

Modeling of Embedded Software on MDA Platform Models

Inali Wisniewski Soares
1,2

, Luciane Telinski Wiedermann Agner
1,2

, Paulo Cézar Stadzisz
2
, Jean Marcelo Simão

2

1Mid-West State University, DECOMP-UNICENTRO, Brazil
2Federal University of Technology Paraná, CPGEI – UTFPR, Brazil

Email-id: inali@unicentro.br, lagner@unicentro.br, stadzisz@utfpr.edu.br, jeansimao@utfpr.edu.br

ABSTRACT

This study proposes the use of abstract software models in

order to meet the diversity of embedded platforms. A

UML 2.0 Profile for Modeling Application and Platform

of Embedded Software (called PROAPES) is proposed.

Such profile is intended to generically describe the

services provided by a system platform that makes use of

an RTOS. In addition, this study presents a Model

Transformation (MT) based on the PROAPES profile,

named MT-PROAPES. In this way, MT-PROAPES uses a

Platform Model (PM), created on the basis of the proposed

profile (PROAPES), and performs a transformation named

Platform Independent Model (PIM)-behavior into

Platform Specific Model (PSM)-behavior. Thus, the

generation of reusable model transformations that are

adaptable to different platform models is possible.

Keywords: Model Driven Architecture, Platform Model,

UML Profile, Model Transformation, Real-Time

Operating Systems.

1. INTRODUCTION

An embedded system can be defined as “any device that

includes a programmable computer but is not itself

intended to be a general-purpose computer” [1]. Currently,

the growing need for new embedded products with

additional functionalities is a tendency, thereby

demanding the increment of more complex software

components in the system. Therefore, the complexity of

embedded software systems emphasizes the need for high-

level development approaches, such as Model Driven

Architecture (MDA).

MDA is an approach for software development proposed

by the Object Management Group (OMG). In the MDA

context, each software artifact is considered a model or a

model element. MDA thus emphasizes the role of models

as the primary development artifacts by providing a set of

guidelines for model definition, as well as the

transformations between such models [2].

One of the MDA principles is founded on the separation

between the software architecture knowledge and the

knowledge concerning the platform features needed for

the software implementation. The goal of such approach

consists in producing software assets that are more

resilient to changes caused by emerging technologies [3].

The MDA development approach involves the following

steps: 1) Specification of a Platform Independent Model

(PIM); 2) Specification of a Platform Model (PM); 3)

Selection of a specific platform for the system; and 4)

Transformation of a PIM into a Platform Specific Model

(PSM), based on a specific platform [2].

The term “platform” refers to any set of hardware or

software mechanisms that enable the execution of

software applications [4]. Throughout this paper, however,

the term “platform” denotes Real-Time Operating Systems

(RTOS) and their respective hardware platforms of

embedded systems, based on specific processors required

for their execution.

The PM provides a set of technical concepts that

represents parts and services of a platform. In its turn,

Model Transformation (MT) can be defined as the

generation of a target model from a source model

according to a set of rules that defines the link between

their elements [2]. Within the scope of this paper, MT

performs the PIM-into-PSM model transformation based

on a specific PM. The transformation maps out the

elements of a source model to elements of a target model,

in accordance with the chosen PM.

Currently, the support offered by MDA for the

development of embedded software, particularly for

RTOS-based software, is still limited. MDA primarily

focuses on middleware target platforms, such as EJB, Web

Services, .NET, and CORBA [2]. These platforms allow

applications to be projected independently from the type

of operating system.

However, a typical embedded system comprises some

features like concurrency, real-time processing, and

limited resources. Such requirements are commonly

supported by an RTOS, whereas the use of middleware is

much more likely to fail. As a result, many embedded

applications are designed and implemented to run directly

upon the RTOS [5].

Particularly, embedded systems are more affected by the

adopted platform due to the incorporated hardware

features, as well as the constraints toward those systems.

In order to achieve “platform independence”, the platform

used must be defined in an abstract way, considering its

main interest attributes. This means that the software

design must perform the application modeling based on an

abstract PM [4].

In addition, there is a wide variety of hardware platforms

that can be used in the development of RTOS-based

embedded software. This happens because of the large

number of suppliers and technologies available, given that

a platform includes aspects related to the operating system

and to the associated hardware.

The X Real-Time Kernel [6] is an example of RTOS,

presented in this paper as part of the target platform. This

kernel can be employed in different hardware platforms,

identified according to the microprocessor used:

ARM7TDMI, ARM9, Cortex-M4, among others.

In order to represent software development models, OMG

has defined the Unified Modeling Language (UML) [7] as

the standard language of the MDA [2]. UML supports the

description of the structure and the behavior of systems by

using different types of model elements and corresponding

diagrams [8].

JCS&T Vol. 12 No. 3 October 2012

133

mailto:inali@unicentro.br
mailto:lagner@unicentro.br
mailto:stadzisz@utfpr.edu.br
mailto:jeansimao@utfpr.edu.br

This paper presents the UML 2.0 Profile for Modeling

Application and Platform of Embedded Software, named

PROAPES, and the MT-PROAPES, a model

transformation based on the PROAPES profile. PROAPES

profile is composed of the following sub-profiles:

swxRTOS – defines a set of stereotypes that enables

annotations in the PM, indicating the RTOS services used

in structural models (class diagram); and dyxRTOS –

defines a set of stereotypes that enables annotations in the

PIM, indicating the RTOS services used in behavioral

models (sequence and activity diagrams).

This paper also presents a generic model transformation,

named MT-PROAPES, which provides independence

between the transformation rules and the platform features

by means of the PROAPES profile. The MT-PROAPES

defines a PIM-behavior into PSM-behavior model

transformation. Both the PIM-behavior and the PM apply

elements of the PROAPES, being explicitly defined and

inserted as input parameters in the MT-PROAPES. As a

result, the model transformation concerns are separated

from the platform model concerns. The use of an explicitly

defined PM enables the creation of transformations that

are reusable in new platforms. Thus, the MT-PROAPES is

reusable and adaptable to several embedded software

platforms based on RTOS by means of PMs explicitly

defined.

This paper is organized as follows: Section 2 presents the

UML PROAPES profile; Section 3 presents the proposed

MT-PROAPES; In turn, Section 4 shows an illustrative

example of PROAPES application in the MT-PROAPES;

Section 5 brings the related works, and finally, Section 6

provides conclusions and future works.

2. PROAPES PROFILE

PROAPES profile defines a set of stereotypes in order to

abstractly describe the services provided by a platform that

makes use of the RTOS and their respective hardware

platforms of embedded systems, based on specific

processors required for their execution. This profile is

composed of the following sub-profiles: swxRTOS - used

to describe PMs in structural models (i.e., class diagram);

and dyxRTOS - used to describe PIMs in behavioral

models (i.e., sequence and activity diagrams). The next

sub-sections introduce the swxRTOS and dyxRTOS

profiles.

2.1 swxRTOS Profile

The swxRTOS profile defines a set of stereotypes to

describe platform models in structural models, such as the

class diagram. This profile is composed of sub-profiles

such as the swxCoreRTOS, which represents the basic

concepts of the high-level constructs needed to support

both concurrency and interactions. In its turn, the

ddxRTOS is another example of a sub-profile of the

swxRTOS, representing the concepts related to the physical

microcontroller peripherals used in RTOS. Due to length

limitation, in this section only fragments of the

swxCoreRTOS and ddxRTOS sub-profiles will be

considered and described in Tables 1 and 2, respectively.

Stereotype swxCore

Description concepts regarding the software description in

concurrent execution contexts

Tagged

Values

threadName: name of a task

threadPriority: execution priority of a task

timeSuspension: time of suspension

sleepThreadFor: suspension of a task for a definite

period

activateThread: creation of a task

threadStackSize: number of words of which the task

stack is composed

Stereotype swxSemaphore

Description concepts regarding the creation and management of a

semaphore

Tagged

Values

num: semaphore initial value

semaph: variable whose values are 0, 1 or negative

checkActualVlr: checks the semaphore current value

waitSemaphore: wait state of the semaphore

Stereotype swxTime

Description concepts regarding time values.

Tagged

Values

nanosec: stores time related values in nanoseconds

sec: stores time related values in seconds

time: stores time related values

getNanoSec: retrieves the current value of the

nanosecond counter

Table 1. Stereotypes of the swxCoreRTOS sub-profile

Stereotype ddxDevice

Description represents general information regarding device

drivers

Tagged

Values

stateDD: represents the device driver state

getStateDD: retrieves the device driver state

startDD: starts a device after its configuration

stopDD: stops a device

Stereotype ddxConfig

Description represents configuration information of device drivers

Tagged

Values

numTypeDD: represents the device driver type code

getNumTypeDD: retrieves the device driver type code

Stereotype ddxLCD

Description represents concepts regarding LCD device drivers

Tagged

Values

line: display current line

column: display current column

message: group of characters to be displayed on the

screen

ddxSendCmd: sends a command to the display

ddxPosic: sets the cursor according to the line-column

positioning

ddxWriteString: sends a group of characters to be

displayed on the screen

Table 2. Stereotypes of the ddxRTOS sub-profile

2.2 dyxRTOS Profile

The dyxRTOS profile defines a set of stereotypes that are

employed in a behavioral PIM defined in UML.

Furthermore, these stereotypes are the link between the

PIM and the PM. The «dyxActionSwRTOS» stereotype of

the dyxRTOS profile represents the software general

actions in RTOS software projects and extends the

metaclasses: Message - which describes the messages

exchanged between objects and entities involved in a

system (used in Sequence Diagram); OpaqueAction –

which is used to model the activities within a process

(used in Activity Diagram). Tagged values of this

stereotype are, in their turn, used to link the PM (annotated

with the stereotypes of the swxRTOS profile) to the PIM

(annotated with the stereotypes of the dyxRTOS profile).

Such tagged values are described as follows:

 opSwTarget: indicates the property defined in the

stereotype of the swxRTOS profile that corresponds to

an action defined in the «dyxActionSwRTOS»

stereotype.

JCS&T Vol. 12 No. 3 October 2012

134

 paSwTarget: indicates the properties defined in the

stereotype of the swxRTOS profile that corresponds to

the parameters defined in the «dyxActionSwRTOS»

stereotype.

 rtSwService: indicates the profile name responsible

for defining the abstract PM that will be linked to the

PIM defined by the dyxSwRTOS profile.

Other stereotypes of the dyxSwRTOS profile,

described in Table 3, are specializations of the

«dyxActionSwRTOS» stereotype.

Stereotype Description

dyxCheckMessage message detection action in the inbox of

a thread.

dyxInitSched activation action of the scheduler.

dyxSendMessage message sending action from a thread to

another.

dyxReceiveMessage message receiving action from a thread.

dyxActivateThread task creation action.

dyxInitRTOS initialization action of the internal

structures of the RTOS.

dyxSleepThread interruption action of a task for a definite

length of time.

dyxGetIdThread ID information action of a task.

dyxStartDD device driver initialization.

dyxRegisterReceiverDD receipt registration of the controlling

thread ID

dyxSendCommandDD sending the execution command to a

device driver.

dyxPosicDD setting the cursor at a specific line and

column

dyxWriteStringDD writing a string in the LCD display.

Table 3. Stereotypes of the dyxSwRTOS sub-profile

3. MT-PROAPES: PIM-BEHAVIOR INTO PSM-

BEHAVIOR

This section presents a PIM-behavior into PSM-behavior

model transformation that demonstrates the use and

application of the PROAPES profile proposed in this

paper. Such transformation makes use of an explicitly

defined PM as input and performs a model refinement,

which is a specific type of model transformation.

In a model refinement, a transformation copies most

elements of the source model to the target model, whereas

just some elements of the source model are supposed to be

modified in order to set up the target model. Thus, the

transformation preserves most parts of the source model

[9].

The transformation proposed in this paper, called MT-

PROAPES, was implemented in Atlas Transformation

Language (ATL), a hybrid transformation language

designed to express model transformations as required by

model-driven approaches [10]. ATL is one of the most

widely used model transformation languages, recognized

as a standard solution for model transformations in the

MDA context [11]. This language is an Eclipse Model-to-

Model (M2M) component inside the Eclipse Modeling

Project (EMP). Consequently, ATL consists of a set of

tools built on top of the Eclipse platform.

ATL transformation consists of modules containing the

transformation rules. In this solution, the UML2Copy.atl

module, proposed by Wagelaar et al. [12], comprises the

rules used to perform the copy of the PIM elements to the

PSM. Refinement specific rules were implemented in the

MT_PROAPES.atl module, carrying out necessary

changes in the PIM elements by adding platform-specific

details to it in order to generate the new elements of the

PSM. Thus, the transformation rules of the UML2Copy.atl

transformation module are reused and overridden, when

necessary, by the MT_PROAPES.atl transformation

module through the superimposition mechanism.

Superimposition is a composition technique for rule-based

model transformation languages, e.g. ATL, that allows the

composition of several transformations into one [13].

Through the employment of the superimposition technique

in this research, it was possible to arrange the

transformation in modules, namely: 1) UML2Copy.atl -

module comprised of the rules for copying the PIM

elements to the PSM; and 2) MT_PROAPES.atl - module

comprised of the specific rules for creating the new PSM

elements that contain platform-specific features.

The transformation proposed in this study was configured

in the Eclipse environment. The models defined to set the

transformation input are the PIM and the PM. The PSM

model is defined to set the transformation output. The

model defined to set the transformation output is the PSM

model. The MT_PROAPES.atl module is detailed next.

Further information on the UML2Copy.atl module can be

found in [12].

3.1 MT_PROAPES.atl Module

The MT_PROAPES.atl module contains a header section,

helpers, and transformation rules. The header section (Fig.

1) defines the MT_PROAPES.atl module in which source

and target models are declared, as follows: 1) IN model -

refers to the PIM source model; 2) PM model - contains

the platform model; and 3) OUT model - refers to the

PSM, and is created as a result of the transformation. PIM,

PM, and PSM models conform to the UML2 metamodel,

intended to be bound to the Eclipse UML2 metamodel.

Currently, the UML metamodel is widely used and is

supported by several development tools [14].

 module MT_PROAPES; -- superimposed on
 create OUT : UML2 from IN : UML2, PM : UML2;

Fig. 1. MT_PROAPES.atl module header

The MT_PROAPES.atl module contains several helpers

used to specify some transformation features. A helper is a

query function that defines operations regarding the OCL

specification [15] in the context of source model elements.

The context defines the element type to which the helper

can be applied. In addition, a helper is called by another

helper or by transformation rules. The helpers defined in

the MT_PROAPES.atl module are the following:

getTagVal, getPMClass, isStereotype,

isdyxCheckMessage, isdyxInitSched, isdyxSendMessage,

isdyxReceiveMessage, isdyxActivateThread,

isdyxInitRTOS, isdyxSleepThread, isdyxGetIdThread,

isdyxStartDD, isdyxRegisterReceiverDD,

isdyxSendCommandDD, isdyxGoToLineColDD, and

isdyxWriteStringDisplayDD. In order to make it clearer,

some of these helpers are depicted next.

The getTagVal helper retrieves the value of a specific

property associated with a stereotype applied to a model

element. Therefore, it brings back the value of the

stereotype and of its corresponding properties as

parameters.

The getPMClass helper searches in the PM for a class

containing the applied stereotype, i.e., set as parameter.

The isStereotype helper checks the existence of

stereotypes applied to a specific message of the PIM

model.

JCS&T Vol. 12 No. 3 October 2012

135

mailto:UML@Copy.ayl

Finally, the isdyxSendMessage helper checks the existence

of the «dyxSendMessage» stereotype applied to a specific

message of the PIM model.

The mentioned helpers are illustrated in Fig. 2. All other

helpers starting with the prefix “is” have similar functions,

i.e., checking whether a specific stereotype is applied to a

model message.

ATL legacy tool is used for defining the

MT_PROAPES.atl module, enabling a rule to inherit the

features of another rule. In so doing, properties that are

common to several rules may be factored into a base rule,

or parent rule. Consequently, other rules can stem from a

parent rule. Each deriving rule, or sub-rule, comprises the

parent rule properties, together with specific properties

attached to it. Legacy thus improves the re-usability of the

developed encoding [16].

The MT_PROAPES.atl module implements specific rules

for each type of stereotype applied to a message of the

PIM model, in addition to rules that extend the

MessagedyxRTOS rule. The MessagedyxRTOS rule is a

parent rule that manipulates the general attributes of a

stereotyped message, independently from the stereotype

applied to it. In their turn, the following rules extend the

MessagedyxRTOS rule and include specific properties that

perform platform-dependent changes based on the

stereotype applied to the message:

MessagedyxCheckMessage, MessagedyxInitSched,

MessagedyxSendMessage, MessagedyxReceiveMessage,

MessagedyxActivateThread, MessagedyxInitRTOS,

MessagedyxSleepThreadTime, MessagedyxGetIdThread,

MessagedyxStartDD, MessagedyxRegisterReceiverDD,

MessagedyxSendCommandDD,

MessagedyxGoToLineColDD and

MessagedyxWriteStringDisplayDD.

Fig. 3 brings the MessagedyxRTOS parent rule, which is

executed in the context of stereotyped messages belonging

to the source model. This rule copies the message

attributes that are platform independent, i.e., that do not

change according to the adopted platform. The

MessagedyxRTOS rule is defined as an abstract rule,

extended by other rules of the MT_PROAPES.atl module

by adding new properties to it. An abstract rule is a rule

that provides a basic behavior that is used by rules that

extend it.

 helper context UML2!Element def: getTagVal(sName:String,
 pName:String): String =

 self.getValue(self.getAppliedStereotypes() ->

 select(e | e.name = sName).first(), pName);

 helper def : getPMClass(sName : String) : UML2!Class =
 UML2!Class.allInstancesFrom('PM')->select(c |

 c.getAppliedStereotypes()->

 exists(st|st.name = sName)).first();

 helper context UML2!Message def : isStereotype() : Boolean =
 self.getAppliedStereotypes()-> notEmpty();

 helper context UML2!Message def : isdyxSendMessage () :

 Boolean =

 self.getAppliedStereotypes()->
 exists(st|st.name='dyxSendMessage ');

Fig. 2. Some helpers used in the MT_PROAPES

 abstract rule MessagedyxRTOS {
 from s : UML2!"uml::Message" (

 if thisModule.inElements->includes(s) and

 s.isStereotype()

 then
 s->oclIsTypeOf(UML2!"uml::Message")

 else false endif)
 to t : UML2!"uml::Message" mapsTo s (

 visibility <- s.visibility,

 messageSort <- s.messageSort,
 eAnnotations <- s.eAnnotations,

 ownedComment <- s.ownedComment,

 clientDependency <- s.clientDependency,
 nameExpression <- s.nameExpression,

 receiveEvent <- s.receiveEvent,

 sendEvent <- s.sendEvent,
 connector <- s.connector,

 argument <- s.argument)

 }

Fig. 3. MessagedyxRTOS rule

Fig. 4 illustrates the MessagedyxSendMessage rule, valid

only in the context of messages to which the

«dyxSendMessage» stereotype is applied. Such rule is

depicted in the four main steps below:

1. Makes use of the getPMClass helper to search in the

PM for a class annotated with a stereotype of the

swxRTOS profile, and whose name is the same as the

value of the tagged value named rtSwService.

2. Next, uses the getTagVal helper to search in the PM

annotated with a stereotype of the swxRTOS profile for

an operation (service) whose name is the same as the

value of the tagged value named opSwTarget.

3. After locating the operation (service) in the PM, it is

replaced with the action (service) abstractly defined in

the PIM.

4. Then, the parameters defined in the paramSwTarget

tagged value are incorporated to the new operation.

The tagged values rtSwService, opSwTarget, and

paramSwTarget are defined in the

«dyxActionSwRTOS» stereotype, bearing in mind that

the «dyxSendMessage» is a specialization of the

«dyxActionSwRTOS».

For instance, as the transformation is performed, the PIM

properties annotated with the stereotypes of the dyxRTOS

profile are replaced with properties defined in a specific

PM annotated with the stereotypes of the swxRTOS

profile. Thus, platform-specific models are generated. The

other rules mentioned work similarly, performing the

appropriate adjustments in the variables of their specific

domain.

 rule MessagedyxSendMessage extends MessagedyxRTOS {

 from s : UML2!"uml::Message" (
 if thisModule.inElements->includes(s) and

 s.isdyxSendMessage()

 then
 s->oclIsTypeOf(UML2!"uml::Message")

 else false endif)

 to t : UML2!"uml::Message" mapsTo s (
 name <- thisModule.

 getPMClass(s.getTagVal('dyxSendMessage',

 'rtSwService')).getTagVal(s.getTagVal('dyxSendMessage',

 'rtSwService'),s.getTagVal('dyxSendMessage',

 'opSwTarget')).name

 + '(' + s.getTagVal('dyxSendMessage', 'paramSwTarget')
 + ')')

 }

Fig. 4. MessagedyxSendMessage rule

JCS&T Vol. 12 No. 3 October 2012

136

4. EXEMPLIFICATION OF MT-PROAPES

In this section, a concise and partial example of a display

system controller is presented. That aims to demonstrate

the feasibility in the use of the PROAPES profile,

including its use in the transformation of MT-PROAPES

models under the MDA approach. This example presents a

sequence diagram that contains some actions of a display

object, set to manage the display thread that controls the

display state.

Fig. 5, step 1, shows the PIM model, i.e., a sequence

diagram that illustrates the occurrence of the “Incorrect

Password” string of the display object (oDisplay).

Stereotypes of the dyxRTOS profile are employed in the

PIM model by means of messages that indicate the

existence of software services and device drivers services

of the RTOS, respectively. In the PIM, however, target

platform details are not pointed out. For instance, the

SendCmdDisp(LCD_CLEAR, 4, 20) message is annotated

with the «dyxSendCommandDD» stereotype, and

represents the use of a device driver service, though not

depicting the technical details of a specific platform.

Fig. 5, step 2, illustrates the swxRTOS profile used to

define the «swxCore» (RTOS software services) and the

«ddxLCD» (device driver services) stereotypes. These

stereotypes are used to annotate services in the platform

models, i.e, they represent an abstraction layer for the X

Real-Time Kernel. In this example, the following platform

models are illustrated: X – ARM7 Atmel and X – ARM7

NXP.

Fig. 5, step 3, shows the MT-PROAPES model

transformation, using the PIM annotated with the

stereotypes of the dyxRTOS profile and the PM annotated

with the stereotypes of the swxRTOS profile. These

models are input parameters of the MT-PROAPES. The

association between PIM and PM is made through tagged

values described in the stereotypes used in the PIM. For

instance, the SendCmdDisp (LCD_Clear, 4,20) message

annotated with the «dyxSendCommandDD» stereotype,

consists of the following tagged values: opDDTarget =

ddxSendCmd; paDDTarget = LCD_Clear, lin, col; and

rtDDService = ddxLCD. As a result, the link between PIM

elements annotated with the dyxRTOS profile and PM

elements annotated with the swxRTOS profile enables the

MT-PROAPES execution. MT-PROAPES thus checks

every element marked in the PIM and finds the

corresponding element in the PM, enabling a PSM

generation according to the platform selected in step 2.

Fig. 5, step 4, brings the generation of two platform-

specific models: the X Real-Time Kernel for ARM7 Atmel

and the X Real-Time Kernel for ARM7 NXP. The

difference between both PSM models is that in the PSM –

X ARM7 Atmel the Command message has three

parameters: LCD_CLEAR – clear the LCD display; lin –

number of lines in the LCD display; col – number of

columns in the LCD display, while in the PSM – X ARM7

NXP the Command message has only the LCD_CLEAR

parameter. Another difference refers to the

GotoLinColDisp(1,0) message, illustrated in the PIM. As

it is transformed into the PSM – X ARM7 Atmel, it is

named GotoLinCol(1,0), whereas by being transformed

into the PSM – X ARM7 NXP, it is named Posic(1,0).

5. RELATED WORK

Model transformation is one of the key points in MDA

approaches. Therefore, in order to reduce the impact of

changes in embedded software development, it is

important that the Platform Model is explicitly defined in

the model transformation, i.e., that the concerns of the

Platform Model and the Model Transformation are defined

separately. Most model-driven approaches for embedded

software have focused on improving dedicated platform

models [17][18]. Platforms are thus not described as input

models for the development of model transformations. As

a result, few works have aimed at embedded software

development using explicit platform models in the MDA

context [19][4].

One of the main obstacles in the MDA approach is the

lack of adequate models for software and mechanism

behavior so as to integrate behavioral models with

structural models and with other behavioral models [20].

In its turn, this paper proposes a UML profile called

PROAPES. This profile is used to create the behavioral

models (PIMs) and structural models (PMs), explicitly

defines the PM, and allows the link between application

and platform.

The use of profiles for carrying out transformation of

models is strongly encouraged in MDA-based software

development, as well as in several existing approaches

[21][22][23]. This study presented a model transformation

based on the PROAPES profile that executes PIM-PSM

model transformations into behavioral models, in the

MDA context. This MT promotes a full separation of

concerns that enables the creation of reusable, portable

model transformations.

The approach described in [19] presents a model-driven

methodology based on the TUT Profile. It is a UML

profile targeted at embedded system design. TUT profile is

intended to enable automated system design by using

model transformation. However, this profile does not

provide concepts for explicitly identifying platform

resources and their services. As a result, the model

transformation is a mixture of concerns. Selic describes a

general UML profile for platform modeling and

deployment of relationships between platforms and

applications [4]. However, its profile does not provide

specific artifacts to model RTOS execution resources.

The UML profile Modeling and Analysis of Real-Time

and Embedded systems (MARTE) [24] is a UML profile

that provides a dedicated sub-profile for the development

of Real-Time Embedded Systems, called Software

Resource Modeling (SRM), permitting the description of

the RTOS services. However, modeling for a specific

RTOS requires the adaption of MARTE profile to the

modeling conventions of that RTOS. Thus, the modeling

will not always be straightforward.

JCS&T Vol. 12 No. 3 October 2012

137

Fig. 5. Example of the PIM-behavior into PSM-behavior MT-PROAPES

6. CONCLUSION

Regarding the development of real-time embedded

software based on the MDA approach, a crucial issue

resides in the separation of concerns between application

model and target platform. That is due to both the inherent

complexity of this kind of software and the existence of a

wide variety of applicable platforms.

This paper presented the PROAPES profile. It is used to

represent PIMs and PMS, enabling RTOS services and

attributes, as well as the corresponding associated

hardware, to be used and depicted in a generic way.

Both the swxRTOS and the dyxRTOS are sub-profiles of

the PROAPES profile. The former enables the annotation

of PM structural models, whereas the latter enables the

annotation of PIMs that represent the behavior of RTOS-

based embedded software applications. In addition, the

dyxRTOS subprofile provides stereotypes that make the

association between application (PIM) and platform (PM)

possible, i.e., the link between behavioral and structural

models.

The main advantage in using this profile consists in

generating well-defined platform models for a particular

RTOS and their respective hardware platforms of

embedded systems, based on specific processors required

for their execution. This study also proposed the PIM-

behavior into PSM-behavior MT based on the PROAPES

profile, demonstrating the feasibility in the use of this

profile in the context of the MDA approach. The Display

Controller example demonstrates the use of the PROAPES

profile and the MT-PROAPES in practice. In future works

PIM

oDisplay

:CDisplay
oLCD

:CDDLX_LCD os:X

SendCmdDisp (LCD_CLEAR, 4, 20)

«dyxSendCommandDD»

GotoLinColDisp

«dyxPosicDD»

WriteStrDisp ("Incorrect Password")

«dyxWriteStringDD»

SuspendTask(2*SEC)

«dyxSleepThread»

«profile»

swxRTOS

«apply» «apply»

MT PIM-behavior into PSM-behavior

 PSM – X ARM7 ATMEL

oDisplay

:CDisplay

Command (LCD_CLEAR, 4, 20)

oLCD

:CDDLX_LCD

WriteStr("Incorrect Password")

GotoLinCol

(1,0)

SleepFor(2*SEC)

os: X

 PSM – X ARM7 NXP

 oDisplay

:CDisplay

Command (LCD_CLEAR)

oLCD

:CDDLX_LCD

WriteStr("Incorrect Password")

Posic (1,0)

SleepFor(2*SEC)

os: X

«metaclass»

Class

«stereotype»

swxCore

«stereotype»

ddxLCD

sleepThreadFor: Operation

ddxSendCmd: Operation

ddxPosic: Operation

ddxWriteString: Operation

PM X – ARM7 Atmel PM X – ARM7 NXP

«create» «create»

«import»
«import» «import»

STEP 1

STEP 3

«apply»

STEP 2

STEP 4

SleepFor()

«swxCore»
X

Command ()
GotoLinCol ()
WriteStr ()

«ddxLCD»
CDDX_LCD

«swxCore»

X
SleepFor ()

«ddxLCD»
CDDX_LCD

Command ()
Posic ()
WriteStr ()

«stereotype»

dyxSleepThread

«profile»
dyxDDRTOS

«stereotype»
dyxSendCommandDD

«metaclass»
Message

«stereotype»

dyxActionDDRTOS
 opDDTarget: String
 paDDTarget: String
 rtDDService: String

«stereotype»
dyxPosicDD

«stereotype»
dyxWriteStringDD

time: Integer

JCS&T Vol. 12 No. 3 October 2012

138

the PROAPES profile may be exemplified to other RTOS-

based platforms. Furthermore, usage pattern description

may be developed for this profile, in order to obtain an

accurate description of the platform.

7. REFERENCES

[1] W. Wolf, “Computers as Components: Principles of
Embedded Computer Systems Design”, Morgan
Kaufmann Publishers, 2001.

[2] OMG, June 2003, MDA Guide Version 1.0.1.

http://www.omg.org/cgi-bin/doc?omg/03-06-01.

[3] M. Aksit, and I. Kurtev, “Elsevier special issue on

foundations and applications of model driven
architecture”, Science Computer Programming, Vol.
73, No. 1, 2008, pp. 1-2.

[4] B. Selic, “On software platforms, their modeling

with UML 2, and platform-independent design”,
Proc. of the 8th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing,
USA, 2005, pp. 15-21.

[5] M. Becker, G. Di Guglielmo, F. Fummi, W.

Mueller, G. Pravadelli, and T. Xie, “RTOS-aware
refinement for TLM2.0-based HW/SW designs”,
Proc. of the Conference on Design, Automation and
Test in Europe, Belgium, 2010, pp. 1053-1058.

[6] D.P.B. Renaux, R.E. Goes, and R.R. Linhares,

“Performance characterization of real-time operating
systems for systems-on-silicon”, Proc. of the 12th
Brazilian Workshop on Real-Time and Embedded
Systems, Brazil, 2010.
http://sbrc2010.inf.ufrgs.br/anais/data/pdf/wtr/st03_0
2_wtr.pdf.

[7] OMG, Unified Modeling Language (UML):

Superstructure, 2011,
http://www.omg.org/spec/UML/2.4/Superstructure/
Beta2/PDF.

[8] A. Alti, T. Khammaci, and A. Smeda, “Integrating

Software Architecture Concepts into the MDA
Platform with UML Profile”, J. Comput. Sci., Vol.
3, 2007, pp. 793-802.

[9] R. Van Der Straeten, V. Jonckers, and T. Mens, “A

formal approach to model refactoring and model
refinement”, Software and System Modeling, Vol. 6,
No. 2, 2007, pp. 139-162.

[10] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev,

“ATL: A model transformation tool”, Science of
Computer Programming, Vol. 72, No. 1-2, 2008, pp.
31–39.

[11] J. Troya, and A. Vallecillo, “A Rewriting Logic

Semantics for ATL”, Journal of Object Technology,
Vol. 10, No.5, 2011, pp. 1-29.

[12] D. Wagelaar, R. Van Der Straeten, and D. Deridder,

“Module superimposition: a composition technique
for rule-based model transformation languages”,
Software and Systems Modeling, Vol. 9, No. 3,
2010, pp. 285-309.

[13] D. Wagelaar, “Composition techniques for rule-
based model transformation languages”, Proc.
International Conference on Model Transformation,
Switzerland (2008), Lecture Notes in Computer
Science, Springer, Vol. 5063, 2008, pp. 152-167.

[14] R. France, and B. Rumpe, “Model-driven

Development of Complex Software: A Research
Roadmap”; Proc. Future of Software Engineering
(FOSE '07), Washington, DC, USA, 2007, pp. 37-
54, IEEE Computer Society.

[15] OMGb. Object Constraint Language Specification,

2011.http://www.omg.org/spec/OCL/2.3/Beta2/PDF.

[16] M.D. Del Fabro, and F. Jouault, “Model

Transformation and Weaving in the AMMA
Platform”, Proc. of the Generative and
Transformational Techniques in Software
Engineering (GTTSE'05), Braga, Portugal, 2005, pp.
71-77.

[17] S. Jeon, J. Hong, I. Song, and D. Bae, “Developing

platform specific model for MPSoC architecture
from UML-based embedded software models”, The
Journal of Systems and Software, Vol. 82, No. 10,
2009, pp. 1695-1708.

[18] G. Karsai, S. Neema, and D. Sharp, “Model-Driven

Architecture for embedded software: A synopsis and
an example”, Science of Computer Programming,
Vol. 73, No. 1, 2008, pp. 26-38.

[19] P. Kukkala, J. Riihimâki, M. Hamalainen, and K.

Kronlof, “UML 2.0 Profile for embedded system
design”, Proc. of the Conference on Design,
Automation and Test in Europe USA, 2005, pp. 710-
715, IEEE Computer Society.

[20] E. Riccobene, and P. Scandurra, “Weaving

executability into UML class models at PIM level”,
Proc. 1th. Workshop on Behaviour Modellingin
Model-Driven Architecture, ACM, New York, NY,
USA, 2009.

[21] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray,

“On challenges of model transformation from UML
to alloy”, Software and System Modeling, Vol. 9,
No. 1, 2010, pp. 69-86.

[22] J.T.E Timm, and G.C. Gannod, “A Model-Driven

Approach for specifying semantic web services”,
Proc. of the IEEE International Conference on Web
Services, USA, 2005, pp. 313-320, IEEE Computer
Society.

[23] R. Silaghi, F. Fondement, and A. Strohmeier,

“Towards an MDA-Oriented UML profile for
distribution”, Proc. of the 8th IEEE International
Enterprise Distributed Object Computing
Conference, Monterey, California, USA, 2004, pp.
227-239.

[24] OMGc. June 2011, A UML profile for modeling and

analysis of real time embedded systems, Version

1.1. http://www.omg.org/spec/MARTE/1.1/PDF

JCS&T Vol. 12 No. 3 October 2012

139

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://sbrc2010.inf.ufrgs.br/anais/data/pdf/wtr/st03_02_wtr.pdf
http://sbrc2010.inf.ufrgs.br/anais/data/pdf/wtr/st03_02_wtr.pdf
http://www.omg.org/spec/UML/2.4/Superstructure/Beta2/PDF
http://www.omg.org/spec/UML/2.4/Superstructure/Beta2/PDF
http://www.omg.org/spec/OCL/2.3/Beta2/PDF
http://www.omg.org/spec/MARTE/1.1/PDF

	Text6: Received: August 2012. Accepted: September 2012.

