Using Web-site QEM to Measure the Quality of Sites

Luis Olsina, Guillermo Lafuente, Gustavo Lafuente, Gustavo Rossi

1 GIDIS, Grupo de I+D en Ingeniería de Software
Facultad de Ingeniería, UNLPam
Calle 9 y 110 - (6360) General Pico - Argentina
TE 02302 430947, Interno 6501
E-mail [olsinal, lafuente, gustavo]@ing.unlpam.edu.ar
Web: http://gidis.ing.unlpam.edu.ar

2 LIFIA, Facultad de Informática, UNLP, además CONICET
Calle 50 y 115,1P - (1900) La Plata - Argentina
TE 0221 4228252, E-mail grossi@info.unlp.edu.ar

3 Proyecto UNLPam-09/F013, Programa de Incentivos

Abstract. In this position paper, the main steps to measure and evaluate quantitatively the quality of sites are shown. Besides, some specific models, criteria and procedures to apply in these activities are discussed by quoting case studies already performed (e.g., in the academic domain [4] as well as in museums [3] and e-commerce domain [6]). In order to get a general insight, we focus on the overview of the proposed methodology called Web-site Quality Evaluation Method (QEM). The proposed stepwise, expert-driven, model-based methodology is essentially quantitative, flexible, and robust covering most of the activities in the evaluation, comparison, and ranking process of websites.

Keywords: Evaluation, Quality, Characteristic and Attributes, Metrics, Web-site QEM.

1. Introduction

The quick pace of the Internet infrastructure has marked a sudden growth in Web-based products both document oriented and software application oriented. However, defined process models and methodologies that leverage the development and evaluation activities, mainly in medium and large-scale projects, have not been accompanied by that growth. One of the main goals to website quantitative evaluations is understanding the extent that a given set of quality characteristics and attributes fulfills a set of requirements regarding specific audiences. For this aim, the proposed Web-site QEM methodology can be an useful tool in providing this understanding, in an objective, systematic and quantitative way as well as recommendations for improvements can be made.

In this position paper, we present an overview of the methodology by describing the main steps, models, and procedures utilized in three case studies in different domains. One case study was made in the domain of well-known museums [3], the other was in one of academic sites [4], and the last study in the domain of international e-bookstores. The main goal of these studies was the assessment of the level of fulfillment of required characteristic such as usability, functionality, reliability, and efficiency given a user viewpoint. In addition, elemental, partial and global quality indicators were compared. This allowed us to understand and draw conclusions about the state-of-the-art on the quality of domain-specific sites. On the one hand, the same quality model as that prescribed in ISO 9126 standard [2] was used mainly for the higher level characteristics. On the other hand, the model and procedures for attributes and characteristics aggregation and computation were based on a nonlinear multi-attribute decision model [1]. However, in simpler cases where the amount of intervening characteristics and attributes are less than forty, a merely additive scoring model can be used.
Lastly, even though software evaluation is rather an old task in the software engineering field, the quantitative and systematic quality evaluation of Web products has often been neglected.

The structure of this position paper is as follows: in Section 2, we show the main steps that evaluators should perform by applying the Web-site QEM methodology, and lastly, some concluding remarks are considered.

2. Panorama of Web-Site QEM

In order to evaluate and compare the product quality, for example, in the operational phase of a site lifecycle, the major process steps that evaluators should perform are described:

- The selection of a site domain
- The specification of goals and the user standpoint
- The definition of quality characteristics, sub-characteristics and attributes
- The definition of elementary quality metrics, criteria and the determination of preferences
- The aggregation of elementary preferences to yield the global quality preference
- The analysis, comparison, and conclusion on partial and global outcomes

Step one. The selection of a site domain: First, the evaluators should know the Web application domain to evaluate or compare. For instance, it should be emphasized more a characteristic or sub-characteristic than others, regarding the domain. On the other hand, to perform a case study, typical sites should be selected in order to be successful throughout the evaluation process (e.g., in the academic case study six typical sites were selected, and five to the e-bookstore study).

Step two. The specification of goals and the user standpoint: In this activity, the decision-makers should define the goals and scope of the evaluation process. The results can be useful to understand, control, or improve the quality of Web artifacts. The evaluators could assess a development project or an operational one; the quality of a component, a whole artifact, or compare quality preferences of selected artifacts. Also, can be compared two version of sites, e.g., an old version and a new one. On the other hand, the relative importance of characteristics varies depending on the different users and application domains. According to this, three views of quality are defined, namely: visitor, developer, and manager viewpoints. The visitor category can be decomposed, in turn, in two sub-categories: general visitors and expert visitors. The former represents casual or intentional audience maybe having a general interest and/or minimum domain knowledge. The latter represents, a specialist or expert in the domain. For instance, general visitors were selected to case studies.

Step three. The definition of quality characteristics, sub-characteristics and attributes: In this step, the evaluators should define, categorize, and specify the quality characteristics and attributes, grouping them into a requirement tree [5]. In order to follow well-known standards the same conceptual characteristics as in ISO 9126 standard were selected. From these, sub-characteristics are derived, and, in turn, measurable attributes can be specified. For each attribute A¡, a variable X¡ is associated taking a real value, i.e., the measured value. For example, in the academic case study more than eighty measurable attributes were selected.

Step four. The definition of elementary quality metrics, criteria and the determination of preferences: In this task, the evaluators should define the basis for elementary evaluation criteria and perform the measurement process. Elementary evaluation criteria say how to evaluate quantifiable attributes. The result is a rating, which can be interpreted as the degree of satisfied requirement. For each variable X¡ , i = 1, ..., n is necessary to establish an acceptable range of values and define a function, called the elementary criterion. This function is a mapping of the variable value (obtained from the empirical domain) into the new numerical domain, and called the elementary quality preference. The elementary quality preference EQ¡ can be interpreted as the percentage of requirement satisfied by the value of X¡. In this sense, EQ¡ =0% denotes a totally unsatisfactory situation whereas EQ¡=100% represents a fully satisfactory situation. For each attribute, the measurement activity and the determination of the
elementary preference should be carried out.

Step five. The aggregation of elementary preferences to yield the global quality preference: In this step, the evaluators obtain a quality indicator representing the global preference for each evaluated site. Applying a stepwise aggregation mechanism, the n elementary quality preferences can be grouped accordingly, allowing computing the global quality preference. The global quality preference represents the global degree of satisfaction of all involved requirements. In the performed case studies, the Logic Scoring of Preference (LSP) model was used [1]. The strength of LSP resides in the power to model simultaneity, neutrality, replaceability, and other attribute and sub-characteristics relationships using logic aggregation operators and the weighted power mean function.

Step six. The analysis, comparison, and conclusion on partial and global outcomes: In this final step, the evaluators assess the partial and total quantitative quality preferences regarding the stated goals and user standpoint. Thus, specific recommendations can be given to the requester.

3. Concluding Remarks

The evaluation process generates elemental, partial, and global indicators or quality preferences that can be easily analyzed, backward and forward traced, justified, and efficiently employed in decision-making activities. The rational utilization of Web-site QEM should help reduce subjectivity in the process by providing a quantitative basis for quality assessment. In addition, it provides a powerful tool and conceptual framework to understand and improve the quality of Web sites.

Currently, we are finishing an integrated collaborative environment to support the whole evaluation process called WebQEM_Tool. On the other hand, the methodology includes a step for the validation of metrics both theoretically and empirically. Ultimately, this activity is strengthening the research [7].

References