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Abstract 

The aItemative proposed and known as MCPC [6] has improved the perfonnance of the original 
Holland's Genetic Algorithms in order to obtain good quality solutions in less execution time. But, 
it's brought out an important concept in Evolutionary Compu~tion:the relationship be~een 
u:pt.IIi_";~tiItkii.Stmitiwii§.jñ."p¡(J6IiiiFt¡iB!J!ltiiJS .. l.IL • I 'J .111."0. '.','.11 U' J tLl 
The current presentation brief1y describes the improvements of the MCPC approach to face fue 
balance between exploration and exploitation. 

1. Introduction 

Important research has been made in evolutionary computation, to maintain a good balance 
between exploration and exploitation of solutions in a problem space. This research has involved 
the study of the effect of selection mechanisms. Strong selective pressure can lead to premature 
convergence towards local optima, while the opposite can make the search ineffective becauseit 
would take long time to reach sorne individual near optimum [11]. 

AIso, the recombination stage of an Evolutionary AIgorithms (EA) has its own contribution to the 
search process. A low recombination rate can impede binary schema processing pennitting super­
individuals to cope the population and leadingto premature convergence. On the other hand, a high 
rate can be, in sorne cases, too disruptive allowing the loss of good genetic material, slowing and 
spoiling the search. 

The intuition behind the applicability of the crossover operator is infonnation exchange between 
different potential solutions. The common approach is to operate once on each mating pair after 
selection. There, we call such a procedure SCPC (Single Crossover Per Couple) approach. 
Mimicking, in sorne degree, what happens in náture we devised a different approach to allow 
multiple offspring per couple and called it MCPC (Multiple Crossovers per Couple)[6]. 

MCPC tries to promote the exploitation of good previously found solutions favouring, with more 
copies, the best individuals in the current population. We achieved this by repeatedly applying the· 
crossover method to the selected mating pairs; so each of them generates multiple children. 

The idea of multiple children per couple was tested on a set of well-known testing functions (De 
long functions F1, F2 and F3[1], Schaffer F6 [12] and other functions). A simple genetic algorithm, 
with conventional operators and parameter values, was the basis of those initial experiments. 
Allowing multiple crossing between selected parents similar and better quality solutions were 
obtained when contrasted against the conventional crossover approach (SCPC). Also, a deeper 
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d crease on running time was observed as long as the number of crossover per couple increased. 
is was due to a lesser nurnher of applications ofthe selection rnethod. But. on the other hand. this 
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h a luss oC gcnctic..: divcrsity. 

'1 1 (l\ CITOIllC this problcm furthcr succ..:cssful approachL's \\'L'rL' unoertook by combining MCPC with 
al altL'rnative selection mechanism called ji/Iles.\" pro/wr/ionul couple selec/ion (FileS) 17\. using 
s IC-aJaptation 01' Mepe parameiers I XI. ano by binoing MCPC to altemative selection 
lllL'ch:lIlism~ 19\. 

T 'o of the more important apPr.()~ches, based on multiplicity, that have been designed and 
';i plemerited to "improve the' searchingprocess are MCPC '8D.d mulffparent recÓmbinano';;; .+:,; .C .'.' :'",." 

her investigation was addressed to combine both multiplicity approaches [10]. Consequently 
CPC was naturally extended to multiple crossovers per mating (MCPM). In his original work 

E ben [2], [3], [4], [5] proposed uniform scanning crossover, a relatively new crossover method. 
H re, from multiple parents, a single offspring is generated where each gene is provided from any 
o the corresponding genes in the parents with equal probability. 

T e current presentation will briefly describe the evolution of the MCPC approach incamated by 
th sequence of the aboye mentioned methods and will give insights on the performance of 
e l.~~q~ altoIi!hmS oPtimizi!lUWo hiohJJ.oJl1w-tiIJlº9_~Ji_~~s ~ ~effeLg¡.jJ~J1 . 'cnoñs-aiuf'á' :ra"'tiriifu1ra'a11'EáS~=oñTf3r~"'·· '~'f.""7<, ..... c,,?!!I?E .-,'''1":.,, d"~" .• 

2. Splitting the selection process 

2. . Tbe FPCS metbod 

F CS divides the whole selection process into two stages. The first one selects individuals from the 
e ent population to create an intermediate group of couples, and subsequently the second Stage 
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Fig. 1. Couple Selection Process Scheme 

undergoes this population of couples to selection 
for mating those pairs showing higher fitness (see 
Fig. 1). Both selection steps are based on the 
traditional proportional selection scheme. 

The selection operator can be modified to favour, 
with more children, those couples having specific 
characteristics. There are no problems about 
individual fitness but two criteria to assign fitness 
to couples were chosen; one based on members 
fitness dissimilarity (FPCSDlFF) and the other on 
their average fitness (FPCSAVG). 

The method used can be sketched as follows; 

• A number of individuals are initially selected 
by proportional selection to build the intermediate 
population of parents. 

• A couple fitness value, computed In 

accordance to the couple fitness criterion. is 
assigned to each mating pair. 

• Couples are selected for reproduction by 
proportional selection (according to couple fitness). The process of producing offspring IS 
controlled, fo! each mating pair, in order to not exceed the population size. 



2.2. Using MCPC with FPCS 

I,ookin~ for improvements in lhl' grnrlic algorithm performance regarding lO execution time. 
l.''-pllliulillll anJ L''-pll1rallllll l'¡ [11,,' "''--',II-:llIl!~ :-.pan:. \\l' l'OllJhlllCd tlll.' t\\1l Il·Cllll! .. ld;.:' ;:n,.\,,', 

lll~lllilln~U. 

ror this approach we sho\\" results on th()s~ runctions that showed to he more di rtit:ult to optimise 
for the simple (modified~ GA. They were: 

• lhe Griewank 'sfúnc.:liol1 O. calleu hy us Griewank 'sfunction simply. and 

• the Ea.\'ol11 "-'".limel ion 

,:rh~, .algoritl:lm"w8S .. p,erfonned on ,ey.~:rY functipn. many \iInes."thexwer.~ .. ~ri~,,;.,o.f~. ~,.eachT O'~', 
t'The1irsf· rliñ'coiTésp()¡itds-'(ó:'sCP~'inCf'tft"'eoiñm-:to~Mtpc~ beCaüse'1twa;."tf;{écrdíaT'ilier1~ 
perfonned i crossovers per couple exactly, that means 2i children'pereach ofthem. So, fue number 
of children per couple was fixed in each run and the process of producing new individuals was 
controlled in order not to exceed the population size: in every case each new created offspring was 
inserted into the next generation until the population size was reached. 

The experiments were based on a simple, but not canonical, Genetic AIgorithm with binary coded 
chromosomes, elitism, bit swap mutation, one point crossover, population size fixed to 70 
individuals and probabilities of 0.5 for crossover and 0.005 for mutation. Except for the Easom's 
function where the crossover and mutation probability were set to 0.65 and 0.05.respectively. The 
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Afier experimental runs the following relevant perfonnance variables were examined: 

Ebest: 1t is the percentile error of the best-found individual value when compared with the 
known, or estimated, optimum value. 1t gives a measure of how far the best individual is from 
the optimum point. 

Epop: 1t is the percentile error of the population mean fitness when compared against the 
optimum value. It shows how far the mean fitness is from the optimum value. 

Gbest: Indicates the generation where the fittest individual (retained by elitism) was found. 

AH the values analysed were mean values obtained from the series completed for each fixed 
number of crossovers, on each function. 

2.3. Results 

Combining both techniques good results were obtained for all optimised functions when they were 
contrasted against those results showed by MCPC approach alone(7]. In Tables 1 and 2 we summarize 
the most relevant values obtained by FPCSAVG . 

Perfonnance variable Minimum value Maximum value 
Ebest 0~0381 0.0836 
Epop 7.1384 9.8447 
Gbest 2026 4017 

Table 1- Perfonnance variables values foe Griewank's function 

Perfonnance variable Minimum value Maximum value 
Ebest 0.0124 2.5176 
Epop 44.9970 47.6402 
Gbest 839 2340 

Table 2- Perfonnance variables values for Easom's function 



. Finding a suitable crossover number 

~ 1. I mpkmentat; f1 1l 

1" "ul1l pr~\ iuu~ \\ llrk Ll~i IIg \ 1 e PC" combim;J \\ilh lllher~ lcchlll4 u~s \\ 1: estal11¡Sl1el1 111at good 
q ality resulls were ohtained allowing hetween 2 and 4 crossovers per couple. But setting un 
a I.'quute numbl'r 01' I'rllsso\"l.'rs per l'ouple is a hurd task . 

. s an attempt to lind this optimum numher. was to codify thl.' l111mbl.'r 01' l'ros~o\"ers inside each 
i dividual orthe population. So the GA will self-adapt this parametcr ami ~i\'r the most appropriatc 
4 ami ty uf crosson:r repeti tiun. Sd f-udaptation 01' puramctcrs is une uf the three tcchni4 ues 

entioned in [16] to dynamically change a parameter value while the algorithm is running. " 
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e achieved this self-adaptation codification using the last log2(max_cross + 1) bits of each 
i ividual to find the expected optimum. These last bits are called ncross Jield. 

1 that way we have two searching spaces: one corresponding to the objective function and other 
a sociated to the number of crossovers to apply. 

E ch individual preserves information about the number of crossovers originally applied to their 
p ents. In this way it is expected that, based on the survival-of-Ihe-jittest principIe, good solutions 
c information about the number of crossover applied to their ancestors and that this number 
w uld be an appropriate one. 

~"A c6idrrig (oSp=srt7j¡¡:"¡\~v"~¡i;i'¡~"JfiiiEs~¡;;d;¡i'i'·pe;o¡~'ió"" ~-;;ft:diPti~f1:~iqri~();t~~~=lt=~;d;~~~':~ 
c cked the corresponding number of crossover carried by each parent and; 

• If they match, then we apply the recombination operator a number of times specified by the 
ncross Jield. 

• Otherwise we use a random number in the permitted range instead of ncross Jield number. 

" In the second situation and following the Spears's approach, when decoded numbers of crossovers 
ar different, we would be violating our attempt to preserve information because the children will 
no keep the number of crossover by which they were created. If crossover and mutation do not 
di rupt the ncrossJzeld (and this event has low probability to occurs) then the children retain 
in ormation from either parent, but they do not preserve information about how they were created. 

In rder to either retain information about how an individual was created "or how their parents were 
cr ated, we devised two different approaches for experimentation. 

• El: In any situation, exchange of information from parents to children is done in the 
traditional way applying the genetic operators with their corresponding probabilities. In the 
don '1 match situation, this approach, preserving parent's information, enforces population 
diversity in the parameter searching space, because most of the time one child inherits 
characteristics from one parent and the other child inherits features from the other parent. 

• E2: If the values specified in ncross Jield do not match then the new random value for the 
crossover number is inserted first in the parent's ncrossJield, and afterwards crossover is 
performed for the number of times specified by this random value. This approach by 
preserving individual information creates more similar individual s in the parameter 
searching space and increases lossof genetic diversity. 

3.2 Empirical tests 

W analyzed the self-adaptation of the crossovers number from the results obtained from two hard 
tes ing functions: the aboye cited unimodal Easom's function and Schweffel's function 7, a 
mu timodal one. 

He e, a non canonical GA similar to the preceding one and with the same main parameter settings 
w used. Except, of course, a series do es not consist of 6 runs anymore because there is only one 
run that attempts to find the most appropriate number. Also, the generation number was fixed to 



500 and probabilities to apply crossover and mutation at 0.65 and 0.05, respectively for both 
functions. 

"i.'\~'¡, •. ~',,¡~~';::;i~'ili> \\~'rc 1.·lll)l.ilkL'd 1\\ L'\alUdl..: 111,: Ilel!.i\ ¡P:' i; ami l.: ~:'rl'J"il11l'nla¡ g.rollps. 
Slll1ll' ui iil~lll u:-cj t\\ll bib tu clllk Ilcrus,,_¡idci ami tile n:mall1ing. USLO thn':l:. SU. Wl: alluwcd up 
to threl' crossovers per couplc in sorne cases and scven in th~ othcrs, 

Afier rllnning. th\.! cxpcrimcnts many times we were interested in a performance variable subject of 
this study called (',. /1rg that measures the mean crosso\'cr numhcr allowed per couple. and in the 
(jI/ah,.\' 01' the solutions ohtaincd pq. 
In both cases (jualily reached the value 1 (at least one solution was optimal) afier 80 and 152 
,generati.2~;".r~~vely, and C;rAvg, ·values. rangedbetween ,2.S..,aD(L2~-Bfter¡.a;J'ew".;g~ 
cunderEf~(rbetweéÍi 2:3 ~d 2.6 underE2:' ". -" .. "......- .. _~--~ .. -~.-.--.... ..,... ..-.".~- :-.. ..... .' ...... . 

Here the behavior of the seIf adaptive parameter control mechanism is cIear: when genetic diversity 
in the parameter searching space is low then Iesser number of crossovers are alIowed and viceversa. 
This behavior favours the evolutionary process, 

4. Alternative selection mechanisms 

Attempting to dismiss the selective pressure introduced by applying jointly MCPC and selection 

"~Il1~~~ds based on~e.. individual Qr ~o~p!e J~~~.!~,gl~I1io~ we re~aced iw.rtiOmMtií~~!f~iI 
~;iseJearÓ§~&f'1m'lifñiñEñ~eriiet:ATso;TIrflfés"!·1f~6i'it«ft~aTt'&\Yi~··oTme'" ~ 

techniques mentioned in [16] to adapt the T'/mox ranking seIection parameter: the detenninistic one, 
that changes the parameter value according to a detenninistic rule, without any feedback of the 
searching process perfonned by the strategy. 

One of the main purposes of dynamicalIy change a parameter value is that the algorithm adequateIy 
tunes to the best setting for the particular problem that is solving. Particularly, when ranking 
selection is used, it is not an easy task to tune the expected value of the number of offspring for the 
best individual: T'/max. This parameter highly influences selectiveptessure. 

In this work we studied the effect of MCPC when it was jointly applied to slalic ranking seleclion 
(SRS) and deterministic dynamic ranking selection (DDRS) in order to moderate the joint effect of 
Proportional Selection (PS) and MCPC. 

DDRS, is proposed as a selection method which updates deterministically and dynamically the aboye 
-mentioned parameter as a function of the number of generations reached. In this case T'/mox is given by 
the following expression: 

By using this varíant of ranking we attempt to enforce exploration during the earIier stages and 
exploitation during the fmal stages of the evolution process. At the beginning, selective pressure is 
weak and increases smoothly through the iterátions reaching the maximum seIective pressure 
allowed by ranking at the end of the process. In this way we can expect to slow the convergence 
rate to prevent being trapped in local optima. 

4.1. Experimental tests and results 

Experiments were designed to compare results when optimising the last two mentioned functions 
using MCPC and SCPC, under PS, SRS and DDRS. For SRS two values of T'/max were considered, 
'lmax = 1.2 (low selective pressure) and T'/max = 1.6 (intennediate seIective pressure). 



any series of 6 runs eaeh one using the same parameters settings as the abo ve experiments about 
s If-adaptation were performed on each functions . 
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11 LiillilluJLli \~cl1\\dd's) túm:tioI1 it \\LlS obsl:n l:J tl1at l:.\.Cl:pt 101' SRS t 1 . .2) 4.111 other ml:thods tounJ 
tll: optimum value for somc numbcr 01' crosSO\'l:rs beforl: the l:nu of lhe simulation. PS rcsultcu in 
g nera!. l1lorl: enil:ient in this case. Moul:ratl: SRS (I.C,) is the best when tour crossovers are 
allo\\cu. DDRS. cfTccti"cly tuned the sclcelive pressurc to low valucs when exploration is nccdcd 
al U gradually incremcnts it to highcr values as simulation time progresscs. This etreel is nceessar~ 
In ;1\ nid prl'matlll\: COI1\'l'rgl:IlCL' in compk\. l1111ltil1l~hbl lillll'SS landsc¿.lpl:s. II! lhe caSL' ul' l]¡L' I!ard 
u imodal (Easom's) function it was observed that when any ranking method is used then SCPC 

'...... . .'. '.' .,esJts;:oym.resultspreviGusly.obtained:;under~-~~iA1so, .with-diverseconvergence;speeds"aU .. : 
th . ranking selection mechanisms found the optimum for any number of crossovers. Former studies 

th similar parameter settings, under PS, were unsuceessful in finding the optimum. 

marizing, the use of rank-based selection methods is in general better than PS when combined 
w th MCPC, especially when they are used to optimise functions with multiple local minima. 

5. Multiple Crossover 00 Multiple Pareots (MCMP) 

T is new method allows multiple parents to be recombined several times. Each time, under unifonn 

,~,.;., .~c :'" ~ .. :~8f&!~~7J.,:&~8~et.~h<1~~:;.9~$;..~~~~Jl!~p~~jR"~!hS.~trQg~S~Qq.~:f}~~ 
se ect~tlie nJ parents undergo crossover a number n2 oftimes specrfied as an argument and genera tes 
n2 children, subsequentIy the fittest child is selected for insertion in the next generation. 

In OUT extension of MCPC, when multiple parents are selected based on their fitness, MCPM provides 
a eans to exploit their good features. AIso, as long ás we permit a greater number of parents to take 

of an offspring creation a larger sample from the searching space is considered and 
co sequently larger diversity is supplied obtaining a greater exploration. So a good balance 
be ween exploration and exploitation of solutions was achieved as results show. 

ary of relevant results can be seen in tables 3 and 4. The characteristics of the GA and the 
ctions used here were the same as the first method listed at the beginning, except that the maximum 

ge eration number was decreased to 500. When ni parents are selected by fitness proportional 
sel ction, then they undergo to MCPM and bit swap mutation to obtain n2 offspring. Subsequently, 
th fittest child was selected for insertion in the next generation. 

Perfonnance variable Minimum value Maximum value 
Ebest 0.0074 0.4660 
Epop 0.0074 0.1694 
Gbest 73 491 

Table 3 - Perfonnance variables values for Griewank 's funetion 

Performance variable Minimum value Maximum value 
Ebest 0.0000 0.0415 
Epop 0.0798 9.9710 
Gbest 43 400 

Table 4- Perfonnance variables values for Easom 's funetion 

tables show results that outperfonn previous results under MCPC and FPCS, detailed in tables 1 
and 2, and are of similar quality of those obtained on the Easom' s function by self adaptation of 
M PC parameters and by joining MCPC and adaptive ranking selection (sections 3 and 4). An 
im rtant characteristic of the method is the ability to provide a final population densely grouped 
aro d the optimum. This effect was not perceived in previous experiments. 



Moreover, varying nI from 3 to 8 and n: from 1 to 4 it was observed better results for the MCMP 
approach when contrasted against the original multiparent approach with single crossover per mating. 
"1"11,"< ¡'ti!! rl''ildl'> ;\1\' rl'f",,'r!¡:,l ;\1 ' 1 ()! • 

14. Surnmary and conclusions 

By applying MCrC techniqw: alone good solutions were obtained for a widespread range of 
functions. Also. bccause the mcthod sclccts a lesser number of mating pairs. the GA cxccution time 
was rcduccd. But the homogeneity of this method jointly to the inherent strong sclcctive prcssure 
of proponional sckction. somctimcs, caust.:d the search be trapped in local optima, So we tried to 
do better through the hYl>.r.iq techp.iquesabove revisited. ' ...... < •• '. • __ •••. '. '.. . ._ . _ •• : •••• ~ ..•• _ •• 

·'-~"'-,~-i'-"~;¡~~·~~'=~~k;>;';~J~,*,~~~é,~~,-"::i~;~~~~~~~.,!!!i!?,'~~iiñWp' 
Each techniques attempted to face particular weaknesses of MCPC. Therefore, FPCS tried to doa 
more exhaustive search across"the space, MCPC parameters self-adaptation addressed to find the 
most appropriate number of crossover been applied to a couple, the use of ranking selection 
schemes dismissed the stronger selective pressure (introduced by joining MCPC and proportional 
selection) and finally the use of multiple recombination on multiple parents showed to be efficient in 
optimisation of hard unimodal and multimodal testing functions. lt seems that the multiparent 
approach mitigates the possible loss of diversity generated by multiple crossover and no extra 
adjustments, used before, seem to be necessary. Consequently the quality of results is at least as good 
as previous more complex approaches. Additionally, when observing the final population it was ' .. 

~. ". i t m!hi'-..... _·-l1:_..J:..·dw •. ~fñ6' ~·;¡¡a;rsUírt:iUiidiiit~&~:Bii. iiI ~ lIV ~;:W .~IDa~.a..D".tltQI-.. __ '''' o.' • ~--!e .. eeu,. '. ". . o" .'.' •• ~.\.. .~ 

issue when the application requires provision of multiple altemative near-optimal solutions. 

Although we cannot be conclusive, it seems that by means of this association the searching space is 
efficiently exploited by the multiple application of crossovers and efficiently explored by the 
greater number of samples provided by the multiple parents. 

In view of these promising results new work is done to study the effect of multiple crossovers on 
multiple parents under di verse crossover methods. ' . 

7. Bibliograpby 

[1] De Jong K. A., Analysis of the Behavior of a Class of Genetic Adaptive Systems, PhD 
Dissertation, University ofMichigan, 1975. 

[2] Eiben A. E., Raué P. E., and Ruttkay Zs.: Genetic algorithms with multi-parent 
recombination. In Davidor, H.-P. Schwefel, and R. Manner editors, Proceedings of the 3rd 

Conference on Parallel Problem Solving from Nature, number 866 in LNCS, pages 78-87. 
Springer-Verlag, 1994 

[3] Eiben A.E., van Kemenade C.H.M., and Kok J.N.: Orgy in the computer: Multi-parent 
reproduction in gene tic algorithms. In F. Moran, A. Moreno, J.J. Merelo, and P. Chacon, 
editors, Proceedings ofthe 3rd European Conference on Artificial Life, number 929 in LNAI, 
pages 934-945. Springer-Verlag, 1995. 

[4] Eiben A.E. ando Back Th., An empirical investigation ol.11Julti-parent -FecombinatiQn 
operators in evolution strategies. Evolutionary Computation, 5(3):347-365, 1997. 

[5] Eiben A.E. and van Kemenade C.H.M., Diagonal crossover in genetic algorithms lor 
numericaloptimization. Joumal ofControl and Cybemetics, 26(3):447-465, 1997. 

[6] Esquivel S., Leiva A., Gallard R.: Multiple Crossover per Couple in Genetic Algorithms. 
Proceedings of the Fourth IEEE Conference on Evolutionary Computation (ICEC'97), 
Indianapolis, USA, April 1997. 

[7] Esquivel S., Leiva A., Gallard R.: Couple Fitness Based Selection with Multiple Crossover 
per Couple in Genetic Algorithms. Proceedings of the Intemational Symposium on 



Engineering of lntelligent Systems (EIS '98), La Laguna, Tenerife. Spain, ed, E.Alpaydin. 
Publishesd by ICSC Academic Press. CanadalSwitzerland. February 199R . 

• ', i .. ~'llI!\,-': "" ".... , .. ,,,,.,, 1<,: .\¡i:-.j¡/d/l[o[ioli uf l'O/",/llltI,'I· JOI ,¡o 1'\ íl/ (,,'l/die 

.ilp,urili/ll/.\, Pru\..¡,;¡,;u¡I¡~:-' ui li¡¡,; ~!H lllllgn:sll i\rgt:ntil111 J¡,; ll¡';IlCl:l~, lk b lOmpUl:lción 

(CACiC98), lJnin:rsid:.td N:.tcional dcl Com:.thue. Argentina. October. 1998. 

191 Esqui\'cl S,. Lciva IL,Gallard R.: A 5;1l1(~1' (?f'Allernulive SeleCliol1 /'l'leclwl1ismsjúr Multip/e 
('ro.\'sm'('/" pe,. ('OZl¡7/C ;/1 Cienelic Algorilhms. Proceedings oí' the 4th Congreso Argentino de 
Ciencias de la Computación (CACiC98). Universidad Nacional del Comahue. Argentina. 
UClubcr 19%. 

,;.; 1 lºl . .ijsquiy~$.%.Leiy1!Ji~~º@.ardR.-;; Multiple . crossove.rs between.multiple parents: toimprove, .. : 
.... search' in evo[ut;oñaryafgorithms7- accepted' foi pubIlcation in the Proceeding of the 1999 

Congress on Evolutionary Computation (IEEE). Washington DC. 

[11] Michalewicz, Z.: Genetic Algorilhms + Data Structures. = Evolution Programs. Springer, 
third revised edition, 1996. 

[112] Schaffer J., Caruana R., Eshelman R., Das R.: A Study ofControl Parameters Affecting Online 
Performance of Gene/k Algorithms for Function Optimizalion, In Third lnternational 
Conference on Genetic Algorithms, 1989. 

[ 3] Easom, E.: A survey of global optimization techniques. M. Eng. Thesis Univ .. ~ouisyill~, 
"~o .,:J;r:, Louimt1é:;:Kr,t~Ti''5r.r''''''''''';;;:~~':,;;.:''''i;·:,~~,,;>'~~ff';~'"~",8.~-';';;';~41íi.;'-"",,",,·,~ 

[ 4] Schwefel, H. P.: Numerical optimization of computer models. Chichester: Wiley & Sons, 
1981. In [15]. 

[ 5] Hartmut Pohlheim: Genetic and Evolutionary Algorithm Toolbox for use with Matlab 
(GEATbx). Copyright © 1996, Germany. All rights reserved. 

[ 6] Eiben A. E., Hinterding R., Michalewicz Z.: Parameter Control in Evolutionary Algorilhms. 
Technical Report, UNC - Charlotte, 1998. 

[ 7] William M. Spears: Adapting Crossover in Evoluttonary Algorithms. Proceedings of the 
Evolutionary Programming Conference, 1995. 

8. Appendix 

Dt: scription of the functions optimized by the methods aboye listed: 

lNotation Description Characteristics 

El som's 
Fl nction 

G iewank's 
Fz nction 

Sc~wefel's 
Fz.nction 7 

-«XI-1C)2 +(X2-1C)2) f (Xl, X2) = - COS (XI) COS (xz) e , 
Unimodal, the global 
minimum has a small 
area relative to the 
search space 

xI,x2E[-100,100J 

f(xlli=1,5)=1+± 4~~~ -n(cos (x~)), 
.=1 ,=1 vI 

X, E [-600 ,600 1 

f(X)=L-XI.sin(M) fori=l:n , 
X, E [- 500,500 ] 

Dim. used tMultimodal, however, 
he local minima are 

n = 5 egularly distributed. 

Dim. used lHighly multimodal, 
he global minimum is 

jgeometrically distant 
n = 5 /from the next best local 

Iminima. 


