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ABSTRACT

Evolutionary Computation (EC) have been applied to a great number of optimisation problems with
some success, specially in fields such as production operations in manufacturing industry, parallel and
distributed systems, logistics and traffic.

The Timetabling problem is a kind of three-dimensional cutting problems, but it can be considered as
a kind of scheduling problems too. The problem of creating a valid timetable involves scheduling
classes, teachers and rooms into a fixed number of periods, in such a way that no teacher, class or
room is used more than once per period.

The EC mimics the process of natural selection, with the effect of creating a number of potentially
optimal solutions to some complex search problem. This work shows an evolutionary approach to
solve the school-timetabling problem. To ensure the birth of valid offspring this approach uses a
population of decoders. Implementation details for a set of timetabling instances of distinct
complexity, using evolutionary approaches to the problem, are shown.
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1. INTRODUCTION

The problem of creating a valid timetable involves scheduling classes, teachers and rooms into a fixed
number of periods, in such a way that no teacher, class or room is used more than once per period. For
example, if a class must meet twice a week, then it must be placed in two different periods to avoid a
clash. A class consists of a number of students. We assume that the allocation of students into classes
is fixed, and that classes are disjoint, that is, they have no students in common. For them, a correct
timetable is one in which a class can be scheduled concurrently with any other class. In each period, a
class is a subject. It is possible for a subject to appear more than once in a period. A particular
combination of a teacher, a subject, a room and a class is called a tuple. A tuple may be required more
than once per week. Thus, the timetabling problem can be phrased as scheduling a number of tuples
such that a teacher, class or room does not appear more than once per period. There are several works
in the literature that attempt to solve this problem using different heuristics [1,2, 3,6, 7].

The task of combining a class, teacher and room into a tuple is handled as a separate operation. Tuples
are formed with knowledge of the requirements of the various classes and teachers, as well as
information on room availability. It is convenient to partition the problem in this way as it reduces the
complexity of the scheduling task. In many cases it is possible to form the tuples without the need to
use an optimisation scheme because the relationship between classes, teachers and rooms is often
fixed.

It is possible to define an objective or cost function for evaluating a given timetable [8]. This function
is an arbitrary measure of the quality of the solution. A convenient cost function calculates the number
of clashes in any given timetable [2]. An acceptable timetable has a cost of 0. The optimisation
problem becomes one of minimising the value of this cost function. The cost of any period can be
expressed as the sum of three components corresponding to a class cost, a teacher cost and a room
cost. The sum of the components is not strictly necessary but it can reflect the quality of the solution.
However, by using a sum, it is easy to weight the various costs so that one may be made more
important than the others. In this way the optimisation process can be guided towards a solution in
which some type of clashes are more important than others.

The class cost is the number of times each of the classes in the period appears in that period, less one if
it is greater than zero. Thus if a class appears no times or once in a period, then the cost of it is zero. If
it appears many times, the class cost for that class is the number of times less one. The class cost for a
period is the sum of all class costs. The same computation applies for teachers and rooms. The cost of
the total timetable is the sum of the period costs. Therefore, any optimisation technique should aim to
find a configuration with the lowest possible cost.

2. APPLYING EVOLUTIONARY ALGORITHMS TO TIMETABLING

A timetable can be represented by a fixed set of tuples, each of which contains a class number, a
teacher number and a room number. The scheduling algorithm must assign a period number to each of
these tuples such that a given class, teacher or room does not appear more than once in a period.

In order to use an evolutionary algorithm to solve this problem, it is necessary to devise a
representation for a timetable which maps onto chromosomes. Each chromosome is composed of
genes, each of which represents some property of the individual timetable.

The specification of an appropriate schedule representation is a decisive factor to find a good
performance of an evolutionary algorithm [4,5]. The principal difficulty present in scheduling
problems is to determine which chromosome representation is to be used. We choose an indirect
chromosome representation for the scheduler, where the transformation from a chromosome
representation to a legal schedule had been done for a special decoder. With this kind of
representations, the algorithm works on a population of encoded solutions [9]. Because the
representation do not directly provides a schedule, a scheduler builder is necessary to transform a
chromosome into a schedule, validate and evaluate it. The scheduler builder guarantees the feasibility
of a solution and its work depends on the amount of information included in the representation.
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Decoders

Here a chromosome is an n-vector where the i component is an integer in the range 1..(n-i+1). The
chromosome is interpreted as a strategy to extract items from an ordered list L and build a
permutation. For example if L = (1, 2, 3, 4, 5, 6) then table 1, indicates the correspondence among
chromosomes and permutations.

Chromosome Permutation
111111 123456
434111 436125
423211 425316

Table 1. Chromosome-permutation correspondence

A decoder is a mapping from the representation space into a feasible part of the solution space, which
includes mappings between representations that evolve and representation that constitute the input for
the evaluation function. This simplifies implementation and produces feasible offspring under
different conventional crossover methods, avoiding the use of penalties or repair actions.

Although the offspring was feasible, the schedule builder could not find a place in the timetable for some
tuples then a repair action or penalty is necessary for this individual.

3. IMPLEMENTATION DETAILS

The experiments were developed for a set of selected instances of the Timetabling Problem, under
permutation representation. For each experiment series of fifty runs were performed. Elitism to retain
the best valued individual was implemented. The population size was fixed at 50 individuals. For
crossover, we used the traditional one-point crossover operator. And for mutation, a big-creep operator
was used, which consists in replacing the gene value by another in the permitted range. The algorithms
evolved for a minimum of 500 generations, after that a control of the mean fitness population progress
began: if this value remained within a determined range for 20 consecutive then the algorithm stops.
Probabilities for crossover and mutation were fixed at 0.65 and 0.01, respectively. These values were
determined as the best combination of probabilities after many initial trials. At the moment, we are
testing the described algorithm on three instances [3]: hdtt4, hdtt5 and hdtt6.
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