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Abstract

The alternative proposed and known as MCPC [6] has improved the performance of the original
Holland's Genetic Algorithms in order to obtain good quality solutions in less execution time. But,
it’s brought out an 1mporta.nt concept in Evolutlonary Computauon the relauonshxp_between

The current presentatlon brleﬂy descnbes the 1mprovements of the MCPC approach to face the
balance between exploration and exploitation.

1. Introduction

Important research has been made in evolutionary computation, to maintain a good balance
between exploration and exploitation of solutions in a problem space. This research has involved
the study of the effect of selection mechanisms. Strong selective pressure can lead to premature
convergence towards local optima, while the opposite can make the search ineffective because it
would take long time to reach some individual near optimum [11].

Also, the recombination stage of an Evolutionary Algorithms (EA) has its own contribution to the
search process. A low recombination rate can impede binary schema processing permitting super-
individuals to cope the population and leading to premature convergence. On the other hand, a high
rate can be, in some cases, too disruptive allowing the loss of good genetic material, slowing and
spoiling the search.

The intuition behind the applicability of the crossover operator is information exchange between
different potential solutions. The common approach is to operate once on each mating pair after
selection. There, we call such a procedure SCPC (Single Crossover Per Couple) approach.
Mimicking, in some degree, what happens in nature we devised a different approach to allow
multiple offspring per couple and called it MCPC (Multiple Crossovers per Couple)[6].

MCPC tries to promote the exploitation of good previously found solutions favouring, with more
copies, the best individuals in the current population. We achieved this by repeatedly applying the:
crossover method to the selected mating pairs; so each of them generates multiple children.

The idea of multiple children per couple was tested on a set of well-known testing functions (De
Jong functions F;, F; and F3[1], Schaffer F¢ [12] and other functions). A simple genetic algorithm,
with conventional operators and parameter values, was the basis of those initial experiments.
Allowing multiple crossing between selected parents similar and better quality solutions were
obtained when contrasted against the conventional crossover approach (SCPC). Also, a deeper
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decrease on running time was observed as long as the number of crossover per couple increased.
This was due to a lesser number of applications of the selection method. But. on the other hand. this
areoseh showed m some casessa low exploratior lovet heceuse only o small portion of the et
Py saaton ettectively undergoes recombination imcreasing the rish of premature convergence aug
19 a loss of genetie diversity.

vovercome this problem further successful approaches were undertook by combining MCPC with
aih alternative selection mechanism called firness proportional couple selection (FPCS) [7]. using
sdlf-adaptation of MCPC parameters [8]. and by binding MCPC to alternative selection
mechanisms [9].

Two of the more 1mportant approaches, based on multiplicity, that have been desxg,ned and
;implemented to improve the searching process are MCPC and multiparent recombination. i

Further investigation was addressed to combine both multiplicity approaches [10]. Consequently
CPC was naturally extended to multiple crossovers per mating (MCPM). In his original work
Eiben [2], [3], [4], [5] proposed uniform scanning crossover, a relatively new crossover method.
Here, from multiple parents, a single offspring is generated where each gene is provided from any
off the corresponding genes in the parents with equal probability.

The current presentation will briefly describe the evolution of the MCPC approach incarnated by

lutionary algorithms optimizing two_highly multimodal (Griewank's :

PR

ctions and a hard unimodal (Easom’s) function [13].

2./Splitting the selection process

2.1. The FPCS method

FPCS divides the whole selection process into two stages. The first one selects individuals from the
current population to create an intermediate group of couples, and subsequently the second stage
undergoes this population of couples to selection

.

Current . 2" selection Next

Gen, | sclection +op. Gen. for mating those pairs showing higher fitness (see
: Individ 1K Fig. 1). Both selection steps are based on the
a2 e Individ. 2k traditional proportional selection scheme.
\\/ . 4 The selection operator can be modified to favour,
{individ. i1 :

with more children, those couples having specific
characteristics. There are no problems about

? Couple i

Individ. j1 | . Couple | individual fitness but two criteria to assign fitness
, [Individ. j2 Couie Individ. i to couples were chosen; one based on members
‘ Individ. 2i fitness dissimilarity (FPCSpirr) and the other on
ndivid. i2 o2 their average fitness (FPCSavg).
ndivid. k1 The method used can be sketched as follows;
- " e A number of individuals are initially selected
1st Selection: proportional selection to the individual by proppruonal selection to build the intermediate
fithess. population of parents.

2nd selection + op: proportional selection to the
couple fitness plus classic genetic operators.

o E e A couple fitness value, computed in
n:|population size.

accordance to the couple fitness criterion. is
Fig. 1. Couple Selection Process Scheme assigned to each mating pair.

e Couples are selected for reproduction by
proportional selection (according to couple fitness). The process of producing offspring is
controlled, for each mating pair, in order to not exceed the population size.




2.2. Using MCPC with FPCS

Looking for improvements in the genetic algorithm performance regarding 10 execution ume.
cvplonation and explorauon ot
mentioned.

Hic saarching space. we combined the two eciigae: anove-

IFor this approach we show results on those functions that showed to be more difficult 1o optimise
for the simple (modified) GA. They were:

o the Griewank's function §. called by us Griewank s function simply. and

e the Eusom’s function
The alg,orlthm was performed on every function ‘many times, they Were. sengs of 6. 6. runs e eac:‘hr one.

“The first riin corrésponds f6' SCPC and"the others fo' MCPC, because it was fixed that the 7 run

performed i crossovers per couple exactly, that means 2i children per each of them. So, the number
of children per couple was fixed in each run and the process of producing new individuals was
controlled in order not to exceed the population size: in every case each new created offspring was
inserted into the next generation until the population size was reached.

The experiments were based on a simple, but not canonical, Genetic Algorithm with binary coded
chromosomes, elitism, bit swap mutation, one point crossover, population size fixed to 70
individuals and probabilities of 0.5 for crossover and 0.005 for mutation. Except for the Easom’s
function where the crossover and mutatlon probabxhty were set to 0 65 and O 05 respectlvely The

After experimental runs the following relevant performance variables were examined:

Ebest: It is the percentile error of the best-found individual value when compared with the
known, or estimated, optimum value. It gives a measure of how far the best individual is from
the optimum point.

Epop: It is the percentile error of the population mean fitness when compared against the
optimum value. It shows how far the mean fitness is from the optimum value.

Gbest: Indicates the generation where the fittest individual (retained by elitism) was found.

All the values analysed were mean values obtained from the series completed for each fixed
number of crossovers, on each function.

2.3. Results

Combining both techniques good results were obtained for all optimised functions when they were
contrasted against those results showed by MCPC approach along [7]. In Tables 1 and 2 we summarize
the most relevant values obtained by FPCSavg .

Performance variable Minimum value | Maximum value
Ebest 0.0381 0.0836
Epop 7.1384 9.8447
Gbest 2026 4017

Table 1—- Performance variables values for Griewank’s function

Performance variable Minimum value | Maximum value
Ebest 0.0124 2.5176
Epop 449970 47.6402
Gbest 839 2340

Table 2— Performance variables values for Easom’s function
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3. Finding a suitable crossover number

‘2d

1. Implementation

Tom previous work using ACPC combined with others techniques we estabiished that good
guality results were obtained allowing between 2 and 4 crossovers per couple. But setting an
adequate number of crossovers per couple 1s a hard task.

Als an attempt to find this optimum number. was to codify the number of crossovers inside cach

individual of the population. So the GA will self-adapt this parameter and give the most appropriate

guantity of crossover repetition. Sclf-adaptation ol parameters is one of the three techniques
mentioned in [16] to dynamically change a parameter value whlle the algonthm 1S running.
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We “achieved this self-adaptatloﬁ:codlﬁcatlon using the last log2 (max_cross +1) bits of each
individual to find the expected optimum. These last bits are called ncross_field.

In that way we have two searching spaces: one corresponding to the objective function and other
associated to the number of crossovers to apply.

ch individual preserves information about the number of crossovers originally applied to their
parents. In this way it is expected that, based on the survival-of-the-fittest principle, good solutions
information about the number of crossover applied to their ancestors and that this number

: - o R ok e r s e i e
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\6cording 16 Spears [17] mmal self-adaptive - technique, Once the cotple was selected we
checked the corresponding number of crossover carried by each parent and;

o If they match, then we apply the recombination operator a number of times specified by the
ncross_field.

e Otherwise we use a random number in the permitted range instead of ncross_field number.

- In|the second situation and following the Spears’s approach, when decoded numbers of crossovers
ar¢ different, we would be violating our attempt to preserve information because the children will
not keep the number of crossover by which they were created. If crossover and mutation do not

disrupt the ncross_field (and this event has low probability to occurs) then the children retain

information from either parent, but they do not preserve information about how they were created.

—

In jorder to either retain information about how an individual was created .or how their parents were
created, we devised two different approaches for experimentation.

e EJ: In any situation, exchange of information from parents to children is done in the
traditional way applying the genetic operators with their corresponding probabilities. In the
don’t maich situation, this approach, preserving parent’s information, enforces population
diversity in the parameter searching space, because most of the time one child inherits
characteristics from one parent and the other child inherits features from the other parent.

o [E2: If the values specified in ncross_field do not match then the new random value for the
crossover number is inserted first in the parent’s ncross_field, and afterwards crossover is
performed for the number of times specified by this random value. This approach by
preserving individual information creates more similar individuals in the parameter
searching space and increases loss of genetic diversity.

3.2} Empirical tests

We analyzed the self-adaptation of the crossovers number from the results obtained from two hard

testing functions: the above cited unimodal Easom’s function and Schweffel’s function 7, a
multimodal one.

Here, a non canonical GA similar to the preceding one and with the same main parameter settings
was used. Except, of course, a series does not consist of 6 runs anymore because there is only one
run| that attempts to find the most appropriate number. Also, the generation number was fixed to




500 and probabilities to apply crossover and mutation at 0.65 and 0.05, respectively for both
functions.

SOV SRS WO conduced Lo evabdale the Deliavios o1 and LD experimental groups.
Somc oithen used two bits 1o code neross_jicld and the remaiming used three. So. we allowed up
to three crossovers per couple in some cases and scven in the others.

After running the experiments many times we were interested in a performance variable subject of
this study called (r Avg that measures the mean crossover number allowed per couple, and in the
Qualin: of the solutions obtained [8].

In both cases Quuliry reached the value 1 (at least one solution was optimal) after 80 and 152

. generations respectively and Cr4vg, values ranged between 2.5.and 2.8 after a.few. generations:
“under E1 and between 2.3 and 2.6 under E2.

Here the behavior of the self adaptive parameter control mechanism is clear: when genetic diversity
in the parameter searching space is low then lesser number of crossovers are allowed and viceversa.
This behavior favours the evolutionary process.

4. Alternative selection mechanisms

Attempting to dismiss the selective pressure introduced by applying jointly MCPC and selection
method_s based on the individual or couple fitness Brgggnlon we re ed proportional selection,
“selections based on hnear rANKIng Schemes. AlSo. in these experiments we used anou

techniques mentioned in [16] to adapt the 7, ranking selection parameter: the deterministic one,
that changes the parameter value according to a deterministic rule, without any feedback of the
searching process performed by the strategy.

One of the main purposes of dynamically change a parameter value is that the algorithm adequately
tunes to the best setting for the particular problem that is solving. Particularly, when ranking
selection is used, it is not an easy task to tune the expected value of the number of offspring for the
best individual: 7. . This parameter highly influences selective ptessure.

In this work we studied the effect of MCPC when it was jointly applied to static ranking selection
(SRS) and deterministic dynamic ranking selection (DDRS) in order to moderate the joint effect of
Proportional Selection (PS) and MCPC.

DDRS, is proposed as a selection method which updates deterministically and dynamically the above

—mentioned parameter as a function of the number of generations reached. In this case 7,4 is given by
the following expression:

7). = (Hcurrent_gem# max_gen) /4 max_gen

By using this variant of ranking we attempt to enforce exploration during the earlier stages and
exploitation during the final stages of the evolution process. At the beginning, selective pressure is
weak and increases smoothly through the iterations reaching the maximum selective pressure
allowed by ranking at the end of the process. In this way we can expect to slow the convergence
rate to prevent being trapped in local optima.

4.1. Experimental tests and results

Experiments were designed to compare results when optimising the last two mentioned functions
using MCPC and SCPC, under PS, SRS and DDRS. For SRS two values of 7. Were considered,
Nmax = 1.2 (low selective pressure) and 7mqr = 1.6 (intermediate selective pressure).



Many series of 6 runs each one using the same parameters settings as the above experiments about
sclf—adaplalion were performed on each functions.

e oA datined i was one of e cenitra DPRSTIOTIN GO Vo abies studica. i the case of

njuittinodal (Schwetel s) funcuon 1t was obsery ed that e\upt for SRS (1.2) all other muhudx found
the optimum value for some number of crossovers before the end of the simulation. PS resulted in
eeneral. more cfficient 1in this case. Moderate SRS (1.0) 1s the best when four crossovers are
allowed. DDRS. effectively tuned the selective pressure to low values when exploration is needed
and gradually increments it to higher values as simulation time progresses. This effect is necessary
tof avoid premature convergence in complex multimodal fitness lTandscapes. In the case of the hard
unimodal (Easom’s) function it was observed that when any ranking method is used then SCPC

' ves.its.own results previously. obtained: under:PS.:Also, with-diverse convergence speeds-all -
> ranking selection mechanisms found the optimum for any number of crossovers. Former studies
th similar parameter settings, under PS, were unsuccessful in finding the optimum.

il

Summarizing, the use of rank-based selection methods is in general better than PS when combined
with MCPC, especially when they are used to optimise functions with multiple local minima.

5. Multiple Crossover on Multiple Parents (MCMP)

This new method allows multiple parents to be recombined several times. Each time, under uniform
ning crossover, they generate only one. child as_it was mentioned in the introduction. Once .
ecf"‘d‘ the n; parents undergo crossover a number 7, of times spec1ﬁed as an argument and generates .
na|children, subsequently the fittest child is selected for insertion in the next generation.

Inour extension of MCPC, when multiple parents are selected based on their fitness, MCPM provides
a means to exploit their good features. Also, as long as we permit a greater number of parents to take
part of an offspring creation a larger sample from the searching space is considered and
consequently larger diversity is supplied obtaining a greater exploration. So a good balance
between exploration and exploitation of solutions was achieved as results show.

Summary of relevant results can be seen in tables 3 and 4. The characteristics of the GA and the
functions used here were the same as the first method listed at the beginning, except that the maximum
ge+eration number was decreased to 500. When n; parents are selected by fitness proportional
selection, then they undergo to MCPM and bit swap mutation to obtain »n, offspring. Subsequently,
the fittest child was selected for insertion in the next generation.

Performance variable | Minimum value | Maximum value
Ebest 0.0074 0.4660
Epop 0.0074 0.1694
Gbest 73 491

Table 3 — Performance variables values for Griewank’s function

Performance variable | Minimum value | Maximum value
Ebest 0.0000 0.0415
Epop 0.0798 9.9710
Gbest 43 400

Table 4- Performance variables values for Easom s function

Both tables show results that outperform previous results under MCPC and FPCS, detailed in tables 1
and 2, and are of similar quality of those obtained on the Easom’s function by self adaptation of
MCPC parameters and by joining MCPC and adaptive ranking selection (sections 3 and 4). An

aro

d the optimum. This effect was not perceived in previous experiments.

imliF‘nant characteristic of the method is the ability to provide a final population densely grouped



Moreover, varying »n; from 3 to 8 and n> from 1 to 4 it was observed better results for the MCMP

approach when contrasted against the original multiparent approach with single crossover per mating.
These full results are reported i 1108

14. Summary and conclusions

By applving MCPC technique alone good solutions were obtained for a widespread range of
functions. Also. because the method selects a lesser number of mating pairs. the GA cexecution time
was rcduced. But the homogeneity of this method jointly to the inherent strong sclective pressure
ol proportional sclection. sometimes, caused the search be trapped in local optima. So we ried to
do better through the hybnd techniques above revisited.
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~7 Each techniques : attempted to face particular weaknééses of MCPC Therefore FPCS tned to do a
more exhaustive search across the space, MCPC parameters self-adaptation addressed to find the
most appropriate number of crossover been applied to a couple, the use of ranking selection
schemes dismissed the stronger selective pressure (introduced by joining MCPC and proportional
selection) and finally the use of multiple recombination on multiple parents showed to be efficient in
optimisation of hard unimodal and multimodal testing functions. It seems that the multiparent
approach mitigates the possible loss of diversity generated by multiple crossover and no extra
adjustments, used before, seem to be necessary. Consequently the quality of results is at least as good
as prev1ous more complex approaches Addmonally, when observmg the fmal populatlon 1t was

issue when the apphcat:on requlres provision of multiple alternatlve near-optlmal solutlons

Although we cannot be conclusive, it seems that by means of this association the searching space is
efficiently exploited by the multiple application of crossovers and efficiently explored by the
greater number of samples provided by the multiple parents.

In view of these promising results new work is done to study the effect of multlple CTOSSOVers on
multiple parents under diverse crossover methods. '
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8./Appendix
Description of the functions optimized by the methods above listed:

Notation Description Characteristics

Unimodal, the global
— — 2 — 2 )

Easom's J (x1,x2) = —cos (x1) cos (x2) e (Gr=r i+ (xa=m)?) minimum has a small
F Jnction x1, x2€[-100, 100] area relative to the

search space

Griewank’s | f (x|i=15)=1+3 4_3(%_ 0 (COS ( _3__ )] , | Dim. used Multimodal, however,
Function =l =t i the local minima are
regularly distributed.

S
I
W

x: € [-600 . 600 ]

Dim. used Highly multimodal,
Schwefel's |f(%)=3X - xi-sin (Jm ) fori=1:n the glOb?l minimum 18
Function 7 ‘ geometrically distant

xi e [-500,500] from the next best local
minima.
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