Capítulo 2

Elementos Finitos para las Ecuaciones de Maxwell

El método de elementos finitos es una técnica general para construir soluciones aproximadas de ecuaciones diferenciales en dominios de forma arbitraria y con diversas condiciones de contorno. En cada caso particular involucraría la división del dominio en un número finito de subdominios más simples y el uso de conceptos variacionales para construir una aproximación de la solución sobre éstos. A causa de la generalidad de las ideas que forman la base de la teoría del método, ha sido utilizado en resolver una gran variedad de problemas en virtualmente todas las áreas de la física matemática.

Estrictamente hablando, el método de elementos finitos es en realidad una variedad de algoritmos que emplean una representación subdominio a subdominio de la solución aproximada; han sido extensamente tratados (Zienkiewicz, 1977; Becker et al., 1981; Carey y Oden, 1983; Jin, 1993) con más énfasis en aplicaciones y por (Ciarlet, 1978; Oden y Carey, 1986; Brezzi y Fortin, 1991; Brenner y Scott, 1994) con una visión más formal del método. En este capítulo definiremos en primera instancia algunos conceptos básicos, y luego esbozaremos la teoría subyacente a los algoritmos utilizados en los capítulos siguientes.
2.1 Aspectos básicos del método

Consideremos el siguiente problema variacional abstracto:

Encontrar \(u \in V \) tal que

\[
a(u, v) = f(v), \quad \forall v \in V,
\]

(2.1)

donde el espacio de Hilbert \(V \), la forma bilineal \(a(\cdot, \cdot) \) y la forma lineal \(f \) verifican las hipótesis del teorema de Lax-Milgram (Brenner y Scott, 1994), lo que garantiza la existencia de una única solución.

El método de Galerkin para aproximar la solución de problemas como el enunciado en Ec. (2.1) consiste en definir problemas similares en subespacios de dimensión finita \(V^h \) del espacio \(V \). Específicamente, con cualquier \(V^h \subset V \) asociamos el problema discreto:

Encontrar \(u^h \in V^h \) tal que

\[
a(u^h, v^h) = f(v^h), \quad \forall v^h \in V^h.
\]

(2.2)

Aplicando el teorema de Lax-Milgram, sabemos que este problema tiene una única solución \(u^h \), a la que llamamos solución discreta.

En caso que la forma bilineal sea simétrica, la solución está también caracterizada por la siguiente propiedad:

\[
J(u^h) = \inf_{v^h \in V^h} J(v^h),
\]

(2.3)

donde el funcional \(J \) está dado por \(J(v) = \frac{1}{2}a(v, v) - f(v) \) (Carey y Oden, 1983). Esta definición alternativa de la solución discreta es conocida como método de Ritz.

Podemos establecer que en su forma más simple, el método de elementos finitos es una técnica general para construir subespacios de dimensión finita \(V^h \) del espacio \(V \) que son llamados espacios de elementos finitos para aplicar el método de Ritz-Galerkin a un problema variacional. Esta construcción está caracterizada por algunos principios básicos:

- Partición del dominio \(\Omega \): El conjunto sobre el que actúan los elementos de \(V \)
es dividido en un conjunto de subdominios K “simples”, llamados elementos. Para dominios bidimensionales los elementos son rectángulos o triángulos, siendo estos últimos los más adecuados para modelar dominios irregulares, mientras que en tres dimensiones la subdivisión puede hacerse en tetraedros, prismas triangulares o prismas rectangulares. Este paso es muy importante porque la forma en que el dominio es subdividido afecta el tiempo de cálculo, la memoria requerida y la exactitud de los resultados numéricos.

Las funciones del espacio V definido sobre Ω son luego aproximadas, formándose con las aproximaciones el \textit{espacio de elementos finitos} V^h, de dimensión finita y a partir de éste, se construyen los espacios $R = \{v^h|_K; v^h \in V^h\}$, restricciones a K de las funciones de V^h.

- \textbf{Funciones aproximantes:} Es usual que los espacios R contengan polinomios -o funciones obtenidas de polinomios por un cambio de variables- de primer, segundo o mayor orden. Esta última opción implica en general una formulación más complicada; además hay que tener en cuenta que no tiene sentido tomar polinomios de orden mayor, si no esperamos una solución varias veces derivable.

- Se considera también importante la existencia de una base del espacio V^h cuyas correspondientes funciones base tengan soportes tan pequeños como sea posible, estando implícito que las funciones base sean fácilmente descritas. Podemos ahora dar una definición formal de elementos finitos, que tiene en cuenta lo antes mencionado (Brezzi y Fortin, 1991; Brenner y Scott, 1994):

 Un elemento finito en \mathbb{R}^n es una tripla (K, R, N) donde

 (i) K es un subconjunto cerrado de \mathbb{R}^n con un interior no vacío y un borde Lipschitz-continuo.

 (ii) R es un espacio de funciones reales sobre K.

 (iii) N es un conjunto linealmente independiente de formas lineales Φ_i, $1 \leq i \leq m$ definidas sobre un espacio que incluya a R.

Se requiere que el conjunto N sea R-unisolvente, es decir que dados cualesquiera escalares reales α_i, $1 \leq i \leq m$ exista una única función $r \in R$ tal
que

\[\Phi_i(r) = \alpha_i, \quad 1 \leq i \leq m. \]

(2.4)

Consecuentemente existen funciones \(r_i \in R, \ 1 \leq i \leq m \) que satisfacen

\[\Phi_j(r_i) = \delta_{ij}, \quad 1 \leq i \leq m. \]

(2.5)

Como tenemos que

\[\forall r \in R, \quad r = \sum_{i=1}^{m} \Phi_i(r) r_i, \]

(2.6)

el espacio \(R \) es de dimensión \(m \). Las formas lineales \(\Phi_i \) se llaman \emph{grados de libertad} del elemento finito, y las \(r_i \), \emph{funciones base}. La \(R \)-unisolventia de \(N \) es equivalente a que las \(m \) funciones \(\Phi_i \) forman base del espacio dual en sentido algebraico de \(R \), y puede verificarse en general si haciendo \(\Phi_i(r) = 0, \ 1 \leq i \leq m \) implica que \(r = 0 \).

Ciertamente la elección de grados de libertad no es única, dados \(K \) y \(R \) se obtienen elementos finitos diferentes si se eligen uno u otro conjunto de grados de libertad. Como ejemplo supongamos que \(K \) es cualquier triángulo. Sea \(R_1 \) el conjunto de polinomios en dos variables de grado \(\leq 1 \). Sea \(N = \{ \Phi_1, \Phi_2, \Phi_3 \} \), donde los grados de libertad son la evaluación del polinomio en los vértices \(z_i \), \(1 \leq i \leq 3 \) del triángulo, es decir \(\Phi_i(r) = r(z_i), \ 1 \leq i \leq 3 \), ver Fig.2.1a. Sean \(L_i, \ 1 \leq i \leq 3 \) las rectas que incluyen a los lados del triángulo. Supongamos ahora que \(r \in R \) se anula en \(z_i \), \(i = 2,3 \). Como \(r|_{L_i} \) es una recta de una variable que se anula en 2 puntos, \(r|_{L_i} = 0 \). Podemos entonces escribir \(r = cL_1 \) con \(c \) constante. Pero \(r(z_1) = cL_1(z_1) = 0 \), luego \(c = 0 \) ya que \(L_1(z_1) \neq 0 \). Concluimos que \(r = 0 \) y \(N \) es \(R \)-unisolvente. Las tres funciones base para esta elección de grados de libertad se encuentran usando Ec. (2.5), tomando \(r = a + bx + cy \). Aplicar los grados de libertad a este polinomio conduce a un sistema de tres ecuaciones con tres incógnitas, los coeficientes \(a, b \) y \(c \). Su resolución usando secuencialmente como lado derecho las columnas de la matriz \(I_{3 \times 3} \) nos da la respuesta buscada. En la Fig.2.1b se elige otro conjunto de grados de libertad \(\Phi_i(r) = r(m_i), \ 1 \leq i \leq 3 \), donde
Figura 2.1: (a) Triángulo lineal de Lagrange. Observar que “●” significa evaluación en el punto donde está ubicado el círculo. (b) Triángulo lineal no-conforme de Crouzeix-Raviart. (c) Triángulo de Argyris. Aquí la circunferencia interna indica evaluación del gradiente en el vértice, y la externa la evaluación de las tres derivadas parciales en el mismo punto, la flecha indica evaluación de la derivada normal en el punto medio.

m_i son los puntos medios de los lados del triángulo. Conectando los puntos medios con rectas, determinamos un triángulo en donde r se anula en los vértices, repitiendo el argumento anterior este conjunto N^l es también unisolvente. Como vemos en la Fig. 2.1c existen conjuntos de grados de libertad más complicados que los anteriores. En este caso son 21, y es unisolvente sobre el conjunto de polinomios de grado menor o igual que 5.

Dado un elemento finito (K, R, N) en el que N es R-unisolvente, y una función $v : K \rightarrow \mathbb{R}$ definimos al R-interpolante local de v por

$$\Pi_K v = \sum_{i=1}^{m} \Phi_i(v) r_i$$

(2.7)

o equivalentemente a través de las siguientes condiciones:

$$\Pi_K v \in R \quad y \quad \Phi_i(\Pi_K v) = \Phi_i(v), \quad 1 \leq i \leq m.$$

(2.8)

Esta definición implica que $\Pi_K v$ es el único elemento de R que toma los mismos valores que v en los nodos. Por su parte, el interpolante global en el
dominio Ω se define por \(\Pi_K f|_{K_i} = \Pi_{K_i} f \) para \(f \) suficientemente regular. Los interpolantes se utilizan cuando se estudia el error cometido al aproximar la solución de manera discreta.

Mencionamos más arriba que estos aspectos básicos establecen al método de elementos finitos en su forma más simple; estamos interesados, sin embargo, en considerar algunas variantes:

- Se puede partir de un problema variacional diferente a (2.1), como en el caso de los problemas mixtos; con este nombre se denomina a una variedad de métodos de elementos finitos en el que se tiene más de un espacio aproximante. Una característica de los métodos de elementos finitos mixtos es que no todos los espacios aproximantes conducen a soluciones discretas convergentes.

- El espacio \(V^h \) en el que se busca la solución discreta puede no ser un subespacio del espacio \(V \). Esto ocurre, por ejemplo, cuando las funciones del espacio \(V^h \) no cumplen con las condiciones de continuidad adecuadas entre elementos adyacentes, dando lugar a los problemas no conformes. En general estos elementos tienen algunas ventajas -por su simplicidad- sobre los conformes pero en algunos casos pueden dar, como en el caso anterior, soluciones divergentes o converger a la solución incorrecta.

Son métodos mixtos y mixtos no conformes los que vamos a describir en las próximas secciones, aplicándolos a la resolución de las ecuaciones de Maxwell armónicas. No detallaremos en esta instancia los modelos que estamos tratando, tarea a la que nos abocaremos en los próximos capítulos.

2.2 Caso bidimensional

Previo a la formulación de nuestro problema, vamos a introducir alguna notación. Para todo entero no negativo \(s \), \((H^s(\Omega), \| \cdot \|_s)\) denota el espacio de Sobolev usual sobre \(\Omega \) (Adams, 1976). En particular \(H^0(\Omega) = L^2(\Omega) \) y \(\| \cdot \|_0 \) es la norma usual en \(L^2 \), inducida por el producto interno \((v, w)_\Omega = \int_\Omega v \bar{w} dx \), donde la barra indica complejo conjugado. Si \(\Gamma \) está contenida en el borde
2.2. Caso bidimensional

\(\partial \Omega \) del dominio \(\Omega \), definimos \(\langle v, w \rangle_\Gamma = \int_\Gamma v \overline{w} \, ds \) para el producto interno en \(L^2(\Gamma) \), con la norma asociada por \(| \cdot |_{0,\Gamma} = \langle \cdot, \cdot \rangle_\Gamma^{1/2} \).

Para una función escalar \(\varphi(x, z) \) definimos

\[
\text{curl} \varphi = \left(-\frac{\partial \varphi}{\partial z}, \frac{\partial \varphi}{\partial x} \right),
\]

(2.9)

y para un vector \(\mathbf{w} = (w_x, w_z) \) en el plano \(xz \) definimos el escalar

\[
\text{curl} \mathbf{w} = \frac{\partial w_x}{\partial z} - \frac{\partial w_z}{\partial x}.
\]

(2.10)

Sea también

\[
H(\text{curl}, \Omega) = \{ \mathbf{\rho} \in (L^2(\Omega))^2 : \text{curl} \mathbf{\rho} \in (L^2(\Omega))^2 \},
\]

(2.11)

un espacio de Hilbert con producto interno y norma

\[
(\mathbf{\rho}, \mathbf{\psi})_{H(\text{curl}, \Omega)} = (\mathbf{\rho}, \mathbf{\psi}) + (\nabla \times \mathbf{\rho}, \nabla \times \mathbf{\psi}) \quad \| \mathbf{\rho} \|_{H(\text{curl}, \Omega)} = (\| \mathbf{\rho} \|_0^2 + \| \text{curl} \mathbf{\rho} \|_0^2)^{1/2}.
\]

(2.12)

2.2.1 El modo TM

Estamos interesados en encontrar una aproximación discreta a la solución \((\mathbf{U}, v)\) del problema:

\[
\begin{align*}
\sigma \mathbf{U} - \text{curl} v & = -\mathbf{g}, \quad \text{en } \Omega \quad (2.13a) \\
\text{curl} \mathbf{U} + i\omega \mu v & = 0, \quad \text{en } \Omega \quad (2.13b) \\
(1 - i) \sqrt{\frac{\sigma}{2\omega \mu}} \mathbf{U} \cdot \mathbf{\tau} + v & = 0 \quad \text{sobre } \partial \Omega \equiv \Gamma, \quad (2.13c)
\end{align*}
\]

que es el correspondiente al modo TM de las ecuaciones de Maxwell armónicas para campos secundarios en un dominio bidimensional; veremos en detalle la formulación del modelo que conduce a estas ecuaciones en el Capítulo 3. El dominio \(\Omega \) es una región rectangular del plano \(xz \), \(\mathbf{\tau} \) es el vector tangente al borde \(\Gamma \) tomado en sentido horario, \(\mathbf{g} = (g, 0) \) y se asume que la conductividad está acotada superiormente por números positivos.

Si testreamos la Ec. (2.13a) usando \(\mathbf{\psi} \in H(\text{curl}, \Omega) \) como función de prueba
e integramos por partes haciendo uso de la Ec. (2.13c) (Girault y Raviart, 1981) y testemos la Ec. (2.13b) usando a \(\varphi \in L^2(\Omega) \) como función de prueba obtenemos el siguiente problema variacional mixto:

Encontrar \((U, v) \in H(\text{curl}, \Omega) \times L^2(\Omega) \) tales que

\[
(\sigma U, \psi) - (v, \text{curl} \psi) + \langle (1 - i)aU \cdot \tau, \psi \cdot \tau \rangle = -(g, \psi),
\]

\[
\psi \in H(\text{curl}, \Omega), \quad (2.14a)
\]

\[
(\text{curl} U, \varphi) + (i\omega \mu v, \varphi) = 0, \quad \varphi \in L^2(\Omega), \quad (2.14b)
\]

donde usamos \(a = \left(\frac{\sigma}{2\omega \mu} \right)^{1/2} \). Santos (1998) definió una familia de elementos finitos para encontrar la solución discreta a este problema; el desarrollo siguiente se basa en sus ideas.

Definimos una partición del dominio \(\Omega \) en un conjunto de rectángulos \(\Omega_j \) de diámetros acotados por \(h \), de modo tal que cubran a todo el dominio, y que la intersección entre dos subdominios diferentes sea vacía. Existen otras restricciones usuales para mallas de elementos finitos (Brenner y Scott, 1994) que la partición así definida cumple automáticamente. Llamamos además \(\Gamma_j \) al conjunto de cuatro segmentos que forman el borde del elemento \(\Omega_j \).

Definimos también los espacios

\[
V^h = \{ U^h \in H(\text{curl}, \Omega) : U^h|_{\Omega_j} \in P_{0,1} \times P_{1,0} \},
\]

\[
W^h = \{ v^h \in L^2(\Omega) : v^h|_{\Omega_j} \in P_{0,0} \}.
\]

\(P_{1,0} \) denota los polinomios de grado no mayor que 1 en \(x \) y no mayor que 0 en \(z \). Sean también \(V_j^h = V^h|_{\Omega_j} \) y \(W_j^h = W^h|_{\Omega_j} \) las restricciones de los espacios \(V^h \) y \(W^h \) al subdominio \(\Omega_j \). Dado \(\psi \in (H^1(\Omega))^2 \), definimos ahora los grados de libertad sobre \(\Omega_j \) utilizando los cuatro momentos

\[
M_{\Gamma_j}(\psi) = \left\{ (\psi \cdot \tau, f)_{\Gamma_j} : f \in P_0(\Gamma_s^\tau), \quad s = L, R, B, T \right\}.
\]

(2.15)

Los elementos de la base local se obtienen con esta definición en \([0, 1]^2\) -el llamado elemento de referencia- y luego mediante traslaciones y escafeos se da la base en cada \(\Omega_j \). La base de \(V^h \) se obtiene extendiendo cada base local,
2.2. Caso bidimensional

\[
\begin{align*}
\psi^T &= (z, 0), & \psi^R &= (-1 + z, 0) \\
\psi^L &= (0, 1 - x), & \psi^R &= (0, -x)
\end{align*}
\]

Tabla 2.1: Funciones base en $[0, 1]^2$ para V^h.

haciéndola nula fuera del dominio correspondiente. Para construir entonces la base de referencia, tomemos un elemento \(r = (a + bz, c + dx) \) de \(P_{0,1} \times P_{1,0} \) y le aplicamos los grados de grados de libertad, obteniendo el sistema

\[
\begin{pmatrix}
1 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & -1
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix} = \begin{pmatrix}
a \\
b \\
c \\
d
\end{pmatrix}.
\]

(2.16)

Resolver sucesivamente los cuatro sistemas lineales con lado izquierdo dado por la Ec. (2.16), y cuyos lados derechos son las columnas de la matriz \(I_{4 \times 4} \), o de forma equivalente tomar las columnas de la matriz inversa de la matriz de coeficientes en la Ec. (2.16), nos da los coeficientes de los vectores de la base buscados, que se muestran en la Tabla 2.1. Para el espacio W^h la elección de la función base es simple, ya que podemos tomar la función característica $\Theta(x, z)$ del cuadrado de referencia,

\[
\Theta(x, z) = \begin{cases}
1 & \text{si } (x, z) \in [0, 1]^2, \\
0 & \text{en todo otro caso.}
\end{cases}
\]

(2.17)

El elemento finito mixto que queda así definido es unisolverte y conforme en \(H(\text{curl, } \Omega) \), donde esta última característica implica que las funciones de V^h tienen componentes tangenciales continuas en los bordes internos Γ_i (Nédélec, 1980). Si bien estos elementos no son tan usuales como los presentados, por ejemplo, en (Lee y Masden, 1990) donde los grados de libertad quedan fijados por evaluación de los polinomios en los vértices del subdominio, tienen la ventaja de poder tratar discontinuidades de las propiedades del medio de forma transparente (Monk, 1992; Monk, 1993).
La aproximación de elementos finitos mixtos de las Ecs. (2.13) está dada por la restricción del sistema (2.14) a los espacios $V^h \times W^h$:

Encontrar $(U^h, v^h) \in V^h \times W^h$ tales que

$$(\sigma U^h, \psi) - (v^h, \text{curl } \psi) + \langle (1 - i)\alpha U^h \cdot \tau, \psi \cdot \tau \rangle = -(g, \psi),$$

$\psi \in V^h$, \hspace{1cm} (2.18a)

$$(\text{curl } U^h, \varphi) + (i\omega \mu v^h, \varphi) = 0, \quad \varphi \in W^h. \hspace{1cm} (2.18b)$$

Esta variante, llamada global, conduce a un sistema de ecuaciones lineales de solución única con $3n_x \! n_z + n_x + n_z$ incógnitas, si $n_x (n_z)$ es el número de subdominios en dirección $x (z)$ respectivamente.

Estamos interesados en un método que sea apto para procesamiento paralelo y que nos permita evitar la resolución de sistemas lineales con un número generalmente elevado de incógnitas; para ello se hace necesaria la introducción de algunos nuevos conceptos.

Hibridización: Para obtener un método híbrido a partir del anterior, se remueve la condición de continuidad de las componentes tangenciales de los elementos de V^h sobre las fronteras interdominios, y se las acopia indirectamente mediante vínculos válidos sobre dichas interfases, cuyo cumplimiento se fuerza a través de la introducción de multiplicadores de Lagrange. Como resultado de esta formulación, pueden hacerse aproximaciones de la solución en el interior de un elemento Ω_j independientes de las aproximaciones sobre sus bordes (Carey y Oden, 1983). El planteo híbrido tiene asociado un problema algebraico más simple que, en nuestro caso, al correspondiente a las Ecs. (2.18) (Arnold y Brezzi, 1985), pero se paga el costo de introducir nuevas variables.

Descomposición de dominio (DD): La idea general es dividir el dominio en el cual se quiere resolver una ecuación diferencial en varios subdominios, lo que conduce a algoritmos naturalmente paralelables. Si bien los métodos DD surgieron para resolver problemas elípticos, han sido utilizados
con asiduidad para resolver también otros tipos de ecuaciones diferenciales parciales (Keyes et al., 1992; Keyes y Xu, 1994), entre ellas las ecuaciones de Maxwell armónicas (Després et al., 1992). Existen dos tipos de métodos DD, con y sin superposición de dominios. En general los primeros son más simples en el sentido de su implementación, pero son sensibles a discontinuidades en los coeficientes del problema, y duplican los cálculos en las áreas superpuestas, lo que es particularmente costoso en el caso de problemas tridimensionales con gran número de subdominios. Los segundos, por su parte, resuelven las desventajas del caso anterior, pero pueden ser computacionalmente caros.

En el caso que estamos tratando la descomposición del dominio \(\Omega \) coincide con la partición asociada con los espacios \(V^h \) y \(W^h \), es decir elegimos una descomposición donde los dominios no se superponen. Nuestro objetivo es resolver localmente, en cada \(\Omega_j \), las ecuaciones (2.13), es decir

\[
\begin{align*}
\sigma \mathbf{U}_j - \text{curl} \, v_j &= -\mathbf{g}_j, \quad \text{en } \Omega_j \quad (2.19a) \\
\text{curl} \, \mathbf{U}_j + i\omega \mu v_j &= 0, \quad \text{en } \Omega_j \quad (2.19b) \\
(1 - i) \sqrt{\frac{\sigma}{2\omega \mu}} \mathbf{U}_j \cdot \mathbf{\tau}_j + v_j &= 0 \quad \text{sobre } B^a_j, \quad (2.19c)
\end{align*}
\]

do donde utilizamos \(B^a_j = \Gamma \cap \Gamma_j \). Claro que en los bordes internos deben imponerse condiciones de consistencia, tanto para \(\mathbf{U}_j \) como para \(v_j \). Las condiciones utilizadas son la continuidad de la componente tangencial de \(\mathbf{U}_j \) y la continuidad de \(v_j \) a través de todas las fronteras \(\Gamma_j \), tales que \(\Gamma_j \cap \Gamma = \phi \), es decir en todos los segmentos, que formando parte del borde de los dominios \(\Omega_j \) no son también parte del borde externo. Ambas condiciones pueden ser expresadas equivalentemente mediante las condiciones de borde de Robin (Douglas et al., 1993b; Kim, 1995)

\[
\begin{align*}
v_j + \beta_{jk} \mathbf{U}_j \cdot \mathbf{\tau}_j &= -\beta_{jk} \mathbf{U}_k \cdot \mathbf{\tau}_k + v_k \quad \text{sobre } \Gamma_{jk}, \quad \Gamma_{jk} \subset \Gamma_j, \quad (2.20a) \\
v_k + \beta_{jk} \mathbf{U}_k \cdot \mathbf{\tau}_k &= -\beta_{jk} \mathbf{U}_j \cdot \mathbf{\tau}_j + v_j \quad \text{sobre } \Gamma_{kj}, \quad \Gamma_{kj} \subset \Gamma_k, \quad (2.20b)
\end{align*}
\]

do donde \(\beta_{jk} \) es un parámetro de relajación complejo con parte real positiva y parte imaginaria negativa, que se introduce para acelerar la convergencia.
Aquí denotamos por Ω_k a los vecinos del dominio Ω_j, y denominamos Γ_{jk} al segmento compartido por los dominios adyacentes Ω_j y Ω_k. Debe tenerse cuidado al considerar los bordes, puesto que $|\Gamma_{jk}| = |\Gamma_{kj}|$, pero la dirección del vector tangente cambia a cada lado de los mismos.

La forma variacional del problema con descomposición de dominio se obtiene de las Ecs. (2.19) en forma análoga al caso global, observando en este caso que en la integración por partes deben ser tenidas en cuenta también las interfases internas. Su formulación es la siguiente: En todo Ω_j encontrar (\mathbf{U}_j, v_j) tal que

$$
(\sigma \mathbf{U}_j, \psi)_{\Omega_j} - (v_j, \text{curl} \, \psi)_{\Omega_j} - \sum_{\Gamma_{jk} \cap \Gamma = \phi} \langle v_j, \psi \cdot \mathbf{\tau}_j \rangle_{\Gamma_{jk}} + \\
\langle (1 - i)\alpha \mathbf{U}_j \cdot \mathbf{\tau}_j, \mathbf{\psi} \cdot \mathbf{\tau}_j \rangle_{\Gamma_j} - \langle \mathbf{g}, \psi \rangle_{\Omega_j}, \quad \psi \in H(\text{curl}, \Omega_j), \quad (2.21a)$$

$$
(\text{curl} \, \mathbf{U}_j, \varphi)_{\Omega_j} + (i\omega \mu v_j, \varphi)_{\Omega_j} = 0, \quad \varphi \in L^2(\Omega_j). \quad (2.21b)
$$

Reemplazamos ahora v_j en el tercer término del lado izquierdo de la Ec. (2.21a) por la expresión que se obtiene despejándolo de Ec. (2.20a), y luego pasamos al lado derecho de (2.21a) todos los términos que involucran a dominios vecinos del Ω_j, ya que, como mencionamos anteriormente, el objetivo de la técnica de descomposición de dominio es localizar los cálculos correspondientes a cada subdominio. Es natural en esta instancia sugerir la construcción de la solución del problema planteado de esta manera en forma iterativa, asumiendo que los vecinos a Ω_j -el lado derecho del sistema de ecuaciones- yacen un nivel atrasados. De esta manera el problema queda planteado como sigue: eligiendo arbitrariamente (\mathbf{U}^0_j, v^0_j), se computan $(\mathbf{U}^{n+1}_j, v^{n+1}_j)$ mediante las ecuaciones
2.2. Caso bidimensional

\[
(\sigma U_j^{n+1}, \psi)_{\Omega_j} - (v_j^{n+1}, \text{curl } \psi)_{\Omega_j} \\
+ \sum_{\Gamma_{jk} \cap \Gamma = \phi} \langle \beta_{jk} U_j^{n+1} \cdot \tau_j, \psi \cdot \tau_j \rangle_{\Gamma_{jk}} \\
+ \langle (1 - i)\alpha U_j^{n+1} \cdot \tau_j, \psi \cdot \tau_j \rangle_{B_j} = \\
-(g, \psi)_{\Omega_j} - \sum_{\Gamma_{jk} \cap \Gamma = \phi} \langle \beta_{jk} U_k^n \cdot \tau_k - v_k^n, \psi \cdot \tau_j \rangle_{\Gamma_{jk}},
\]
\[\psi \in H(\text{curl}, \Omega_j), \quad (2.22a)\]
\[\text{curl } U_j^{n+1}, \varphi)_{\Omega_j} + (i\omega \mu v_j^{n+1}, \varphi)_{\Omega_j} = 0, \quad \varphi \in L^2(\Omega_j), \quad (2.22b)\]

Antes de dar la versión discreta del sistema de ecuaciones (2.22) es preciso tener en cuenta que como las funciones del espacio \(W^h \) pueden ser discontinuas en los bordes \(\Gamma_{jk} \), imponer las condiciones de consistencia (2.20) implicaría que la condición de continuidad de la componente tangencial de \(U \) se violaría a menos que la aproximación discreta \(v^h \) sea una constante, caso que obviamente no nos interesa. Híbridizamos (Douglas et al., 1993a; Beckie et al., 1993; Mosé et al., 1994) nuestro problema, incorporando entonces un conjunto de multiplicadores de Lagrange, asociados al valor de \(v_j^h \) sobre los bordes internos.

\[\Lambda^h = \{ \lambda^h : \lambda^h|_{\Gamma_{jk}} \in P_0(\Gamma_{jk}), \Gamma_{jk} \cap \Gamma = \phi \}. \quad (2.23)\]

Se debe notar aquí que los valores que toman los multiplicadores sobre el borde quedan disociados de esta manera del valor de \(v^h \) en el interior del subdominio, y que sobre el borde \(\Gamma_{jk} \) existen dos multiplicadores, asociados a \(v_j^h \) y a \(v_k^h \) respectivamente, que tienden al mismo valor cuando el método converge; las versiones discretas de las condiciones de consistencia (2.20) se obtienen haciendo los reemplazos pertinentes.

Podemos entonces establecer el algoritmo de elementos finitos mixtos híbrido con descomposición de dominio como sigue: Elegiendo \((U_j^{h,0}, v_j^{h,0}, \lambda_{jk}^{h,0}, \lambda_{kj}^{h,0}) \in V_j^h \times W_j^h \times \Lambda_{jk}^h \times \Lambda_{kj}^h\) arbitrariamente, se computan \((U_j^{h,n+1}, v_j^{h,n+1}, \lambda_{jk}^{h,n+1}) \in V_j^h \times W_j^h \times \Lambda_{jk}^h \times \Lambda_{kj}^h\) arbitrariamente, se computan...
$V^h_j \times W^h_j \times \Lambda^h_{jk}$ como la solución de las ecuaciones

\[
(\sigma \mathbf{U}^{h,n+1}_j, \psi)_{\Omega_j} - (v^{h,n+1}_j, \text{curl} \ \psi)_{\Omega_j} + \sum_{\Gamma_{jk} \cap \Gamma = \phi} \langle \beta_{jk} \mathbf{U}^{h,n+1}_j \cdot \boldsymbol{\tau}_j, \psi \cdot \boldsymbol{\tau} \rangle_{\Gamma_{jk}} + \langle (1 - i)a \mathbf{U}^{h,n+1}_j \cdot \boldsymbol{\tau}_j, \psi \cdot \boldsymbol{\tau}_j \rangle_{\Gamma_{jk}} =
\]

\[-(g, \psi)_{\Omega_j} - \sum_{\Gamma_{jk} \cap \Gamma = \phi} \langle \beta_{jk} \mathbf{U}^{h,n}_k \cdot \boldsymbol{\tau}_k - v^{h,n}_k, \psi \cdot \boldsymbol{\tau} \rangle_{\Gamma_{jk}},
\]

\[
\psi \in V^h_j, \quad (2.24a)
\]

\[
(\text{curl} \mathbf{U}^{h,n+1}_j, \varphi)_{\Omega_j} + (i\omega \mu v^{h,n+1}_j, \varphi)_{\Omega_j} = 0, \quad \varphi \in W^h_j,
\]

\[
(2.24b)
\]

\[
\lambda^{h,n+1}_{jk} = \lambda^{h,n}_{jk} - \beta_{jk}(\mathbf{U}^{h,n+1}_j \cdot \boldsymbol{\tau}_j + \mathbf{U}^{h,n}_k \cdot \boldsymbol{\tau}_k) \quad \text{sobre} \ \Gamma_{jk}, \quad \Gamma_{jk} \cap \Gamma = \phi.
\]

\[
(2.24c)
\]

Santos (1998) probó que el método iterativo (2.24) converge a la solución del problema discreto global, y encontró una cota para el error de este último, de orden h para el caso de polinomios de primer orden para aproximar \mathbf{U} y funciones constantes a trozos para aproximar v que aquí describimos.

2.2.2 El modo TE

En este caso el problema que queremos aproximar es

\[
\text{curl} \ u + i\omega \mu \mathbf{V} = 0 \quad \text{en} \ \Omega, \quad (2.25a)
\]

\[
\text{curl} \ \mathbf{V} = \sigma u + f \quad \text{en} \ \Omega, \quad (2.25b)
\]

\[
(1 - i)au - \mathbf{V} \cdot \boldsymbol{\tau} = 0 \quad \text{sobre} \ \Gamma. \quad (2.25c)
\]

Si multiplicamos (2.25a) por $\psi \in H(\text{curl}, \Omega)$ e integramos por partes, y si testeamos (2.25b) contra $\varphi \in L^2(\Omega)$, el problema variacional mixto queda planteado de la siguiente manera: Encontrar $(\mathbf{V}, u) \in H(\text{curl}, \Omega) \times L^2(\Omega)$
2.2. Caso bidimensional

tales que

\[
(i \omega \mu \mathbf{V}, \psi) + (u, \text{curl} \psi) + \left(\left(\frac{1 + i}{a} \right) \mathbf{V} \cdot \mathbf{\tau}, \psi \cdot \mathbf{\tau} \right) = 0,
\]
\[
\psi \in H(\text{curl}, \Omega), \quad (2.26a)
\]
\[
(\text{curl} \mathbf{V}, \varphi) - (\sigma u, \varphi) = (f, \varphi), \quad \varphi \in L^2(\Omega). \quad (2.26b)
\]

A partir de este estadío se siguen, con pequeñas variaciones, los pasos descritos en la sección anterior. Cuando aplicamos la descomposición de dominio las condiciones de consistencia en las fronteras internas son la continuidad de \(u \) y la de la componente tangencial de \(\mathbf{V} \), de modo tal que las condiciones de Robin son en este caso

\[
u_j - \beta_{jk} \mathbf{V}_j \cdot \mathbf{\tau}_j = u_k - \beta_{jk} \mathbf{V}_k \cdot \mathbf{\tau}_k \quad \Gamma_{jk} \subset \Gamma_j, \quad (2.27a)
\]
\[
u_k - \beta_{jk} \mathbf{V}_k \cdot \mathbf{\tau}_k = u_j - \beta_{jk} \mathbf{V}_j \cdot \mathbf{\tau}_j \quad \Gamma_{kj} \subset \Gamma_k. \quad (2.27b)
\]

Asociando en este caso multiplicadores de Lagrange \(\lambda_{jk}^h \approx u_j^h \) en la interfaces internas \(\Gamma_{jk} \), el método mixto de elementos finitos híbrido con descomposición de dominio es el siguiente: Se eligen \((\mathbf{V}_j^{h,0}, u_j^{h,0}, \lambda_{jk}^{h,0}) \in V_j^h \times W_j^h \times \Lambda_{jk}^h \) arbitrariamente. Luego, se obtienen \((\mathbf{V}_j^{h,n+1}, u_j^{h,n+1}, \lambda_{jk}^{h,n+1}) \in V_j^h \times W_j^h \times \Lambda_{jk}^h \) como la solución de las ecuaciones

\[
(i \omega \mu \mathbf{V}_j^{h,n+1}, \psi)_{\Omega_j} + (u_j^{h,n+1}, \text{curl} \psi)_{\Omega_j}
\]
\[
+ \sum_{\Gamma_{jk} \cap \Gamma = \phi} (\lambda_{jk}^{h,n+1}, \psi \cdot \mathbf{\tau})_{\Gamma_{jk}}
\]
\[
+ \left(\left(\frac{1 + i}{a} \right) \mathbf{V}_j^{h,n+1} \cdot \mathbf{\tau}, \psi \cdot \mathbf{\tau} \right)_{B_j^*} = 0,
\]
\[
\psi \in V_j^h \quad (2.28a)
\]
\[
(\text{curl} \mathbf{V}_j^{h,n+1}, \varphi)_{\Omega_j} - (\sigma u_j^{h,n+1}, \varphi)_{\Omega_j} = (f, \varphi)_{\Omega_j},
\]
\[
\varphi \in W_j^h, \quad (2.28b)
\]
\[
\lambda_{jk}^{h,n+1} = \lambda_{kj}^{h,n} + \beta_{jk}(\mathbf{V}_j^{h,n+1} \cdot \mathbf{\tau}_j + \mathbf{V}_k^{h,n} \cdot \mathbf{\tau}_k), \text{ sobre } \Gamma_{jk}, \Gamma_{jk} \cap \partial \Omega = \phi. \quad (2.28c)
\]
2.3 Caso tridimensional

La extensión del problema que tratamos a tres dimensiones, si bien las ideas subyacentes son las mismas, no es inmediata. Antes de avanzar, debemos redefinir algunos conceptos utilizados en la sección anterior. Así el dominio Ω es ahora un prisma rectangular, y el borde ∂Ω ≡ Γ son las seis caras del prisma. La subdivisión del dominio se realiza en paralelepipédos Ωj de volumen \(h_x \cdot h_y \cdot h_z \); Γj es la frontera del subdominio Ωj. Por Γjk entenderemos ahora al rectángulo común a los domíniros Ωj y Ωk. Nuevamente vale que \(|Γ_{jk}| = |Γ_{kj}|\), pero en el primer caso -lado izquierdo de la igualdad- el vector normal unitario \(\mathbf{n} \) apunta desde Ωj hacia Ωk, y en el segundo, a la inversa. Concomitanteamente debemos modificar los espacios \(H(\text{curl}, Ω) \) y \(L^2(Ω) \), ahora

\[
H(\text{curl}, Ω) = \{ \varphi \in (L^2(Ω))^3 : \nabla \times \varphi \in (L^2(Ω))^3 \}. \quad (2.29)
\]

Sin detallar el origen del modelo, de lo que nos encargaremos más adelante, establecemos el problema cuya solución \((\mathbf{U}, \mathbf{V})\) queremos aproximar como

\[
\begin{align*}
σ\mathbf{U} - \nabla \times \mathbf{V} &= \mathbf{F} \quad \text{en } Ω, \quad (2.30a) \\
iωμ\mathbf{V} + \nabla \times \mathbf{U} &= 0 \quad \text{en } Ω, \quad (2.30b) \\
(1 - i)P_τ a\mathbf{U} + \mathbf{n} \times \mathbf{V} &= 0 \quad \text{sobre } Γ, \quad (2.30c)
\end{align*}
\]

donde \(\mathbf{n} \) es el vector unitario normal a Γ, y \(P_τ \varphi = -\mathbf{n} \times (\mathbf{n} \times \varphi) \). La prueba de la existencia y unicidad de la solución a este problema está dada en (Santos y Sheen, 2000).

Análogamente al caso bidimensional, para obtener la forma variacional mixta del sistema (2.30), testeamos la Ec. (2.30b) con la función de prueba \(\varphi \in (L^2(Ω))^3 \), y la Ec. (2.30a) con \(\psi \in H(\text{curl}, Ω) \), e integramos por partes haciendo uso de la Ec. (2.30c) (Sheen, 1992). Tenemos entonces que encontrar el par \((\mathbf{U}, \mathbf{V})\) solución de

\[
\begin{align*}
(σ\mathbf{U}, \psi) - (\mathbf{V}, \nabla \times \varphi) + ((1 - i)P_τ a\mathbf{U}, P_τ \psi) &= (\mathbf{F}, \psi) \quad \psi \in H(\text{curl}, Ω), \quad (2.31a) \\
(iωμ\mathbf{V}, \varphi) + (\nabla \times \mathbf{U}, \varphi) &= 0, \quad \varphi \in (L^2(Ω))^3. \quad (2.31b)
\end{align*}
\]
2.3. Caso tridimensional

La descripción de los espacios de elementos finitos no conformes que vamos a utilizar en la discretización del problema planteado sigue a (Douglas et al., 1999; Douglas et al., 2000). Uno de los objetivos de usar este tipo de elementos finitos es facilitar los cálculos, relajando la condición de continuidad entre las caras de los subdominios restringiéndola al centro del rectángulo. Para hacerlo correctamente deben utilizarse espacios aproximantes Y^h y Z^h de $H(\text{curl}, \Omega)$ y $((L^2(\Omega))^3$ respectivamente con características distintas a los descriptos para el caso bidimensional. Para construir estos espacios de elementos finitos, introducimos los espacios de polinomios $Q(K) = Q_x \times Q_y \times Q_z$ sobre el cubo de referencia $K = [-1, 1]^3$, donde
\[
Q_x = \text{Span} \left\{ 1, y, z, \left(y^2 - \frac{5}{3} y^4 \right) - \left(\frac{2}{3} z^4 \right) \right\},
\]
\[
Q_y = \text{Span} \left\{ 1, z, x, \left(z^2 - \frac{5}{3} z^4 \right) - \left(\frac{2}{3} x^4 \right) \right\},
\]
\[
Q_z = \text{Span} \left\{ 1, x, y, \left(x^2 - \frac{5}{3} x^4 \right) - \left(\frac{2}{3} y^4 \right) \right\},
\]
y $S(K) = S_x \times S_y \times S_z$, donde
\[
S_x = \text{Span} \left\{ 1, y - \frac{10}{3} y^3, z - \frac{10}{3} z^3 \right\},
\]
\[
S_y = \text{Span} \left\{ 1, z - \frac{10}{3} z^3, x - \frac{10}{3} x^3 \right\},
\]
\[
S_z = \text{Span} \left\{ 1, x - \frac{10}{3} x^3, y - \frac{10}{3} y^3 \right\}.
\]

Los grados de libertad para $Q(K)$ son la evaluación en los puntos medios de las caras de las componentes tangenciales,
\[
\Phi(\psi) = \{(P_7 \psi)(m_i), i = 1 \ldots 6\}
\]
(2.32)
donde m_i es el centro de la i-ésima cara del cubo K, mientras que para $S(K)$ están definidos por los momentos
\[
\int_K \varphi_l dx \, dy \, dz \quad \text{y} \quad \int_K \text{curl} \varphi_l dx \, dy \, dz, \quad l = x, y, z,
\]
(2.33)
Funciones base para Q(K) y S(K)

<table>
<thead>
<tr>
<th>α</th>
<th>ψ^α</th>
<th>η</th>
<th>φ^η</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_x</td>
<td>(1/4 - y/2 - 3/8 (y^2 - 5/3 y^4 - (z^2 - 5/3 z^4)), 0, 0)</td>
<td>1</td>
<td>(1/8, 0, 0)</td>
</tr>
<tr>
<td>E_x</td>
<td>(1/4 + y/2 - 3/8 (y^2 - 5/3 y^4 - (z^2 - 5/3 z^4)), 0, 0)</td>
<td>2</td>
<td>(3/56 (y - 10/3 z^3), 0, 0)</td>
</tr>
<tr>
<td>S_x</td>
<td>(1/4 - z/4 + 3/8 (y^2 - 5/3 y^4 - (z^2 - 5/3 z^4)), 0, 0)</td>
<td>3</td>
<td>(1/56 (z - 10/3 z^3), 0, 0)</td>
</tr>
<tr>
<td>N_x</td>
<td>(1/4 + z/2 - 3/8 (y^2 - 5/3 y^4 - (z^2 - 5/3 z^4)), 0, 0)</td>
<td>4</td>
<td>(0, 8/5, 0)</td>
</tr>
<tr>
<td>B_y</td>
<td>(0, 1/4 - z/2 - 3/8 (x^2 - 5/3 x^4 - (z^2 - 5/3 z^4)), 0)</td>
<td>5</td>
<td>(0, (3/56 (x - 10/3 y^3), 0)</td>
</tr>
<tr>
<td>F_y</td>
<td>(0, 1/4 + z/2 - 3/8 (x^2 - 5/3 x^4 - (z^2 - 5/3 z^4)), 0)</td>
<td>6</td>
<td>(0, (3/56 (z - 10/3 y^3), 0)</td>
</tr>
<tr>
<td>W_z</td>
<td>(0, 1/4 - y/2 + 3/8 (x^2 - 5/3 x^4 - (y^2 - 5/3 y^4)))</td>
<td>7</td>
<td>(0, 0, 1/8)</td>
</tr>
<tr>
<td>E_z</td>
<td>(0, 1/4 + z/2 + 3/8 (x^2 - 5/3 x^4 - (y^2 - 5/3 y^4)))</td>
<td>8</td>
<td>(0, 0, (3/56 (x - 10/3 y^3))</td>
</tr>
<tr>
<td>S_y</td>
<td>(0, 1/4 - z/2 + 3/8 (x^2 - 5/3 x^4 - (z^2 - 5/3 z^4)), 0)</td>
<td>9</td>
<td>(0, 0, (3/56 (y - 10/3 y^3))</td>
</tr>
<tr>
<td>N_y</td>
<td>(0, 1/4 + z/2 - 3/8 (x^2 - 5/3 x^4 - (z^2 - 5/3 z^4)), 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_z</td>
<td>(0, 1/4 - z/2 - 3/8 (x^2 - 5/3 x^4 - (y^2 - 5/3 y^4)))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_z</td>
<td>(0, 1/4 + z/2 - 3/8 (x^2 - 5/3 x^4 - (y^2 - 5/3 y^4)))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2.2: En las funciones base de Q(K), ψ^α significa componente t no nula en el punto medio de la cara A del cubo de referencia K = [−1,1]^3, ver Fig.2.2 por detalles sobre K. Puede también verse que el espacio S(K) es el curl de Q(K), una propiedad que deben verificar los espacios de los métodos mixtos.

donde curl debe entenderse bidimensional. Las Ecs. (2.32) y (2.33) proveen los doce (nueve) grados de libertad para determinar unívocamente los elementos de Q(K) (S(K)) respectivamente. Para obtener la bases de estos espacios asociadas a los grados de libertad definidos, procedemos de igual manera que en el caso bidimensional, aplicando los grados de libertad a un elemento genérico, y obtenemos, para el caso de Q(K) un sistema lineal de doce ecuaciones, y para S(K) uno de nueve. Las columnas de las matrices inversas de la matrices de coeficientes nos dan los coeficientes de los vectores de la bases mostradas en la Tabla 2.2. Para la definición del espacio Y^h introducimos el siguiente conjunto de vectores constantes bidimensionales

\[\tilde{\lambda}^h = \left\{ \tilde{\lambda}^h : \tilde{\lambda}^h \big|_{\Gamma_j} = \tilde{\lambda}_{jk} \in P_0 \times P_0 \text{ en cada cara } \Gamma_{jk} \text{ de } \Omega_j, \tilde{\lambda}_{jk} + \tilde{\lambda}_{kj} = 0 \right\} \]
Figura 2.2: Cubo de referencia. Consideremos por ejemplo a ψ^{W_s}. En el punto $(0,-1,0)$, $P_t\psi^{W_s} = (1, 0, 0)$, mientras que en los restantes puntos medios vale $(0,0,0)$. Análoga es la situación con las demás funciones base de $Q(K)$. Esta es una propiedad importante para la estimación del error de aproximación del método (Douglas et al., 1999)

Además usamos $\langle a, b \rangle_{\Gamma_{jk}}$ para denotar la aproximación a $\langle \cdot, \cdot \rangle_{\Gamma_{jk}}$ mediante la regla del punto medio sobre Γ_{jk}, es decir, si m_{jk} es el punto medio de la cara Γ_{jk},

$$\langle a, b \rangle_{\Gamma_{jk}} = |\Gamma_{jk}|(a\delta)(m_{jk}).$$

Estamos ahora en condiciones de definir los espacios de elementos finitos que utilizaremos en nuestra aproximación del problema (2.30) como

$$Y^h = \left\{ \psi \in (L^2(\Omega_j))^3 : \psi|_{\Omega_j} \in Q(\Omega_j) \quad y \quad \sum_{j} \langle \theta, P_t\psi \rangle_{\Gamma_{jk}} = 0, \quad \forall \theta \in \tilde{\Lambda}^h \right\},$$

$$Z^h = \{ \varphi \in (L^2(\Omega_j))^3 : \varphi|_{\Omega_j} \in S(\Omega_j) \}.$$

La última condición en la definición del espacio Y^h es la que expresa el relajamiento de la restricción de continuidad de las componentes tangenciales de las funciones a través de las caras; ahora sólo se requiere dicha continuidad en promedio y sólo en los puntos medios de las mismas.

Finalmente el procedimiento de elementos finitos mixtos no conformes es la
restricción a los espacios que acabamos de construir de las Ec. (2.31). Por lo tanto debemos encontrar \((U^h, V^h) \in Y^h \times Z^h\) que verifiquen

\[
(\sigma U^h, \psi) - \sum_j (V^h, \nabla \varphi)_{\Omega_j} + \langle(1 - i)P_\tau \alpha U^h, P_\tau \psi\rangle_\Gamma = (F, \psi)
\]

\(\psi \in Y^h, (2.34a)\)

\[
(i\omega \mu V^h, \varphi) + \sum_j (\nabla \times U^h, \varphi)_{\Omega_j} = 0, \quad \varphi \in Z^h. (2.34b)
\]

En (Douglas et al., 2000) se demuestra que el error asociado a este método es asintóticamente de orden \(h^{1/2}\).

2.3.1 Descomposición de dominio e hibridización

Para obtener la versión con descomposición de dominio, procedemos de manera análoga al caso bidimensional. Restringimos el problema (2.30) a cada uno de los subdominios \(\Omega_j\) de la decomposición, que nuevamente hacemos coincidir con la partición de elementos finitos. Las condiciones de consistencia entre los bordes internos son la continuidad de las componentes tangenciales de las funciones, es decir

\[
P_\tau U_j = P_\tau U_k \quad \text{sobre } \Gamma_{jk}, \tag{2.35a}
\]

\[
\nu_j \times V_j = -\nu_k \times V_k \quad \text{sobre } \Gamma_{jk}. \tag{2.35b}
\]

Nuevamente, estas condiciones pueden ser reescritas como condiciones de transmisión de Robin, que en el presente caso se leen

\[
(\nu_j \times V_j + \beta_{jk} P_\tau U_j) = -(\nu_k \times V_k - \beta_{jk} P_\tau U_k) \quad \text{sobre } \Gamma_{jk} \subset \Gamma_j, (2.36a)
\]

\[
(\nu_k \times V_k + \beta_{kj} P_\tau U_k) = -(\nu_j \times V_j - \beta_{jk} P_\tau U_j) \quad \text{sobre } \Gamma_{kj} \subset \Gamma_k, (2.36b)
\]

donde ahora \(\beta_{jk}\) es un número complejo con parte real positiva y parte imaginaria negativa o nula. Si seguimos los pasos detallados en el caso bidimensional para obtener la Ec.(2.21), y despejamos de la Ec. (2.36a) a \(\nu_j \times V_j\) en los bordes internos \(\Gamma_{jk}\) podemos escribir el problema variacional mixto
con descomposición de dominio a nivel diferencial como sigue: Hallar pares
\((U_j, V_j), \ j = 1 \ldots J\) solución de

\[
\begin{align*}
(\sigma U_j, \psi)_{\Omega_j} - (V_j, \nabla \times \psi)_{\Omega_j} & \\
+ \sum_{\Gamma_{jk}} \langle \beta_{jk}(P_{\gamma} U_j - P_{\gamma} U_k) + \nu_k \times V_k, P_{\gamma} \psi \rangle_{\Gamma_{jk}} \\
+ \langle (1 - i)P_{\gamma} aU_j, P_{\gamma} \psi \rangle_{\Gamma_{jk}} = (F_j, \psi)_{\Omega_j}, & \quad \psi \in H(\text{curl}, \Omega_j), \quad (2.37a) \\
(i \omega \mu V_j, \varphi)_{\Omega_j} + (\nabla \times U_j, \varphi)_{\Omega_j} = 0, & \quad \varphi \in (L^2(\Omega_j))^3. \quad (2.37b)
\end{align*}
\]

El proceso iterativo motivado por (2.37) se establece pasando como anteriormente los términos que involucran a vecinos del subdominio \(\Omega_j\) al lado derecho de las ecuaciones, y considerando a este último un nivel atrasado. Ahora, para obtener la versión discreta del método iterativo, debemos hibridizar al proceso iterativo propuesto, incorporando un conjunto de multiplicadores de Lagrange asociados con la componente tangencial de \(V\) evaluada en el punto medio de la interfase -es decir \(\lambda \simeq (\nu_j \times V_j)(m_{jk})\) sobre \(\Gamma_{jk}\) para relajar la condición de continuidad impuesta por las condiciones de Robin sobre los elementos de \(Z^h\),

\[
\Lambda^h = \{ \lambda^h : \lambda^h \vert_{\Gamma_{jk}} \equiv \lambda^h_{jk} \in P_0(\Gamma_{jk}) \times P_0(\Gamma_{jk}) \}.
\]

Como en el caso bidimensional, existen dos multiplicadores sobre cada interfase, pero recordamos que ahora no son escalares, sino vectores bidimensionales.

Estamos ahora en condiciones de escribir el método iterativo de elementos finitos mixtos híbrido con descomposición de dominio DDFE como sigue: Dados valores iniciales arbitrarios \((U_j^{h,0}, V_j^{h,0}, \lambda^{h,0}_{jk}, \lambda^{h,0}_{kj}) \in Y_j^h \times Z_j^h \times \Lambda_{jk} \times \Lambda_{kj}\), encontrar \((U_j^{h,n+1}, V_j^{h,n+1}, \lambda_{jk}^{h,n+1}) \in Y_j^h \times Z_j^h \times \Lambda_{jk}\) como solución de las ecuaciones
\[(\sigma U_{j}^{h,n+1}, \psi)_{\Omega_{j}} - (V_{j}^{h,n+1}, \nabla \times \psi)_{\Omega_{j}} \]
\[+ \sum_{\Gamma_{jk} \cap \Gamma = \emptyset} \langle \beta_{jk} P_{\tau} U_{j}^{h,n+1}, P_{\tau} \psi \rangle_{\Gamma_{jk}} + \langle (1 - i) P_{\tau} a U_{j}^{h,n+1}, P_{\tau} \psi \rangle_{B_{j}} \]

\[= (F_{j}, \psi)_{\Omega_{j}} + \sum_{\Gamma_{jk} \cap \Gamma = \emptyset} \langle \beta_{jk} P_{\tau} U_{k}^{h,n} - \lambda_{jk}^{h,n}, P_{\tau} \psi \rangle_{\Gamma_{jk}}, \quad \psi \in Y_{j}^{h}, \quad (2.38a)\]

\[(i \omega \mu V_{j}^{h,n+1}, \varphi)_{\Omega_{j}} + (\nabla \times U_{j}^{h,n+1}, \varphi)_{\Omega_{j}} = 0, \quad \varphi \in Z_{j}^{h} \quad (2.38b)\]

\[\lambda_{jk}^{h,n+1} = -\lambda_{kj}^{h,n} + \beta_{jk} (P_{\tau} U_{k}^{h,n} - P_{\tau} U_{j}^{h,n+1})(m_{jk}), \quad m_{jk} \in \Gamma_{jk}. \quad (2.38c)\]

En (Douglas et al., 2000) se prueba que el método iterativo converge a la solución del problema discreto global, y que el error disminuye un factor \(1 - Ch\) en cada iteración, donde \(C\) es una constante independiente de \(h\), el tamaño de la grilla. Veremos la implementación de este algoritmo en el Capítulo 4, aplicándolo a la resolución del problema directo tridimensional en magnetotelérmica.