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Abstract 
 
This paper analyzes a fuzzy logic (FL) oriented 
instruction set (micro)controller and their implemen-
tations on FIPSOC1. VHDL code is synthesized using a 
small portion of FIPSOC FPGA2. This circuits are used 
from the mP8051 FIPSOC built-in microcontroller to 
provide efficient arithmetic operations such as multipliers, 
dividers, minimums and maximums. 
 
1. Introduction 
 
Fuzzy logic controllers (FLC) can be implemented by 
software running on standard hardware or on a dedicated 
microcontroller [Tog86, Wat90, Sas93, Ung93]. 
Controllers for high rates can be implemented by specific 
circuits or IC3 [Hun95, Cos96, Aco97, Son00]. In order to 
process a high number of rules, optimization techniques 
must be applied;  for example: a) reduction of the number 
of  inference computing steps [Des96]; b) parallel 
inference execution [Aco00, Kov00, Mor00]; c) active 
rules processing [Aco98, Kas99, Pir01]; and d) standard 
microcontroller core with a dedicated FL instruction set 
[Wat93, Wat96]. 
 
The digital system speed is limited by maximum total 
capacitive load of the I/O signals between the different 
cards and chip packages. Some systems manufacturers 
have developed a (multi)chip in a package. This approach 
is also limited by the I/O interface between the different 
IC in the same package. Other approach proposes to build 
all system in only one chip. Working inside a SOC the 
I/O IC system do not affect (greatly) the system 
performance. The I/O signals between the FPD4 and the 
mP8051 are connections into the same IC. Systems on a 
Chip (SOCs) allow to easily prototype mixed signal 
problems through both hardware capabilities and CAE 

software tools. FIPSOC includes a mixed signal 
programmable device with on-board microprocessor (the 
FIPSOC chip), a complete set of CAE software tools to 
manage it, and a set of library macros.  

                                                 
1 FIPSOC: Field Programmable System On Chip. 
2 FPGA: Field Programmable Gate Array. 
3 IC: Integrated Circuit. 
4 FPD: Field Programmable Device (a FPGA like device). 

 
This paper aims to present an alternative scheme to 
compute the mP8051 controller functions by using a FL 
instruction set on the FPGA area. Main features of this 
approach are: a) to reduce the development time by using 
a well known controller architecture; b) to minimize the 
algorithm computing time getting faster arithmetic 
operations. 
 
This paper continues the above research lines by 
exploring a standard microcontroller core with a 
dedicated FL instruction set in a SOC5 platform. Some 
topological and architectural alternatives are analyzed. 
FIPSOC FPGAs series (provided by SIDSA6) have been 
utilized as a technological framework. In section II, the 
main characteristics of the FLC algorithm are 
summarized. Section III shows some FIPSOC architecture 
features. Section IV presents an implementation analysis 
by the arithmetic and lattice units. The architecture are 
depicted in section V. Finally, the principal results are 
presented. 
 
2. FLC: The Control Algorithm 
 
An algorithm to compute the m functions f0, f1, ..., fm-1  of 
n variables x

0
, x

1
, ..., x

n-1 is depicted. The value of x
i
 

belongs to a set S
i
, and the value of fk to the set of the real 

numbers R. To each variable xi  correspond pi 
membership functions: A

ij
: S

i
  [0,1],  0 ≤  j → ≤  pi-1; to 

each function fk correspond qk decoding functions: B
kl

: 
[0,1] →  R,  0 ≤  l ≤  qk-1; the computation of fk is based 
on sentences (inference rules) such as: “IF x0 is A0 j0 AND 
x1  

                                                

is A1 j1 AND ... AND xn-1 is An-1 jn-1 THEN fk is Bkl”. A 
set of coefficients r is defined: r(j0, j1, ..., jn-1, k, l) =1 if 

 
5 SOC: System On a Chip 
6 www.sidsa.es 
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the previously mentioned rule applies; else r(j0, j1, ..., jn-1, 
k, l) = 0. 
 
 
 
 
The computing algorithm of the fk functions is: 
∀i:0 ≤ i ≤ n-1, ∀j:0 ≤ j ≤ pi-1, compute  

yij = Aij (xi); 
∀k:0 ≤ k ≤ m-1, ∀l:0 ≤ l ≤ qk-1, compute  

wkl = ∨r (j0, j1, ..., jn-1, k, l) .  
  y0 j0 . y1 j1  
  ............... 
  yn-1 jn--1,  
∀ j0, j1, ..., jn-1 

vkl = Bkl (wkl);  
∀k:0 ≤ k ≤ m-1, compute 

Nk = vk 0 + vk 1 + ... + vk qk-1,  
Dk = wk 0 + wk 1 + ... + wk qk-1,    
fk = Nk / Dk 

 
This scheme needs to compute all the lattice (maximum, 
minimum) and arithmetic (add, multiplication, division) 
operations. The inference mechanism uses the lattice 
max-min operations to evaluate the fuzzy-rule set. The 
multiplication and division instructions are used during 
the defuzzification step and sometimes to compute the 
membership functions. This scheme uses a set of LUT to 
compute the membership functions (during the 
fuzzification and defuzzification). 
 
This scheme needs the reduction of the lattice and 
arithmetic expressions to two-operand equivalent ones. 
This reduction is based on the properties of the domain 
space. It does not use the knowledge of fuzzy inference 
mechanisms. 
 
3. FIPSOC Architecture Topics 
 
This prototyping and integration system, consists of a 
mixed-signal Field Programmable Device (FPD) with a 
standard mP8051 core, a suitable core of CAD tools and a 
set of library macros and cells which support a number of 
typical applications to be easily mapped onto the FPD. A 
set of fixed-functionality yet configurable analog cells is 
also provided [Bae97, Fau97]. 
 
The FIPSOC chip includes a two-dimensional array of 
programmable DMCs (Digital Macro Cell). The DMC is 
a large granularity, Look Up Table (LUT) based, 
synthesis targeted 4-bit wide programmable cell.  
 
Each DMC has two main blocks: a combinational part, 
composed of four 4-input LUTs, and a sequential block 
including four FFs. Any lookup table (LUT) can 

implement any 4-input Boolean function.  Every two 4-
input LUTs share two inputs, and two LUTs can be 
combined to form a 5 input function or a 4 to 1 
multiplexer (four inputs and two control bits). The four 
LUTs of a DMC can be combined to perform any 6-input 
Boolean function. (Figure 1) 
The sequential part of the DMC includes four two-input 
flip-flops (FF), each of which can be independently 
configured as mux-type or enable-type, as latch or FF, 
and with synchronous and asynchronous set or reset.  
 
To improve chip area, the number of shared segments in a 
point to point net should be maximized, as this  consume 
less FPGA routing resources. This tradeoff forces the 
design of complex routing channels, with different length 
segments, which requires sophisticated Computer Aided 
Design (CAD).  
 

Figure 1 – FIPSOC Block Diagram 
 
 
3.1. 8051 Memory Organization  
The memory map of the on-chip mP8051 keeps; by 
default, the memory organization of the original 8051. 
That is, it has a separate address space for Program 
Memory and Data Memory, distributed in the following 
four addresses spaces:  

• Up to 64 Kbytes of Program Memory,  
• Up to 64 Kbytes of external Data Memory,  
• 256 bytes of internal Data Memory,  
• 128 bytes of Special Function Registers area.  

On the FIPSOC chip, two memory areas have been added, 
overlapped with the original memory areas, with the 
purpose of accessing to the different configuration 
memories and control registers of the on-chip peripherals 
of the mP8051. These locations, whose mapping is 
configured by Special Function Registers, are mapped in 
the following two spaces:  
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• 64 bytes of internal data memory, called buffer access 
area,  

• Up to 16 Kbytes memory mapped on the lower 
external Data Memory (depending on device)  

 

3.1.1. Program Memory.  
The Program Memory of the on-chip mP8051 consists an 
internal and an external space. 512 bytes of Program 
Memory resides on-chip (dedicated to the FIPSOC boot 
program). 
 
3.1.2. General Purpose Registers  
The lower 32 positions of the internal RAM are grouped 
into four banks of 8 registers. Only one of the banks may 
be enabled at a time (two bits of PSW register are used to 
select the active bank). For indirect addressing, two of 
them are used as pointer or index registers.  

3.1.3. Special Function Registers (SFR)  
The SFR area is located in the upper 128 bytes of the 
internal memory. It has two important functions: Firstly, 
all CPU registers reside in this area (excepting PC and 
GPR banks). Secondly, a number of registers (not 
included in the SFR area of the original 8051) constitute 
the interface between the mP8051 and all the on-chip 
subsystems.  
SFR, which are located in addresses which are multiple of 
eight, are both byte- and bit-addressable. All SFR can be 
accessed by direct addressing only. 
Note that not all of the addresses are occupied. 
Unoccupied addresses are not implemented on the chip 
(and the may be used in future). Read access to these 
addresses will return random data; write accesses will be 
ignored. 
 
3.2. Subsystems Interface  
The configuration and control of the subsystems that are 
included in the FIPSOC chip are realized through 
accesses to locations of the different memories of the 
mP8051. Some memory locations of the SFR area have 
been reserved for system configuration and general- 
purpose control.  
The subsystems and the memory used for configuration 
are listed below:  
 
a) The programmable blocks (CAB and PL block) are 
configured (and accessed) using special function registers 
and data memory (both internal and external) of the 
mP8051 memory organization. Thus, the configuration 
and data transfer of these blocks is made through 
positions located in both internal and external memories.  

• Programmable Logic Block: Either internal or external 
memory locations may be used to configure, control and 
transfer data. In particular, both configuration memory 
and hardware outputs of the DMC are mapped in both 
internal (buffer access) and external; LUT memory data in 
DMCs can be accessed through internal memory only.  
• Configurable Analog Block (CAB): The configuration 
of the block is made through the buffer access area only; 
Data transfer is made using memory locations of the SFR 
area.  
b) Other subsystems are configured and controlled with 
special function registers only. These blocks are the Clock 
Generation Block (CGB), Interrupt Service Block, Serial 
Communication Block, Debugger Block, Watchdog 
Block and other mP8051 peripherals systems (Parallel & 
Serial I/O, Timers, etc.)  
 
Configuration memories and outputs of the programmable 
blocks (PL and CAB) may be accessed through internal 
and external memory locations.  
 
3.3. PL Subsystem Interface  
Regular Configuration Memory: This memory may be 
mapped either through internal memory (data buffer 
access) or external memory. If a buffer access is done, 
row and column mask registers are needed, with the 
purpose of selecting the desired DMC(s), IO cell(s) or IIC 
(Internal Interface Cell) routing resources cell(s).  
 
3.4. Extended SFR map  
The new special function registers added to the original 
SFR map of the 8051 are dedicated to control, configure 
and data transfer purpose. Only 18 of them are related to 
the programmable blocks interface and the system 
mapping control.  
 
3.5. Port Access  
The original 8051 has 32 bi-directional and individually 
addressable I/O lines (grouped into four ports of 8 bits). 
Due to the fact that FIPSOC integrates some external 
peripherals on-chip, not all the 4 ports are accessible from 
the external system. In particular, port 2 and port 3 of the 
8051 have been used for internal communication purposes 
(see figure 2)  
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Figure 2 – Fast access bus interface 

 
4. Instruction Analysis 
 
Multiplication is always an essential function in digital 
systems. This work is focused on parallel multipliers 
which are oriented to increase the mP8051 processing 
speed in a FL application. 
 
Here are depicted the seven multipliers organized 
depending on the way they communicate their EPs 
(elementary processors) [Col99]. Every multiplier 
calculates A*B+C+S, generating a resulting number sized 
as length(A) plus length(B). The seven multipliers let to 
use different topologies and architectures. 
 

• With Local Communication. 
McCanny - McWhirter.   
De Mori.  

• With Global Communication. 
Hatamian & Cash.  
Ripple – Carry.  

 

Carry  Save.  
• With Mixed Communication. 

Guild.   
De Mori – Guild.  

 
The goal was to analyze FPGA occupation factors. With 
that idea in mind, 2-bit, 3-bit and 4-bit wide multipliers 
were used, fully combinational and with pipeline 
granularity 1. Although it may seems that these are very 
restrictive sizes, main idea is to use them for 
implementing iterative multipliers where, for example, an 
8 x 8 multiplication can be obtained through 4 operations 
with a 4 x 4 multiplier. 
 
The lattice operations involve a reduced arithmetical unit 
that computes the maximum and minimum values. Each 
of this units includes a set of registers to be used as local 

RAM. The mP8051 saves the values in between the 
maximum or minimum must be computed. The unit 
output is registered too. This working scheme free the 
microcontroller to do any other operations while the 
computing is done.  
 
For materializing these circuit structural RTL7 VHDL8 
code was generated [BJM93, Boe96, Bue98, Col99] to 
configure the built-in FIPSOC FPGA [Fau97].  
 
Other architectural option works by using a hardwired 
stack. The mP8051 push the two operands and the 
operator in the stack. The operator value activates the 
circuit starting to compute. When the unit finished the 
required operation, it pushes the resulting into the stack to 
be acquired by the mP8051. 
 
The operations (maximum, minimum, multiplication and 
division) are implemented full combinational in this 
version; while the lattice operations are computed by a 
unit. The architecture design uses an 8-bit main bus 
joining the mP8051 I/O port to each computing unit. The 
right unit selection is done by a 2-bits selector:  
 

0000 Write 1st  Op Multiplication 
0001 Write 2nd Op Multiplication 
0010 Read Low Byte Multiplication 
0011 Read High Byte Multiplication 
0100 Write 1st  Op Division 
0101 Write 2nd Op Division 
0110 Read Integer Division 
0111 Read Remainder Division 
1000 Unused  
1001 Write 1st  Op Maximum 
1010 Write 2nd Op Maximum 
1011 Read Resulting Maximum 
1100 Unused  
1101 Write 1st  Op Minimum 
1110 Write 2nd Op Minimum 
1111 Read Resulting Minimum 

 
The computing units let the programmer the responsibility 
to take into account the resulting value stability. This 
feature lets to save: (a) some mP8051 I/O port bits, and 
(b) computing time of a polling operation to check if the 
unit have finished. 
 
5. Architecture analysis 
 
Parameters considered after 42 implementations were: 
minimum required LUT size, number of DMCs and FFs 
used. From routing resources point of view, congestion 
                                                 
7 RTL: Register Transfer Level. 
8 VHDL: Very high speed IC Hardawre Description Language. 
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and used-shared segments were taken into account. These 
quantities, give useful information about detailed routing 
algorithm, RAISE (Router using Adaptive Simulated 
Evolution) [Bae97] which yields an idea regarding 
efficient use of routing resources through the 
maximization of shared segments. 
 
A crucial restriction is to provide FIPSOC with cheap FL 
core (in terms of programmable resources), therefore is 
very important to handle this information for not wasting 
too much of the interconnection resources. 

 
6. Conclusions 
 
Dedicated fast FL operations greatly increases the FLC 
system efficiency and performance. This feature let users 
to use parallelism between the mP8051 code, the lattice 
and the arithmetic operations. It also opens the door to 
many applications involving this kind of computation, 
where the previous standard microcontrollers were not 
fast enough or too inefficient. It would be necessary to 
develop a software to verify the possible timing 
violations. 
 
Independently of the multiplier used, with a 3-bit input 
and no pipeline, the placement tool assigns a 5-bit LUT, 
as well as a low FFs usage from DMCs. As a matter of 
fact, except on the De Mori - Guild multiplier, FFs usage 
factor is less than 50%. Particularly, for Ripple - Carry 
multiplier, using pipeline with granularity 1 only implies 
adding one single DMC. Moreover, it improves FFs usage 
as well as diminish LUTs size. 
 
A general consequence of this fact is that, regardless   
data size, in all those cases on which the combinational 
version had 5-bit LUTs, passing to a version with pipeline 
yielded a DMCs increment that never arrived to duplicate 
the original value, as long as in that cases with 4-bit 
LUTs, adding pipeline resulted on two times or even more 
DMCs. 
 
This is a very relevant fact at the time of choosing a 
combinational scheme to save programmable resources: 
here is shown that depending on the situation, it is 
possible to obtain a pipelined scheme with a low impact 
additional cost. 
 
As a future work, it is necessary to obtain the power 
consumption related to each FLC. An equation must 
describe area and speed behavior. This approach let the 
designer to estimate these metrics before the place and 
route. The parallel inference by using multiples max-min 
computing units is a key to try. 
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