
Integrating Object-Oriented Modeling Techniques

with Formal Specification Techniques

German-Argentlnean Scientific-technological Cooperation

Claudia Pons, Gabriel Baum and Miguel Felder

Lifia, Universidad Nacional de La Plata

Calle 50 esq.115, 1 er.Piso,

(1900) La Plata, Buenos Aires, Argentina

1. Introduction

Ralf-D Kutsche and Susanne Busse

Technical University of Berlín, FB Informatik
Einsteínufer 17

D-10587 Berlín, Germany

The increasing complexity of software systems makes their development complicated and error prone. A widcly
used and generally accepted technique in software engineering is the combination of different models (or views) for
the description of software systems. The primary benefit of this approach is to model only related aspects (Iike structure
or behavior). Using different models cIarifies different important aspects of the system, but it has to be taken into
consideration that these models are not independent and they are semantically overlapping.

The models constitute the fundamental base of information upon which the problem domain experts, the analysts
and the software developers interact. Thus, it is of a fundamental importance that it clearly and accurately exprcsscs the
essence of the problem. On the other hand, the model construction activity is a critical part in the development pron:ss.
Since models are the result of a complex and creative activity, they tend to contain errors, omissions and
inconsistencies. Model verification is very important, since errors in this stage have an expensive impact on the
following stages of the software development process.

Models are constructed using a modeling language (which may vary from naturallanguage to diagrams and even to
mathematical formulas).

The success of software development methods, such as Object Oriented Analysis (Coad and Yourdon, 1991).
Object Oriented System Analysis (Shlaer and Mellor, 1988), Object Modeling Technique (Rumbaugh el al., 1991),
Booch's design method (Booch, 1994) and the Rational Unified Process (Jacobson et al., 1999) are mainly based on
their use of intuitively appealing modeling constructs and rich structuring mechanisms, which are easy to understand.
apply and transmit to the customers. However, the lack of precise semantics for the modeling notations used by these
methods can lead to several problems:

- Misunderstanding of models: a reader's interpretation could be different to the model creator's interpretation, cvcn
if recommend textual explanations (e.g. data dictionary) are given by the methodology.

- There are several separate models (e.g. static, dynamic, functional models) that are difficult to integrate and
maintain consistent;

- Models cannot be validated (neither informally nor formally) leading to insecure systems where, for examp\e
behavior under certain conditions may be unpredictable.

- Since the meaning of sorne language constructions are not accurately defined, the people involved in the projcct
often waste time discussing the different possible interpretations that can be allocated to the language.

On the other hand, formallanguages for modeling, such as Z (Spivey, 1992), VDM (Jones, 1990), F-Logic (Kifer
and Lausen, 1990), DS-Logic (Wieringa and Broersen, 1998) has a well-defined syntax and semantics. However, its use
in industry is not frequent. This is due to the complexity of its mathematical formalisms, which are difficult to
understand and communicate. In most cases, experts on system domain who decide to use a formal notation, center their
effort upon the managing of formalism instead of focusing on the model itself. This leads to the creation of formal
models that do not properly reflect the real system.

As a consequence, it has been proposed to combine the advantages of both approaches, intuitive graphical notations
on the one hand and mathematically precise formalisms on the other hand, in development tools. The basic idea for this
combination is to use mathematical notation in a transparent way, hiding it as much as possible under the hood of
graphical notations. This approach has advantages over a purely graphical specification development as well as over a
purely mathematical development beca use it introduces precision of specification into a software development practicc
while still ensuring acceptance and usability by current developers.

Wicc 2000 - 116

2. Project description

We address the problem of gaining acceptance for the use of an unfamiliar formalism by providing sound semantics
to a well-known graphical method. The main components of the proposal are rules to associate syntactic structures of
the modeling language with elements within a formally defined semantic domain.

The main advantage of the semantic proposal regarding the others, resides in that graphic language is turned into a
formallanguage hence, thus the specifications expressed in a graphic language can be formally analyzed to early find
out contradictions and ambiguities in the software development process. One of the keys to the success of this proposal
resides in hiding the mathematical notation, as much as possible, behind the graphic notation. For example, it should b~
possible to use formal semantics to develop CASE tools. Only language developers should use formalism to build the
CASE tools and justify their correction, while application software developers could handle graphic models with no
need to know the underlying mathematical formalismo

The Unified Modeling Language UML (1999) is a standard graphic language for modeling and specifying object
oriented systems. The language consists of a set of constructs common to most object-oriented languages. From th~
standardization of the UML active discussions have risen about the semantics accuracy of its constructions. While the
Object Management Group OMG was responsible for the standardizing of the UML as notation, the semantics of the
UML is still a research issue.

There are an important number of theoretical works - see, for instance, (Muller and Bezivin. 1998) and (France and
Rumpe 1999) - that deal with different part of UML, formally defining its syntax and semanties. However, there is still
a long way to run regarding this matter. It is particularly hard to compare the results of the respective articles, and it is
even harder to combine such results with the aim of obtaining a semantic standard for UML. This difficulty arises
because of the different works that use diverse formal methods (or languages), or cover a notation subset, or assumc a
particular system subelass to be specified. However, an important amount of the proposals can be c1assified in two
groups: formalizations based on the model and formalizations based on the metamode1. We explain this c1assification
in the following section.

Formalizing modeling languages. Classitication of approaches

A number of approaches for giving semantics to modeling languages (specially the UML) can be elassified in two
different groups: model-based and meta-model-based approaches. This elassification is inspired from the four levels in
the architecture of modeling notations (UML, 1999). The main difference between these approaches is the focus ol' the
formalízation. Formalizations in the first group eoneentrate their attention on the model level, while formalizations in
the seeond group foeus on the metamodellevel:

• In the model-based approaches (Moreira and Clark, 1994; Franee et aL, 1997; Waldoke et aL, 1998; Wieringa and
Broersen, 1998; Lano and Biccaregui, 1998; Kim and Carrington(a), 1999) the individuals in the semantic domain are
the business objects, for example accounts and elients of a bank. (Le. the formalízation focuses on the particular
system that is being described).

• In the meta-model-based approaches (Evans et al., 1999; Breu et al., 1997; UML, 1999; Evans et al., 1998; Kim
and Carrington(b), 1999) the objective is to give a precise description of eore concepts of the graphical modeling
notation and provide rules for analyzing their properties. The individuals appearing in the semantic domain are
modeling elements, such as classes, attributes, operations, associations, generalizations, etc. (Le. the formalization is
focused on the language itself instead of on any particular system deseribed by the language).

Our approach

We have defined the M&D-theory, a proposal for giving formal semanties to the UML. The basic idea behind this
formalization is the definition of a semantics domain integrating both the modellevel and the data leve!. In this way,
both statie aspects and dynamic aspects of either the model or the modeled system, can be described within a first order
formal framework.

3. Work and time schedule
The project ineludes the following research topies:

a) Developing a conceptual framework for the integration (duration: 4 months):

The UML consists of severallanguages (e.g. class diagrams or statecharts). It is necessary to develop a conceptual
framework for the integration of these languages. Based on this framework, the formalization of each individual
language as well as the integration with other languages can be achieved.

b) Formalization of the structural part of the UML (duration: 4 months):

Wicc 2000 - 117

The UML provides graphical notation for class diagrams. Using the envisaged formalization it is possible to define
whether a class diagram fulfills general consistency constraints, e.g. absence of circular inheritance between classcs.
Besides such static constraints it is necessary to define the impact of the structural model on the behavioral parts.

e) Extending the UML by formal specijication techniques (duration: 4 months):

The underlying semantical model is extended by a suitable predicate logic. The logic is integrated in the structural
mode!. This enables us, for example, to express class invariants based on the na me space constituted by the structural
mode!. In this way, the integrated models can also serve as basis for type-checking facilities.

d) Introducing further semantical objects (duration: 6 months):

It is use fui to introduce further implicit semantical objects. These objects do not have representations 011 the
modeling language level but they are necessary in order to relate system states at different moments in time. The
semantics of operations can be defined as a relation on these system states.

e) Integration of graphical dynamic description techniques (object-oriented Statecharts, message sequence
charts) (duration: 6 months):

Graphical dynamic deseription techniques are highly important for expressing system behavior in a user-friemlly
manner. These teehniques should be integrated with the struetural mode!. The UML uses the concepts of object-orientt:u
statecharts as recently defined by Harel [Harel and Gery, 1997]. The meaning of message sequence charts as used in the ~

UML is up to now only sketched. Furthermore, use cases has been shown in practical context although the
corresponding language is less developed in the UML up to now.

4. Conclusion

Due to the missing formal foundations 01' the Unified Modeling Language UML the syntax and the semantics of a
number of UML eonstructs are not precisely defined. The aim of this project is to produce a rigorous object-orientcd
analysis technique that combines the UML with a formal object oriented specification language, ensuring that the
integrated technique is accessible to main stream software engineers.

The principal benefits of the proposed formalization can be summarized as follows: the different views on a system
are integrated in a single formal mode!. This allows us to define rules of compatibility between the separa te views, 011

syntaetical and semantic leve!. Using formal manipulation, it is possible to deduce further knowledge from the
specification. The faults of specifications expressed using a user-friendly notation can be revealed using analysis anu
verification techniques based on the formal kernel mode!.

References

A1encar, A. and Goguen, J., OOZE: an object-oriented Z environment, ECOOP'91 Proc., Lecture Notes io Computer
Science vo!.512, Springer-Verlag, (1991).

Booch, G., Object Oriented Analysis and Design with Applieations, Second Edition, Addison-Wesley Publishiog
Company, Ine, (1994).

Breu,R., Hinkel,U., Hofmann,C., Klein,C., Paech,B., Rumpe,B. and Thurner,V., Towards a formalization of the uoificd
modeling laoguage. ECOOP'97 procs., Lecture Notes in Computer Science vo1.1241, Springer, (1997).

Coad,P. and Yourdon,E., Object Oriented Analysis, Yourdon Press, Englewood Cliffs,NJ, (1991).

Cook,S. and Daniels,J., Let's get formal, Journal of Object-Oriented Programming(JOOP), July-August, (1994).

Duke,R., King,P., Rose,G. y. Smíth,G., The Object-Z specification language, T.Korson, V.Vaishnavi aod B.Meycr.
editors, Technology of Object-Oriented Languages and Systems:TOOLS 5. Prentice Hall, (1991).

Evans,A., France,R., Lano,K. and Rumpe, B., Developing the UML as a formal modeling notatíon, UML'98 Beyond
the notation, Muller and Bezivin editors, Leeture Notes in Computer Science 1618, Springer-Verlag,
(1998).

Evans,A., France,R., Lano,K. and Rumpe,B., Towards a core metamodelling semantics of UML, Behavioral
specifications of businesses and systems, H,Kilov editor, , Kluwer Academic Publishers, (1999).

France,R., Bruel,J. and Larrondo-Petrie. An integrated object-oriented and formal modeling environment, Journal 01"
Object Oriented Programming (JOOP), 10(7), (1997).

France, R. and Rumpe, B. editors, Proceedings of the UML'99 conference, Beyond the Standar, Colorado. USA,
Lecture Notes in Computer Scienee 1723, Springer-Verlag (1999).

Wicc 2000 - 118

Goldsack,S. amI Kent,S., Formal Mcthods and Object Technology", Chapter 3: LOTOS in the Objcct-oricntcd analysis
process. Editors SJ. Goldsack, SJ.H. Kent. Serie FACIT, Springer-Verlag, (1996).

Harc\ David and Gery, E .. Exccutable Objcct Modeling with Statccharts.IEEE Computer, 30(7):31 {42, (19lJ7).

Jacobson, 1, Booch, G, Rumbaugh, J. The Unified Software Development Process, Addison Wcslcy. ISBN 0-201-
57169-2 (1999)

Jungclaus,R., Saake,G., Hartmann,T., Sernadas,C., TROLL- a languagc for o-o specifications of information syst~llls.
ACM Transactions on IS, vol.14 nO.2. (1996).

Jones,c., Systematic software construction using VDM. Prcnticc Hall, (1990).

Kifer,M. and Lauscn,G., F-Logic: a higher order language for reasoning about objccts, inheritancc and sch~l11c.

Proceedings of the ACM SIGMOD symposium on principIes oí" database systems, SIGMOD RECORD.
Vol. 18, No.6, (1990).

Kim, S. and Carrington,D., Formalizing the UML Class Diagrams using Object-Z, procccdings UML'l)9 Conkr~ncl·.
Lccture Notes in Computer Sciencic 1723, (a) second part of the papcr, (b) first part of the papcr ((ll)lN)

Lano,K, Z++, An object-oricnted extension to Z. In John Nicholls, editor, Z user workshop, Oxford 1990. WorkshllJls
in Computing, Springer Verlag, (1991).

Lano,K, and Biccaregui,J., Formalizing the UML in Structured Temporal Theories, Second ECOOP Workshop (1Il

Precise Bchavioral Semantics, TUM-I9813, Technische Univcrsitat Munchen, (199H).

Mescgucr,J., Winkler,T., Parallel Programming in Maude. Proceedings of Research Dircctions in High Level Parallel
Programming Languages. France, (1991).

Moreira,A. and Clark,R., Combining Objcct_Oriented Analysis and Formal Description Techniques, In Hth Europcan
Confcrence on Object Oriented Programming, Procs. Lecture Notes in Computcr Sciencc821, Springer.
(1994).

Muller. P. and Bezivin. J. editors, Proceedings of the UML'98 conferencc, Beyond the notation, Mulhousc. FraIllT.
Lecture Notes in Computer Scicncc 1618, Springer-Verlag (199H).

Pastor,O. and Ramos,!., Oasis 2.2 : A Class-Dcfinition Languagc to Model Information System Using an ()b.i~d

Oricnted Approach". SPUPV-95.7HH, Universitat P. de Valencia. (1996).

Pons,c', Baum,G., Felder,M., Integrating object-oriented model with object-oriented meta-moJel into ,1 single
formalism, Second ECOOP Workshop on Precise Behavioral Semantics, European Confcn;ncc on Objcct
oriented Programming, Brussels, Bdgium, LNCS, (1998).

Pons,C., Baum,G., Felder,M., Foundations of Object-oricnted modeling notations in a dynamic logic framcwork,
Fundamentals of Information Systcms, Chapter 1, T.Pollc,T.Ripkc,KSchewe Editurs, Kluwl.!r Acad~llIil'
Publishcr, (1999).

Pon, C. , Baum,G. , Felder,M. and Kutschc, R.. Formalizing Evolution uf UML Modcls, OOPSLA99 Workshop nI!

Bchavíoral Semantics, Dcnvcr, (1999).

Reggio,G. and Larosa,M., A graphic notation for formal specificatiun of dynamic systcms, procccdings ()f FMl: '(17.
Lccturc Notes in Computer Sciencc 1313, Springer.(l997).

Rumbaugh,J., Blaha,M., Prcmcrlani,W., Objcct Oricntcd Modeling and Design, Prentice Hall, (1991).

Shlaer,S. and Mellor,J., Objcct Orientcd Systems Analysis: Modeling the World in Data, Yourdon Press Computing
Series, Yourdon Press, Englewood Cliffs, NJ, (1988).

Spivey,M., The Z notatíon: a rcfcrencc manual. Prenticc Hall, Englewood Cliffs, NJ, Second cdition, (1992).

UML 1.3, Object Management Group, Thc Unificd Modeling Language (UML) Specification - Vcrsion 1.3. ~Il

http://WWW.Olllp ... or, (1999).

Waldokc, S., Pons,c', Paz Mezzano,c. and Feldcr,M., A Formal Approach to Practical Objcct Oriented i\nalysis aud
Desígn, Procs of Argentinean Symposium on Objcct Orientation, Buenos Aires, (199H).

Weber,M. "Combíning Statccharts and Z for the Design of Safety-Critical Control Systems", Procecdíngs ,,(Thml
International Symposium of FME'96. Oxford (1996).

Wicringa,R. and Brocrsen,J., Mínimal Transition System Scmantics for L Class and Behavior Diagrams, In Wsh. un
Precise Semantics for Software Modeling Tech., T.U. Munchen, Report TUM-I9H03, (1998).

Wicc 2000 - 119

