::Value }
data Value = Int Int | String String | Date String | Time String

Constructors: emptyR

Operations: unionR, interR, diffR

projectR, selectR, natjoinR, equijoinR, renameR, divideR

Table 2: Relations: datatypes and functions implemented.

4 RELATIONAL VERSUS MULTIDIMENSIONAL TABLES

The fundamental data structure of a multidimensional database is what we call an n-dimensional
table. Let us start by giving some intuition behind the concept. We wish to be able to see values of
certain attributes as “functions” of others, in whichever way suits us, exploiting possibilities of multi-
dimensional rendering. Drawing on the terminology of statistical databases [11], we can classify the
attribute set associated with the scheme of a table into two kinds: parameters and measures. There is
no a priory distinction between parameters and measures, so that any attribute can play either role 5.
An example of a two-dimensional table is given in Table 3 (adapted from [5]).

SALES TIME
Year 1996 1997
Month Jan Feb ... Jan Feb ...

Part City (Cost, Sale)

C
A

PC Mendoza (5, 6) (5, 7) ... (4, 6) (4, 8) ...

TE Córdoba (5, 7) (5,8) ... (4, 8) (4, 9) ...

G
O

RY

...

Inkjet Mendoza (7, 8) (7, 9) ... (6, 9) (6, 8) ...
Bs. As. (6, 9) (6, 9) ... (5, 8) (5, 9) ...

...

...

Table 3: SALES — a sample two dimensional table with dimensions Category and Time. The associated
parameter sets are {Part, City} and {Y ear,Month}, respectively. The measure attributes are Cost and Sale.

We want to work with the relational model we have defined in the previous section. A natural
way to achieve this is to regard the multidimensionality of tables as an inherently structural feature,
which is most significant when the table is rendered to the user. The actual contents of a table are
essentially orthogonal to the associated structure, i.e., the distribution of attributes over dimensions
and measures. Separating both features leads to a relational view of a table. For instance, the entry
in the first (i.e., top left-most) “cell” in Table 3 containing the entry (5, 6) corresponds to the tuple

5Needless to say, the data type of a measure attribute must have some kind of metrics or algebra associated with it.

153

(PC,Mendoza, 1996, Jan, 5, 6) over the scheme

{Part, City, Y ear,Month, Cost, Sale} (2)

in a relational view of table SALES.
To provide for OLAP, we need to define operations concerned with the following kinds of func-

tionality:

• Classification: Ability to classify or group data sets in a manner appropriate for subsequent
summarization.

• Reduction/Consolidation: Generalization of the aggregate operators in standard SQL. In gen-
eral, reduction maps multi-sets of values of a numeric type to a single, “consolidated”, value.

Classification is a generalization of the familiar SQL group by operator. The following example
presents a typical query involving classification.

Example 4.1 Consider the relation RSALES with scheme (2) mentioned before. A typical query
would be: “find, for each part, the total amount of annual sales”. Even though this query involves
aggregation, notice that it also involves classifying the data into various groups according to cer-
tain criteria, before aggregation is applied. Concretely, the above query involves classification by
attributes Part and Y ear.

5 OLAP-BASED APPLICATIONS FRAME

5.1 Classification

In our model, relations are sets of tuples (tables) with a scheme, while tuples are finite partial func-
tions. First, we define a function for partial function decomposition (or “tuple classification”). Then
we extend the notion of classification, applying it in the context of tables.

Partial function decomposition (Classification on Tuples) Let t be a tuple (t ∈ Attribute ⇀
V alue), and let X = {A1, ..., Ak} be an arbitrary subset of dom(t). A classification over X of tuple
t, is the pair of tuples defined by tnest X , where tnest is polymorphic function

tnest : PA→ (A ⇀ B)→ ((A ⇀ B)× (A ⇀ B)) (3)

tnest s
def
= 〈 | s, \ s〉 (4)

The idea of this function is to decompose a partial map into a pair of maps of the same type

A ⇀ B

tnest s
,,

≤ (A ⇀ B)× (A ⇀ B)

†
kk

which, together, rebuild the original map. In Haskell:

tnest :: Eq a => Set a -> Pfun a b -> (Pfun a b,Pfun a b)
tnest s f = (s <: f,s <-: f)

154

Tabular Decomposition (Classification on Tables) Let t be a set of tuples (typed P(Attribute ⇀
V alue)), and let X = {A1, ..., Ak} be an arbitrary set of attributes of t. A classification over X , of
table t, is given by tcollect X t, where tcollect is polymorphic function

tcollect s
def
= collect · P(tnest s)

that is,

tcollect :: (Eq a, Eq b)
=> Set a
-> Set (Pfun a b)
-> Pfun (Pfun a b) (Set (Pfun a b))

tcollect s t = collect (nmap (tnest s) t)

in Haskell.
Classification essentially maps tuples of a relation to different groups (necessarily disjoint). Intu-

itively, we can think of the attributes in the first argument of tcollect as corresponding to the “group
id”.

Example 5.1 The classification part of the query of Example 4.1 can be expressed as follows: tcollect
{“Part”,“Year”} (tuples RSALES). Table 4 illustrates the result of this operation in concrete Haskell
syntax.

5.2 Reduction/Consolidation

Next, we consider reduction/consolidation, which includes not only applications of functions such
as max, min, avg, sum, count to multi-sets of values defined by groups of tuples, but also statistical
functions such as variance and mode, and business calculations such as proportions and quarterlies.

In our model, reduction functions map sets of tuples of values to individual values. We first define
some necessary auxiliary functions.

5.2.1 Relational Reduction

Function

tot2 : (A×B →B)→B →P(C × A)→B

tot2 f u
def
= {|[u, f · (π2 × id)]|}

reduces a binary relation on the second projection according to a reduction structure A×B + 1
〈f,u〉 // B

which, in most cases, is a monoid algebra. In Haskell:

tot2 :: (a -> b -> b) -> b -> Set (c,a) -> b
tot2 f = foldS (curry (uncurry f . (p2 >< id)))

155

Map[(Map [(”Part”, ”PC”),(”Year”, ”1996”)] ,
Set[Map[(”City”, ”Mendoza”),(”Month”, ”Jan”),(”Cost”, 5), (”Sale”, 6)],

Map [(”City”, ”Mendoza”),(”Month”, ”Feb”),(”Cost”, 5), (”Sale”, 7)],
..,
Map [(”City”, ”Cordoba”),(”Month”, ”Jan”),(”Cost”, 5), (”Sale”, 7)],
...]),

(Map [(”Part”, ”PC”),(”Year”, ”1997”)] ,
Set[Map [(”City”, ”Mendoza”),(”Month”, ”Jan”),(”Cost”, 4), (”Sale”, 6)],

Map [(”City”, ”Mendoza”),(”Month”,”Feb”),(”Cost”, 4), (”Sale”, 8)],
..,
Map [(”City”, ”Cordoba”),(”Month”, ”Jan”),(”Cost”, 4), (”Sale”, 8)],
...]),

(Map [(”Part”, ”Inkjet”),(”Year”, ”1996”)] ,
Set [Map [(”City”, ”Mendoza”),(”Month”, ”Jan”),(”Cost”, 7), (”Sales”, 8)],

Map [(”City”, ”Mendoza”),(”Month”, ”Feb”),(”Cost”, 7), (”Sale”, 9)],
..,
Map [(”City”, ”Buenos Aires”),(”Month”, ”Jan”),(”Cost”, 6), (”Sale”, 9)],
...]),

(Map [(”Part”, ”Inkjet”),(”Year”, ”1997”)] ,
Set [Map [(”City”, ”Mendoza”),(”Month”, ”Jan”),(”Cost”, 6), (”Sales”, 9)],

Map [(”City”, ”Mendoza”),(”Month”, ”Feb”),(”Cost”, 6), (”Sale”, 8)],
..,
Map [(”City”,”Buenos Aires”),(”Month”, ”Jan”),(”Cost”, 5), (”Sale”, 8)],
...])

]

Table 4: Output of the expression tcollect{”Part”, ”Y ear”}(tuples RSALES).

5.2.2 Partial Function Application with a Default Value

Let apl be the isomorphism

A ⇀ B

apl
++∼= (B + 1)A

apl−1

kk

in

get : B → A→ (A ⇀ B)→B

get u a f
def
= [id, u] · (apl f a)

In Haskell:

get :: Eq a => b -> a -> Pfun a b -> b
get u a f = aux (aplpf’ f a)

where aux (Ok b) = b
aux (Err s) = u

156

5.2.3 Tabular Reduction

Finally, function

ttot : B → ((A× A)→ A)→ A→P(B ⇀ A)→ (B ⇀ A)

ttot b f u s
def
= {b 7→ tot2 f u (P(g u b))s}

performs tabular reduction, where g u b
def
= (id × (get u b)) · swap · (tnest {b}). Argument b

specifies the measure attribute over which reduction will take place while arguments f and u provide
the required reduction algebra. The output is packaged into a one-attribute tuple mapping the measure
attribute name to the final result.

The corresponding Haskell code follows the above definition very closely:

ttot :: (Eq a, Eq b)
=> b
-> (a -> a -> a)
-> a
-> Set (Pfun b a)
-> Pfun b a

ttot b f u s = Map [b |-> (tot2 f u (g u b s))]
where g u b = nmap ((id >< (get u b)) . swap .

tnest (sings b))

Example 5.2 Consider again the query of Example 4.1. We illustrate in this example how, from the
classified set of tuples computed in Example 5.1, it is possible to obtain the final answer to the query.

Let fclass be the mapping arising from the classification step (fclass type is (Attr ⇀ V alue) ⇀
P(Attr ⇀ V alue)) computed in Example 5.1. We can use ttot to summarize over the Sales attribute,
with a particular binary operation (monoid (+, 0) in this example), in the range of fclass. The last
step is to transform the resulting structure in a table (set of tuples). Diagram (5) depicts the required
computations.

P(Attr ⇀ V alue)

tcollect {Part,Y ear}
²²

(Attr ⇀ V alue) ⇀ P(Attr ⇀ V alue)

id⇀(ttot Sales (+) 0)
²²

(Attr ⇀ V alue) ⇀ (Attr ⇀ V alue)

mkr
²²

P((Attr ⇀ V alue)× (Attr ⇀ V alue))

P(uncurry plus)
²²

P(Attr ⇀ V alue)

(5)

Altogether, we have evaluated the expression

(Pplus) ·mkr · (id ⇀ (ttot Sale (+) 0)) · (tcollect {Part, Y ear}) (6)

157

5.3 Multidimensional Analysis

Next we define a “multidimensional analysis” function that generalizes the algebraic structure of (6)
above:

mda s a f u
def
= (Pplus) ·mkr · (B ⇀ ttot a f u) · (tcollect s)

In the context of our relational model in Haskell, we provide the mda function defined over the
Relation data type, as follows:

mdaR:: Set IdAttr
-> IdAttr
-> (Value -> Value -> Value)
-> Value
-> Relation
-> Relation

mdaR s a f u r =
Rel ((unions s (sings a)) <:(schema r))

(nmap (uncurry plus)(mkr y))
where y = (id *-> (ttot a f u)) x

x = tcollect s (tuples r)

Table 5 illustrates the application of the “multidimensional analysis” operation mdaR to our run-
ning example. Operation mdaR produces a relation with scheme Part, Y ear, Sale which is depicted
two-dimensionally.

PartYearSales Year
1996 1997 ...

Part PC 320 455 ...
Inkjet 298 450 ...

...

...

...

Table 5: Output of the expression mdaR (Set ["Part","Year"]) "Sale" fadd f0 RSALES
applied to the input relation RSALES of Example 4.1.

6 CONCLUDING REMARKS

The research carried out in this paper belongs to the intersection of formal methods with relational
database theory.

In this paper we have presented a collection of functions in Haskell language that capture some
of the functionality currently provided by multidimensional database products. We worked under
the assumption that relational systems can model N-dimensional data as a relation with N-attribute
domains.

Function mda, which creates a table with an aggregated value indexed by a set of attributes, oper-
ates on relations and produces relations. It could be composed with the basic operators of relational al-
gebra to build other OLAP operators in order to provide constructs such histograms, cross-tabulations,
subtotals, roll-up and drill-down. For instance, mda could be used to compute the following table (roll
up using totals report):
The rightmost column corresponds to the output of the expression:

158

PartYearSales Year
1996 1997 ... Total

Part PC 320 455 ... 1256
Inkjet 298 450 ... 987

...

...

...

...

...

Total 1788 1450 ... —

Table 6: Sales Roll Up by Part by Year (applied to the input relation RSALES of Example 4.1.

mdaR (Set["Part"]) "Sale" fadd f0 RSALES

while the bottom row could be computed using:

mdaR (Set["Year"]) "Sales" valadd val0 r1olap

Composition (and others categorical combinators) provides a powerful tool to compose operators
and allows for complex multidimensional queries to be built.

It should be stressed that the operations defined do not intend to address the issue of restructuring
information from the perspective of the dimensionality of the data.

The next step, which goes beyond the scope of the present work, should include the development
of a complete algebra and a rigorous calculus based upon the algebraic operators of the model.

REFERENCES

[1] Rakesh Agrawal, A. Gupta, and Sunita Sarawagi. Modeling multidimensional databases. In
Alex Gray and Per-Åke Larson, editors, Proc. 13th Int. Conf. Data Engineering, ICDE, pages
232–243. IEEE Computer Society, 7–11 1997.

[2] E. F. Codd. Missing Information. Addison-Wesley Publishing Company, Inc., 1990.

[3] E. F. Codd. Providing olap (on-line analytical processing) to user-analyst: an it mandate, Apr.
1993. Technical Report, E. F. Codd and Associates.

[4] S. B. Codd E. F. Codd and C. T. Salley. Beyond decision support, July 1993. Computer World,
27:87–89.

[5] Marc Gyssens and Laks V. S. Lakshmanan. A foundation for multi-dimensional databases. In
The VLDB Journal, pages 106–115, 1997.

[6] Chang Li and Xiaoyang Sean Wang. A data model for supporting on-line analytical processing.
In CIKM, pages 81–88, 1996.

[7] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983. ISBN 0-914894-
42-0.

[8] C. Necco. Polytypic data processing, may 2005. Master’s thesis (Facultad de Cs. Fı́sico
Matemáticas y Naturales, University of San Luis, Argentina).

[9] J. N. Oliveira. A reification calculus for model-oriented software specification. Formal Aspect
of Computing, 2(1):1–23, April 1990.

159

[10] J. N. Oliveira. A data structuring calculus and its application to program development, May
1998. Lecture Notes of M.Sc. Course Maestria em Ingeneria del Software, Departamento de
Informatica, Facultad de Ciencias Fisico-Matematicas y Naturales, Universidad de San Luis,
Argentina.

[11] Arie Shoshani. Statistical databases: Characteristics, problems, and some solutions. In Eigth In-
ternational Conference on Very Large Data Bases, September 8-10, 1982, Mexico City, Mexico,
Proceedings, pages 208–222. Morgan Kaufmann, 1982.

160

