
Fuzzy Logic Controllers on Chip

Nelson Acosta & Daniel Simonelli
Universidad Nacional del Centro de la Provincia de Buenos Aires

Departamento de Computación y Sistemas
INCA / INTIA, Tandil, Argentina

Email: nacosta@exa.unicen.edu.ar
www.exa.unicen.edu.ar/inca

Abstract

This paper analyzes a fuzzy logic (FL) oriented
instruction set (micro)controller and their implemen-
tations on FIPSOC1. VHDL code is synthesized using a
small portion of FIPSOC FPGA2. This circuits are used
from the mP8051 FIPSOC built-in microcontroller to
provide efficient arithmetic operations such as multipliers,
dividers, minimums and maximums.

1. Introduction

Fuzzy logic controllers (FLC) can be implemented by
software running on standard hardware or on a dedicated
microcontroller [Tog86, Wat90, Sas93, Ung93].
Controllers for high rates can be implemented by specific
circuits or IC3 [Hun95, Cos96, Aco97, Son00]. In order to
process a high number of rules, optimization techniques
must be applied; for example: a) reduction of the number
of inference computing steps [Des96]; b) parallel
inference execution [Aco00, Kov00, Mor00]; c) active
rules processing [Aco98, Kas99, Pir01]; and d) standard
microcontroller core with a dedicated FL instruction set
[Wat93, Wat96].

The digital system speed is limited by maximum total
capacitive load of the I/O signals between the different
cards and chip packages. Some systems manufacturers
have developed a (multi)chip in a package. This approach
is also limited by the I/O interface between the different
IC in the same package. Other approach proposes to build
all system in only one chip. Working inside a SOC the
I/O IC system do not affect (greatly) the system
performance. The I/O signals between the FPD4 and the
mP8051 are connections into the same IC. Systems on a
Chip (SOCs) allow to easily prototype mixed signal
problems through both hardware capabilities and CAE

software tools. FIPSOC includes a mixed signal
programmable device with on-board microprocessor (the
FIPSOC chip), a complete set of CAE software tools to
manage it, and a set of library macros.

1 FIPSOC: Field Programmable System On Chip.
2 FPGA: Field Programmable Gate Array.
3 IC: Integrated Circuit.
4 FPD: Field Programmable Device (a FPGA like device).

This paper aims to present an alternative scheme to
compute the mP8051 controller functions by using a FL
instruction set on the FPGA area. Main features of this
approach are: a) to reduce the development time by using
a well known controller architecture; b) to minimize the
algorithm computing time getting faster arithmetic
operations.

This paper continues the above research lines by
exploring a standard microcontroller core with a
dedicated FL instruction set in a SOC5 platform. Some
topological and architectural alternatives are analyzed.
FIPSOC FPGAs series (provided by SIDSA6) have been
utilized as a technological framework. In section II, the
main characteristics of the FLC algorithm are
summarized. Section III shows some FIPSOC architecture
features. Section IV presents an implementation analysis
by the arithmetic and lattice units. The architecture are
depicted in section V. Finally, the principal results are
presented.

2. FLC: The Control Algorithm

An algorithm to compute the m functions f0, f1, ..., fm-1 of
n variables x

0
, x

1
, ..., x

n-1 is depicted. The value of x
i

belongs to a set S
i
, and the value of fk to the set of the real

numbers R. To each variable xi correspond pi
membership functions: A

ij
: S

i
 [0,1], 0 ≤ j → ≤ pi-1; to

each function fk correspond qk decoding functions: B
kl

:
[0,1] → R, 0 ≤ l ≤ qk-1; the computation of fk is based
on sentences (inference rules) such as: “IF x0 is A0 j0 AND
x1

is A1 j1 AND ... AND xn-1 is An-1 jn-1 THEN fk is Bkl”. A
set of coefficients r is defined: r(j0, j1, ..., jn-1, k, l) =1 if

5 SOC: System On a Chip
6 www.sidsa.es

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 478

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 479

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 484

the previously mentioned rule applies; else r(j0, j1, ..., jn-1,
k, l) = 0.

The computing algorithm of the fk functions is:
∀i:0 ≤ i ≤ n-1, ∀j:0 ≤ j ≤ pi-1, compute

yij = Aij (xi);
∀k:0 ≤ k ≤ m-1, ∀l:0 ≤ l ≤ qk-1, compute

wkl = ∨r (j0, j1, ..., jn-1, k, l) .
 y0 j0 . y1 j1

 yn-1 jn--1,
∀ j0, j1, ..., jn-1

vkl = Bkl (wkl);
∀k:0 ≤ k ≤ m-1, compute

Nk = vk 0 + vk 1 + ... + vk qk-1,
Dk = wk 0 + wk 1 + ... + wk qk-1,
fk = Nk / Dk

This scheme needs to compute all the lattice (maximum,
minimum) and arithmetic (add, multiplication, division)
operations. The inference mechanism uses the lattice
max-min operations to evaluate the fuzzy-rule set. The
multiplication and division instructions are used during
the defuzzification step and sometimes to compute the
membership functions. This scheme uses a set of LUT to
compute the membership functions (during the
fuzzification and defuzzification).

This scheme needs the reduction of the lattice and
arithmetic expressions to two-operand equivalent ones.
This reduction is based on the properties of the domain
space. It does not use the knowledge of fuzzy inference
mechanisms.

3. FIPSOC Architecture Topics

This prototyping and integration system, consists of a
mixed-signal Field Programmable Device (FPD) with a
standard mP8051 core, a suitable core of CAD tools and a
set of library macros and cells which support a number of
typical applications to be easily mapped onto the FPD. A
set of fixed-functionality yet configurable analog cells is
also provided [Bae97, Fau97].

The FIPSOC chip includes a two-dimensional array of
programmable DMCs (Digital Macro Cell). The DMC is
a large granularity, Look Up Table (LUT) based,
synthesis targeted 4-bit wide programmable cell.

Each DMC has two main blocks: a combinational part,
composed of four 4-input LUTs, and a sequential block
including four FFs. Any lookup table (LUT) can

implement any 4-input Boolean function. Every two 4-
input LUTs share two inputs, and two LUTs can be
combined to form a 5 input function or a 4 to 1
multiplexer (four inputs and two control bits). The four
LUTs of a DMC can be combined to perform any 6-input
Boolean function. (Figure 1)
The sequential part of the DMC includes four two-input
flip-flops (FF), each of which can be independently
configured as mux-type or enable-type, as latch or FF,
and with synchronous and asynchronous set or reset.

To improve chip area, the number of shared segments in a
point to point net should be maximized, as this consume
less FPGA routing resources. This tradeoff forces the
design of complex routing channels, with different length
segments, which requires sophisticated Computer Aided
Design (CAD).

Figure 1 – FIPSOC Block Diagram

3.1. 8051 Memory Organization
The memory map of the on-chip mP8051 keeps; by
default, the memory organization of the original 8051.
That is, it has a separate address space for Program
Memory and Data Memory, distributed in the following
four addresses spaces:

• Up to 64 Kbytes of Program Memory,
• Up to 64 Kbytes of external Data Memory,
• 256 bytes of internal Data Memory,
• 128 bytes of Special Function Registers area.

On the FIPSOC chip, two memory areas have been added,
overlapped with the original memory areas, with the
purpose of accessing to the different configuration
memories and control registers of the on-chip peripherals
of the mP8051. These locations, whose mapping is
configured by Special Function Registers, are mapped in
the following two spaces:

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 479

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 480

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 485

• 64 bytes of internal data memory, called buffer access
area,

• Up to 16 Kbytes memory mapped on the lower
external Data Memory (depending on device)

3.1.1. Program Memory.
The Program Memory of the on-chip mP8051 consists an
internal and an external space. 512 bytes of Program
Memory resides on-chip (dedicated to the FIPSOC boot
program).

3.1.2. General Purpose Registers
The lower 32 positions of the internal RAM are grouped
into four banks of 8 registers. Only one of the banks may
be enabled at a time (two bits of PSW register are used to
select the active bank). For indirect addressing, two of
them are used as pointer or index registers.

3.1.3. Special Function Registers (SFR)
The SFR area is located in the upper 128 bytes of the
internal memory. It has two important functions: Firstly,
all CPU registers reside in this area (excepting PC and
GPR banks). Secondly, a number of registers (not
included in the SFR area of the original 8051) constitute
the interface between the mP8051 and all the on-chip
subsystems.
SFR, which are located in addresses which are multiple of
eight, are both byte- and bit-addressable. All SFR can be
accessed by direct addressing only.
Note that not all of the addresses are occupied.
Unoccupied addresses are not implemented on the chip
(and the may be used in future). Read access to these
addresses will return random data; write accesses will be
ignored.

3.2. Subsystems Interface
The configuration and control of the subsystems that are
included in the FIPSOC chip are realized through
accesses to locations of the different memories of the
mP8051. Some memory locations of the SFR area have
been reserved for system configuration and general-
purpose control.
The subsystems and the memory used for configuration
are listed below:

a) The programmable blocks (CAB and PL block) are
configured (and accessed) using special function registers
and data memory (both internal and external) of the
mP8051 memory organization. Thus, the configuration
and data transfer of these blocks is made through
positions located in both internal and external memories.

• Programmable Logic Block: Either internal or external
memory locations may be used to configure, control and
transfer data. In particular, both configuration memory
and hardware outputs of the DMC are mapped in both
internal (buffer access) and external; LUT memory data in
DMCs can be accessed through internal memory only.
• Configurable Analog Block (CAB): The configuration
of the block is made through the buffer access area only;
Data transfer is made using memory locations of the SFR
area.
b) Other subsystems are configured and controlled with
special function registers only. These blocks are the Clock
Generation Block (CGB), Interrupt Service Block, Serial
Communication Block, Debugger Block, Watchdog
Block and other mP8051 peripherals systems (Parallel &
Serial I/O, Timers, etc.)

Configuration memories and outputs of the programmable
blocks (PL and CAB) may be accessed through internal
and external memory locations.

3.3. PL Subsystem Interface
Regular Configuration Memory: This memory may be
mapped either through internal memory (data buffer
access) or external memory. If a buffer access is done,
row and column mask registers are needed, with the
purpose of selecting the desired DMC(s), IO cell(s) or IIC
(Internal Interface Cell) routing resources cell(s).

3.4. Extended SFR map
The new special function registers added to the original
SFR map of the 8051 are dedicated to control, configure
and data transfer purpose. Only 18 of them are related to
the programmable blocks interface and the system
mapping control.

3.5. Port Access
The original 8051 has 32 bi-directional and individually
addressable I/O lines (grouped into four ports of 8 bits).
Due to the fact that FIPSOC integrates some external
peripherals on-chip, not all the 4 ports are accessible from
the external system. In particular, port 2 and port 3 of the
8051 have been used for internal communication purposes
(see figure 2)

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 480

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 481

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 486

Figure 2 – Fast access bus interface

4. Instruction Analysis

Multiplication is always an essential function in digital
systems. This work is focused on parallel multipliers
which are oriented to increase the mP8051 processing
speed in a FL application.

Here are depicted the seven multipliers organized
depending on the way they communicate their EPs
(elementary processors) [Col99]. Every multiplier
calculates A*B+C+S, generating a resulting number sized
as length(A) plus length(B). The seven multipliers let to
use different topologies and architectures.

• With Local Communication.
McCanny - McWhirter.
De Mori.

• With Global Communication.
Hatamian & Cash.
Ripple – Carry.

Carry Save.
• With Mixed Communication.

Guild.
De Mori – Guild.

The goal was to analyze FPGA occupation factors. With
that idea in mind, 2-bit, 3-bit and 4-bit wide multipliers
were used, fully combinational and with pipeline
granularity 1. Although it may seems that these are very
restrictive sizes, main idea is to use them for
implementing iterative multipliers where, for example, an
8 x 8 multiplication can be obtained through 4 operations
with a 4 x 4 multiplier.

The lattice operations involve a reduced arithmetical unit
that computes the maximum and minimum values. Each
of this units includes a set of registers to be used as local

RAM. The mP8051 saves the values in between the
maximum or minimum must be computed. The unit
output is registered too. This working scheme free the
microcontroller to do any other operations while the
computing is done.

For materializing these circuit structural RTL7 VHDL8
code was generated [BJM93, Boe96, Bue98, Col99] to
configure the built-in FIPSOC FPGA [Fau97].

Other architectural option works by using a hardwired
stack. The mP8051 push the two operands and the
operator in the stack. The operator value activates the
circuit starting to compute. When the unit finished the
required operation, it pushes the resulting into the stack to
be acquired by the mP8051.

The operations (maximum, minimum, multiplication and
division) are implemented full combinational in this
version; while the lattice operations are computed by a
unit. The architecture design uses an 8-bit main bus
joining the mP8051 I/O port to each computing unit. The
right unit selection is done by a 2-bits selector:

0000 Write 1st Op Multiplication
0001 Write 2nd Op Multiplication
0010 Read Low Byte Multiplication
0011 Read High Byte Multiplication
0100 Write 1st Op Division
0101 Write 2nd Op Division
0110 Read Integer Division
0111 Read Remainder Division
1000 Unused
1001 Write 1st Op Maximum
1010 Write 2nd Op Maximum
1011 Read Resulting Maximum
1100 Unused
1101 Write 1st Op Minimum
1110 Write 2nd Op Minimum
1111 Read Resulting Minimum

The computing units let the programmer the responsibility
to take into account the resulting value stability. This
feature lets to save: (a) some mP8051 I/O port bits, and
(b) computing time of a polling operation to check if the
unit have finished.

5. Architecture analysis

Parameters considered after 42 implementations were:
minimum required LUT size, number of DMCs and FFs
used. From routing resources point of view, congestion

7 RTL: Register Transfer Level.
8 VHDL: Very high speed IC Hardawre Description Language.

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 481

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 482

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 487

and used-shared segments were taken into account. These
quantities, give useful information about detailed routing
algorithm, RAISE (Router using Adaptive Simulated
Evolution) [Bae97] which yields an idea regarding
efficient use of routing resources through the
maximization of shared segments.

A crucial restriction is to provide FIPSOC with cheap FL
core (in terms of programmable resources), therefore is
very important to handle this information for not wasting
too much of the interconnection resources.

6. Conclusions

Dedicated fast FL operations greatly increases the FLC
system efficiency and performance. This feature let users
to use parallelism between the mP8051 code, the lattice
and the arithmetic operations. It also opens the door to
many applications involving this kind of computation,
where the previous standard microcontrollers were not
fast enough or too inefficient. It would be necessary to
develop a software to verify the possible timing
violations.

Independently of the multiplier used, with a 3-bit input
and no pipeline, the placement tool assigns a 5-bit LUT,
as well as a low FFs usage from DMCs. As a matter of
fact, except on the De Mori - Guild multiplier, FFs usage
factor is less than 50%. Particularly, for Ripple - Carry
multiplier, using pipeline with granularity 1 only implies
adding one single DMC. Moreover, it improves FFs usage
as well as diminish LUTs size.

A general consequence of this fact is that, regardless
data size, in all those cases on which the combinational
version had 5-bit LUTs, passing to a version with pipeline
yielded a DMCs increment that never arrived to duplicate
the original value, as long as in that cases with 4-bit
LUTs, adding pipeline resulted on two times or even more
DMCs.

This is a very relevant fact at the time of choosing a
combinational scheme to save programmable resources:
here is shown that depending on the situation, it is
possible to obtain a pipelined scheme with a low impact
additional cost.

As a future work, it is necessary to obtain the power
consumption related to each FLC. An equation must
describe area and speed behavior. This approach let the
designer to estimate these metrics before the place and
route. The parallel inference by using multiples max-min
computing units is a key to try.

References

 [Aco00] Acosta N. & Curti H. “Motores de Inferencia

para Controladores Difusos: análisis de
materializaciones hardware”. ICIE, UBA,
Bs. As. 26-28 abril 2000.

[Aco97] Acosta N., Deschamps J-P. and Sutter G.
“Automatic Program Generator for
Customized Fuzzy Logic Controllers”. Proc.
IFAC AART´97, Vilamoura, Portugal, April
1997, pp: 259-265.

[Aco98] N. Acosta, J-P Deschamps y J. Garrido.
“Optimized active rule fuzzy logic custom
controller”, Int. Symposium EIS'98,
Tennerife, España. Feb'98.

[Bae97] V. Baena-Lecuyer, M. A. Aguirre, A.
Torralba, L.G. Franquelo & J. Faura, “RAISE:
A Detailed Routing Algorithm for Field-
Programmable Gate Arrays”, DCIS'97

[BJM93] E.I. Boemo, E. Juárez y J. Meneses;
“Taxonomía de Multiplicadores”; VIII DCIS
Conference, Universidad de Málaga,
Noviembre de 1993.

[Boe96] E. Boemo; "Contribution to the Design of
Fine-Grain Pipelined Arrays";
http://www.ii.uam.es/~ivan/; Jan 1996.

[Bue98] S. López Buedo; "The Webgen Project";
http://www.ii.uam.es/~eda; 1998.

[Col99] C. Collado & K. Larsen; "Sistema de
Asistencia en el Diseño de Multiplicadores";
UNCPBA, Fac. Ciencias Exactas, Tandil,
1999.

[Cos96] Costa A., De Gloria A. and Olivieri M.
“Hardware design of Asynchronous Fuzzy
Controllers”. IEEE Trans. on Fuzzy Systems,
vol. 4, Nro. 3, Aug. 1996, pp.: 328-338.

[Des96] Deschamps J-P and Acosta N. “Algoritmo de
optimización de funciones reticulares aplicado
al diseño de Controladores Difusos”. 25as.
JAIIO, 1996 pp: 1.17-1.27.

[Fau97] Julio Faura, Miguel A. Aguirre, Juan M.
Moreno, Phuoc van Duong, Josep M. Insenser,
"FIPSOC: A Field Programma-ble System On
a Chip", DCIS'97

[Hun95] Hung D. L. (1995). “Dedicated Digital Fuzzy
Hardware”. IEEE Micro, vol. 15, nro. 4, pp:
31-39.

[Kas99] Anastasios Kasiolas. “Intelligent Control in
Multimedia Traffic Policing, Shaping and
Congestion Avoidance over Broadband
Networks”, MSc. Thesis, Dep. Electrical &
Comp. Eng, Univ. Ontario, Ontario, April,
1999.

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 482

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 483

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 488

[Kov00] Z. Kovacic, S. Bogdan & T. Reichenbach.

“NonLinear Position Control By Using
Multiple Position-Dependent Self-Organizing
Fuzzy Logic Controllers”, 6th IFAC-
Symposium on Robot Control SYROCO ´00,
pp.229-233 , Vienna, Austria, 2000..

[Mor00] Hipolito Moreno Llagostera. “Control of a
Pneumatic Servosystem using Fuzzy Logic”,
1st. FPNI - PhD Symposium. Hamburg, 2000.
Pp. 189-201.

[Pir01] Leonardo Pirrello, Leena Yliniemi & Kauko
Leiviskä. “Development of a Fuzzy Logic
Controller for a Rotary Dryer with Seft-
Tuning of Scaling Factor”, Oulu University,
Control Eng. Laboratory, Report A17, Oulu,
Finland. ISBN 951-42-6424-X. June 2001.

[Sas93] Sasaki M. Ueno F. and Inoue T. (1993). “7.5
MFLIPS Fuzzy Microprocessor using SIMD
and Logic-in-Memory Structure”. Proc. of
IEEE International Conference on Fuzzy
Systems, pp: 527-534.

[Son00] Feijun Song & Samuel M. Smith. “Takagi-
Sugeno Type Fuzzy logic Controller with only
3 RUles for a 4 Dimensional Inverted
Pendulum System”, IEEE Int. Conf. System,
Man & Cybernetics, pp.3800-3805, 2000.

[Tog86] Togai M. and Watanabe H. (1986). “Expert

System on a Chip: An Engine for Real-Time
Approximate Reasoning”. IEEE Expert, vol. 1,
Nro. 3, pp: 55-62.

[Ung93] Ungering A., Thuener K. and Gosser K.
(1993). “Architecture of a PDM VLSI Fuzzy
Logic Controller with Pipelining and
Optimized Chip Area”. Proc. of IEEE
International Conference on Fuzzy Systems,
pp: 447-452.

[Wat90] Watanabe H, Dettlof W. and Yount K. (1990).
“A VLSI Fuzzy Logic Controller with
Reconfigurable, Cascadable Architecture”.
IEEE Journal on Solid-State Circuits, vol. 25,
nro. 2.

[Wat93] H. Watanabe y D. Chen. “Evaluation of fuzzy
instructions in a RISC processor”, Proc.
IEEE Int. Conf on Fuzzy Systems, San
Francisco, pp: 521-526, 1993.

[Wat96] H. Watanabe, D. Chan y S. Konuri.
“Evaluation of Min/Max instructions for fuzzy
information processing”, IEEE Trans. on
Fuzzy Systems, Vol. 4, pp: 369-374, Aug.
1996.

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 483

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 484

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 489

