AN EVOLUTIONARY APPROACH TO THE PARALLEL TASK SCHEDULING
PROBLEM

ESQUIVEL S.C.. GATICA C. R.. GALLARD R.H.

Proyecto UNSL-338403'

s ACpartamento de Informatica
!{\-'n%-, Qe S A ST R R T T e e S L R R
PTER=S"Universidad Nacional de San Luis (UNSE)"

Ejército de los Andes 950 - Local 106
5700 - San Luis, Argentina.
E-mail: {esquivel, crgatica, rgallard} @unsl.edu.ar
Phone: + 54 652 20823
Fax :+54 65230224

Abstract

A parallel program, when running, can be conceived a set of parallel components (tasks)
which can be executed according to some precedence relationship.

In this case efficient scheduling of tasks permits to take full advantage of the computational
power provided by a multiprocessor or a multicomputer system. This involves the
assignment of partially ordered tasks onto the system architecture processing components.
This work shows the problem of allocating a number of nonidentical tasks in a
multiprocessor or multicomputer system. The model assumes that the system consists of a
number of identical processors and only one task may execute on a processor at a time. All
schedules and tasks are nonpreeptive. The well-known Graham’s [8] list scheduling
algorithm (LSA) is contrasted with an evolutionary approach using the indirect-decode
representation.

' The Research Group is supported by the Universidad Nacional de San Luis and the ANPCYT (National
Agency to Promote Science and Technology).

.. Introduction

The precedence relationships between tasks are commonly delinecated in directed acvclic

graph known as the tasks graph. Nodes in the graph represent tasks and their duration and

arcs represent the precedence relationship. Factors. such as number of processors. number

of tasks and task precedence contribute to make difficult a good assignment.

The problem to find an schedule on m ~ 2 processors of equal capacity, that minimizes the

whole processing time of mdependent tasks has been shown as belonglng to the NP-

‘complete class™* o : -
Task scheduling can be classified as static and dynamic. In the case of static scheduling
some strong reasons make it applicable. First, static scheduling sometimes results in lower
execution times than dynamic scheduling. Second static scheduling allows only one process
per processor, reducing process creation, synchronization and termination overhead. Third,
static scheduling can be used to predict speedup that can be achieved by a particular
parallel algorithm on a target machine. assuming that no preemption of processes occur.

The current presentation shows the problem of allocating a number of nonidentical tasks in
a multiprocessor or multicomputer system. The model assumes that the system consists of a
;aumber of 1denucalg,;ocessors and.only one task rgay execute on.a processor.at.a.timecAll.
scheduies and tasks are nonpreeptxve The well-known Graham’s [8] list scheduling

algorithm (LSA) is contrasted with an evolutionary approach using the indirect-decode
representation..

2. A deterministic model

A parallel program is a collection of tasks, some of which must be completed before than
others begin. In a deterministic model, the execution time for each tasks and the precedence
relations between them are known in advance. This information is depicted in a directed
graph. usually known as the task graph.

In Fig. 1 we have eight tasks with the corresponding duration and their precedence relations

e Even if the task graph is a simplified
representation of a parallel program
execution, ignoring overheads due to

723 T3 Tan interrupts for accessing resources etc.,
it provides a basis for static allocation
of processors.

53 Q 763 A schedule is an allocation of tasks to
processors which can be depicted by a

\ Gantt chart.
In a Gantt chart, the initiation and
Q i ending times for each task ‘in the
available processors is indicated and the

makespan (total execution time of the

Fig. 1 . The model task graph parallel program) of the schedule can be
=0 easily derived.

scicdtle i thie panidicd wsks oL the
[Lol

Lok oranh are T ORh owis

O [S O I

T e v T DTOCUSSOTS

H
) \
N ! 4

Hpic observation

OGO @ Fanespdin e i G

S o e Po nrocesany

atiniZaduct U VU6 oy
. Aiso an speed- up 0i_| l 6

an Be Stablished == masss

Fig. 2. Scheduling 7 tasks onto 2 processors by LSA

When looking to the makespan an optimal schedule s such that the total execution time is
minimized. Other performance variables. such as individual processor utilization or
evenness of load distribution can be considered.

As we can sce some simpic scheduling problems can be solved to optimsahity in polynomial
time while others can be computationally intractable.

As we are interested in scheduling of arbitrary tasks graphs onto a reasonable number of
processors we would be content with polynomial time scheduling algorithms that provide
good but no optimal solutions.

For a given list of tasks ordered by priority, it is possinle to assign tasks to processors by
always assigning each availabic processor to the first unassigned task on the list whose
predecessor tasks have aircady finished execution.
Let be:
T={T)..... Tn} a set of tasks,
.1 T— (0.) a funcuion which associates an execution ime 1o each task,
< a partial order in T and
[. a priority hst of tasks in T.

Euach time a processors is idie, it immediately removes [rom i the first ready 1ask; that is,
an unscheduled task whosc ancestors under < have al! completed cxecution. In the case that
WO Or more processors attempt o execute the same task. the one with lowest identifier
succeed and the remaining processors look for another adequate task.
The Gantt chart of Fig. 5.2, resulted of applying the list scheduling algorithm to the task
graph of Fig. 5.1, with the priority list L = [T). Ts. Ts. Ty, Ts. Te. T9].

Using this heuristic. contrary 1o the intuition, some anomalies can happen. For exampie,
increasing the number of processors. decreasing the execution times of one or more tasks.
or eliminating some of the precedence constraints can actually increase the makespan. In
his work Grahain presented different examples to show this-problem.

4. Evolunonary leorithme to provide near-optimal solutions

The task allocation problem has been investigated by many rescarchers [3] 4. [5] [6]. [7].
[9]. [10]. Several heuristics methods has been proposed. such as mincut-based heuristics.
orthogonal recursive bisection. simulated anncaling. genetic algorithms and neural
networks.

From the representation perspective many evolutionary computation approaches to the
‘general scheduling problem exists.” According to solution representation these methods can-
be roughly categorized as indirect and direct representation (Bagchi et al, 1991 [1]).

In the case of indirect representation of solutions the algorithm works on a population of
encoded solutions. Because the representation do not directly provides a schedule a
scheduler builder is necessary to transform a chromosome into a schedule, validate and
evaluate it. The scheduler builder guarantees the feasibility of a solution and its work
depends on the amount of information included in the representation. This is the Bagchi et
al. strongly recommended approach.

o o v i rres s e
T =

“In direct representatlon (Bruns 93 [2]) a complete and fea31ble schedule I?an'mdmdual of
the evolving population. The only method that performs the search is the evolutionary
algorithm because the represented information comprises the whole search space.

In our work we devised different evolutionary computation approaches to task scheduling.
First we addressed two new different representation schemes; direct-ASAP (direct-as-soon-
as-posible) and indirect-decode. Second, we addressed the question of attempting to
improve performance by means of different recombination and mating approaches.

5. Summary of the work

A genetic approach was compared against the List Scheduling Algorithm.

By analysing results the following comparison can be done:

. The genetic approach found many and no a single optimal solution for any case.
. All the anomalies observed with LSA do not hold when GA is applied, because:

e When the number of processors is increased the minimum (optimum) makespan is also
found.

e When the duration of tasks is reduced this reduction is reflected in a reduced optimum
makespan.

e When the number of precedence restrictions is reduced the optimum makespan is
preserved.

A more detailed analysis on each run detected that in most of the cases alternative solutions do not
include, or include a low percentage, of non-optimal alternative solutions. That means that the final
population is composed of many replicas of the optimal solutions due to a loss of diversity. This
fact stagnate the search and further improvements are difficult to obtain.

O IT R DCHE wild be necessary to contmue expernmenuivon with different parameter
setiimgs .md recombination approachcs

6. Conclusions

The allocation of a number of parallel tasks in pdralld supporting environments. mulllprocessors or

multicomputers. is a difficult and important issue in computer systems,

In this work we approached allocation attempting to minimize makespan. Other performance
_,variables such as individual processor utilization or evenness of load distribution can be considered.,,
“FAs we are interested in scheduling of arbltrary tasks graphs onto a reasonable number of

processors, in many cases we “‘would be content with polynomial time scheduling

algorithms that provide good but no optimal solutions. The list scheduling algorithm (LSA)
satisfy this requirement.

A genetic approach was undertaken to contrast its behaviour against the LSA.

Preliminary results on the selected test suite showed two important facts. Firstly, GA provides not a

single but a set of optimal solutions, providing fault tolerance when system dynamics must be

considered. Secondly, GA is free of the LSA anomalies.

This facts do not guarantee finding optlmal solutions for any arbitrary task graph but show a better
approach to the roblem , s , ~) .
““‘*“’gor;l?éqtfe?\ﬂ$ TEher Tectarch 18 neceseany 10 ivestigate potentials ang Tratone of the GA
approach under more complex “test suites, different representations, and convenient genetic

operators.

A new as-soon-as-possible (ASAP) approach oriented to direct representation is now being
implemented.

7.Bibliography

[1] Bagchi S., Uckum S., Miyabe Y., Kawamura K. — Exploring problem-specific recombination
operators for job shop scheduling- Proceedings of the Fourth International Conference on
Genetic Algorithms, pp 10-17, 1991.

[2]1 Bruns R. — Direct chomosome representation and advanced genetic operators for production
scheduling. Proceedings of the Fifth International Conference on Genetic Algorithms, pp 352-
359, 1993.

[3] Cena M.,Crespo M., Gallard R., - Transparent Remote Execution in LAHNOS by Means of a
Neural Network Device- ACM Press, Operating Systems Review ,. Vol. 29, Nr. 1, pp 17-28,
January 1995

[4] Ercal F.- Heuristic approaches to Task Allocation for parallel Computing- Doctoral
Dissertation, Ohio State University, 1988.

[5] Flower J., Otto S., Salama M. — Optimal mapping of irregular finite element domains to
parallel processors- Caltech C3P#292b, 1987.

[6] [Fox G. C. — 4 review of automatic load balancing and decomposition methods for the
hipercube- In M Shultz, ed., Numerical algorithms for modern parallel computer architectures,
Springer Verlag, pp 63-76, 1988.

[R OE IURNO SRR EPE R NN it poricta Toad balancer - Prog

i 2 oni. o hipercube mualuprocessoia, pp e i 21 198

S Grahami RoL. - Bowds on mudiiprocessiny anomaiios and packing algorithms .- Proceedings
of the AFIPS 1972 Spring Jomt Compuier Conlerence. pp 205-217. 1972,
ol Kidwell M. Using eoenctic aleosithans 1o sclicduic 1asks an « bus-based svsienr. -

1oy

Frocecdiings ot L Lt inciauonas Conerenee vir Geneae Algorithms, pp 308-374. 1993,

[10]° Mansour N:, Fox G.C.-~ 4 hybrid genetic algofiih}n Jor task allocation in h;n;lticorripute'rs.*
Proceedings of the Fourth International Conference on Genetic Algorithms, pp 466-473, 1991.

