
.-\~" F\ OLl TlO~:\R\ :\PPIH)ACIi TO THE i'AR..\LLLL TASt~ SCHEDl;U:\G
PROBLEM

ESQUIVEL S.c.. GATICA C. R .. GALLARD R.H.

Proyecto UNSL-33S403 i
. . .. __ De~to_de Informática "--' .. -....... -

:~~':'~'?C:~-~~f~@!fi.~}1~~·'u~T(fá(fN~i5rihlde:-s:~itttrstlmst1~~'J!¡;Ji~~;;1@

Abstract

Ejército de los Andes 950 - Local 106
5700 - San Luis, Argentina.

E-mail: {esquivel.crgatica.rgallard}@unsl.edu.ar
Phone: + 54 652 20823
Fax: +54 652 30224

A parallel program, when running, can be conceived a set of parallel components (tasks)
which can be executed according to sorne precedence relationship.
In this case efficient scheduling of tasks permits to take full.advantage of the computational
power provided by a multiprocessor or a multicomputer system. This involves the
assignment of partially ordered tasks onto the system architecture processing components.
Ihis work shows the problem of allocating a number of nonidentical tasks in a
multiprocessor or multicomputer system. Ihe model assumes that the system consists of a
number of identical processors and only one task may execute on a processor at a time. All
schedules and tasks are nonpreeptive. Ihe well-known Grabam's [8] list scheduling
algorithm (LSA) is contrasted with an evolutionary approach using the indirect-decode
representation.

I The Research Group is supported by the Universidad Nacional de San Luis and the ANPCYT (National
Agency to Promote Science and Technology).

I nI nll¡ ul'lion

lhe prceedenee rdationships betwccn task~ are cllll1J1lonly delin~at~d in direeted acyclic
graph known as the tasks graph. Nodes in the graph represent tasks and their duration and
ares represent thc precedcnce relationship. raetors. such as nUll1bcr of prm:essors. number
of tasks and task precedence contribute to make difficult a good assignmcnt.
'1 he problem tu tind an schedule on m ;..- 2 prUl:essors uf l!4ual capacity, lhat minimizes lhe
whole processing ti.me o(independent tasks has been sh~wn ~. b.elonging to the N"P-
·complete'claSs~ .. ,.;::,:,';i"",..¿.A .. :.§:::~:·;':-::?-j::.~Ti;,,: .~:', '~"" . :':C-". '.' ::. .. "0';".;' O;é'rª'¡·:;/ ... ".,... ,.,." .• ","._,;:>-:;:~ .. -""'0 .. ; .. 0:_, . .::, ·c , .. :::.,,,.:.

Task scheduling can be classified as static and dynamic. In the case of static scheduling
sorne strong reasons make it applicable. First, static scheduling sometimes results in lower
execution times than dynamic scheduling. Second static scheduling allows only one process
per processor, reducing process creation, synchronization and termination overhead. Third,
static scheduling can be used to predict speedup that can be achieved by a particular
parallel algorithm on a target machine. assuming that no preemption of processes occur.
The current presentation shows the problem of allocating a number of nonidentical tasks in
a multiprocessor or multicomputer system. The model assumes that the system consists of a

ii~l .. ua~S.t.2,~~.9.P:~a!.pg>~~e~~op.}~. Q!'$.:,-~~l<.~J~xe:9Jl~9.l!;~.,w;º.~-1l1¡¡· t.ia.re~~",
schédules and tasks are nonpreeptive. The well-known Graham's [8] list scheduling
algorithm (LSA) is contrasted with anevolutionary approach using the indirect-decode
representation ..

2. A deterministic model

A parallel program is a collection of tasks, sorne of which must be completed before than
others begin. In a deterministic model, the execution time for each tasks and the precedence
relations between them are known in advance. This information is depicted in a directed
graph, usually known as the task graph.
In Fig. 1 we have eight tasks with the corresponding duration and their precedence relations

T412

Fig. 1 . The model task graph

Even if the task graph is a simplified
representation of a parallel program
execution, ignoring overheads due to
interrupts for' accessing resources etc.,
it provides a basis for static allocation
of processors.
A schedule is an allocation of tasks to
processors which can be depicted by a
Gantt chart.
In a Gantt chart, the initiation and
ending times for each task 'in the
available processors is indicated and the
makespan (total execution time of the
parallel program) of the schedule can be
easily derived.

I I

>-.----- ..• !.. ... _ ... -----_.

~ ----------4
T· 'l'

II j,

I ¡:: ~ ¡, I}
... ! - ... _1 _ •

-.--_ _--_.-- -- . _._._ ... _-~ ..

r'!\"."'-;"",.-- I~\ -:lli:p:\.: P!1:-,'I'\,ilillli

\ :,\..LLl " n.dl .. C>'P~J;'. l .• : '\j :!I'l(.; ~lli

~I&~~~~WlfC~·.'~~ ... :t!:I'=-:;"'*·",*·.~~~;i';¡;-<a~~~l~~"~~~~i§~~~\~~~~l!f~J~
Fig.2'.·Scheduling71asks ont02 processors by LSA

When looking t\.) the makt.:span an optimal srh\!duJc is such that the total cxecution time is
minimized. Othcr pcrl()rmanc~ variables. slIch as individual proccssor utilization or
cvenness of load distributioll can be considcred.
As wc can S(!C some simpk scht:duling problcms cun h~ sol ved lo oplimalil)' in polynomiaJ
time while othcrs can be computatiuna!ly intractahlc.

"

As wc are interested in scheduling of arbitrary tasks graph:s onto i.l reasonable number of
processors we would be content with polynomial time schcduling algorithms that provide
good but no optimal solutions.

F~r a given list 01' tasks ordered by priority, it is possiblc to assign tasks to processors by
always assigning each avai!able pwcessor to the first unassigned task on the ¡iS1 whose
preJccessor tasks havc uircady finished execulion.
Let be:
T={"r, •..... Tn} a sel urtas!~s,
"": T--+ (O. 00) a functÍoll v¡hich associates an executjon time l!..) each tasK,
S; a parlial order in T and
La priority list oftasks in T.

Eaeh time a pmcessms i~ idic.:, it immediatcly . removes [mm L the Jirst T(!ady task~ that is.
an unscheduled task whose ancestors under ~ have al! compleled cxccution. In the case that
1WO or more proccssors attcmpt 10 cxccutc the same task. the one with lowest identifier
sllcceed and the remaining processors look for another adcquatc task.
The Gantt chart of Fig. 5.2. resuhed <)f applying thc list scheduling algorithm to the task
graph ofFig. 5.1. with the priority lis1 L = [TI. T2• T3• T4, T5• T,-" T7].

USillg tJús heurislic. contr3r) 10 thc intuition, some anomali~s can happen. For examplc,
incrcasing lhe numbcr of pwccss\)rs. d~creasing lhe .:xecuLÍon times oí" onc or more tasks~
or diminating so me 01' the pr\.'ccd~!lce constraints can actually i!lerease the makespan. In
his work Uraham presented difTcrem examples to show this·problcm.

4. l" Olllliollar~ a!!!.orithI!l~ !u pro\ ide.: IH:ar-optius;d ~ol¡¡tion~

The task allocation prohkm has heen inn~stigatcd hy many researchers ¡:; I .¡ .. l¡. ¡:' l· 1 ó l· PI·
19 1. 11 () J. Several heuristics methods has hcen proposcd. such as minnlt-hased hcuristics.
orthogonal rccursi,'e hisection. simuJatcd anncaJing. gcnetic algorithms amI neural
networks.

From the representation perspective many evolutionary computation approaches to the
-general schedulingproblem exiSts:'Accordirigto solution representation these methods can:
be roughly categorized as indirect and direct representation (Bagchi et al, 1991 [1 D.

In the case of indirect representation of solutions the algorithm works on a population of
encoded solutions. Because the representation do not directly provides a schedule a
scheduler builder is necessary to transfonn a chromosome into a schedule, validate and
evaJuate it. The scheduler builder guarantees the feasibility of a solution and its work
depends on the amount of infonnation included in the representation. This is the Bagchi et
al. strongly recommended approach.

~';:C;:;:~':'":.ii-?o-'~~.~(::-:'~;f\'~:: ··'::'4f¡;.~r~~"~~= .. ~.,.:.ir-=e:~~"""'?'""::¡m D.~~:~."".'~~~=~.:~.::~':~ :".;;;;; '-=.';~'<.:"';"' ~·~~,t·~~~??, ;. 4.?g;p.;:·~
"Indirect represeritation {Biuris' 93' [1J)a complete and feasible schedule is' an individual of
the evolving population. The only method that perfonns the search is the evolutionary
algorithm because the represented infonnation comprises the whole search space.

In our work we devised different evolutionary computation approaches to task scheduling.
First we addressed two new different representation schemes; direct-ASAP (direct-as-soon­
as-posible) and indirect-decode. Second, we addressed the question of attempting to
improve perfonnance by means of different recombination and mating approaches.

5. Summary of the work

A genetie approaeh was eompared against the List Seheduling AIgorithm.

By analysing results the following eomparison can be done:

• The genetie approaeh found many and no a single optimal solution for any case.

• AlI the anomalies observed with LsA do not hold when GA is applied, because:

• When the number ofprocessors is increased the minimum (optimum) makespan is also
found.

• When the duration oftasks is reduced this reduction is reflected in a reduced optimum
makespan.

• When the number of precedence restrictions is reduced the optimum makespan is
preserved.

A more detailed analysis on each run detected that in most of the cases altemative solutions do not
inelude, or inelude a low percentage, of non-optimal altemative solutions. That means that the final
population is composed of many replicas of the optimal solutions due to a loss of diversity. This
faet stagnate the search and further improvements are difficult to obtain.

,,, ". :':;;,:'. ::,,::.:: ""'l:ld hl' IIl'':L':-:-ar:- 1<' ~'Il¡¡lilll": l'\Il\:ili¡I,'IH;illllli \\ilil dirkrL'nl paralllL'lL'r

SL'lIl1lg:- and n.:comhillalillll approachcs,

6. CunclusiulIs

ThL' allocation 01" a Illlmhl!r 01' parallcl tasks in parallcl supporting environments. multiprocessors or
1l1111Iii.'(\l1lpllh:r'oi-.:;¡ diniL'lIlt amI important iSSlK' in L'Ompuh:r syslL'llb
In this work we approached allocation attempting to minimize makespan. Other performance

:~,i;'y~~ja~~!.. s~~~~j~~}yi~ua~,p~~ssorou~~o~.,;()r,,~yeIlD~s o,fi9~, distri~~q,,~be CP~~"4
'0 --As we are mtereSíed in séheduling of arbitrary tasks graphs onto a reasonable number of

processors, in many cases wewould be content with polynoirifaltime scneduling
algorithrns that provide good but no optimal solutions. The list scheduling algorithm (LSA)
satisfy this requirement.
A genetic approach was undertaken to contrast its behaviour against the LSA.
Preliminary results on the selected test suite showed two important facts. Firstly, GA provides not a
single but a set of optimal solutions, providing fault tolerance when system dynamics must be
considered. Secondly, GA is free ofthe LSA anomalies.
This facts do not guarantee finding optimal solutions for any arbitrary task graph but show a better

,.....~PP!~~ t~. the roblem. o
~cmseq.oent1 :' . , o. 0"1 "necessaty· o IIlVestlgate po entlas i1n '"hrrlltáttoris 'ti .'

approach under more complexotestsuites, different representations, and convenient
operators.
A new as-soon-as-possible (ASAP) approach oriented to direct representation is now being
implemented.

7.Bibliography

[1] Bagchi S., Uckum S., Miyabe Y., Kawamura K. - Exploring problem-specific recombination
operalors lor Job shop scheduling- Proceedings of the Fourth lnternational Conference on
Genetic Algorithms, pp 10-1 7, 1991.

[2] Bruns R. - Direct chomosome representation and advanced genetic operators lor production
scheduling. Proceedings of the Fifth lnternational Conference on Genetic Algorithms, pp 352-
359, 1993.

[3] Cena M.,Crespo M., Gallard R., - Transparent Remote Execution in LAHNOS by Means 01 a
Neural Network Device- ACM Press, Operating Systems Review , Vol. 29, Nr. 1, pp 17-28,
January 1995

[4] Ercal F.- Heuristic approaches to Task .Al/ocation lor paral/el Computing- Doctoral
Dissertation, Ohio State University, 1988.

[5] Flower J., Otto S., Salama M. - Optimal mapping 01 irregular finite element domains to
paral/el processors- Caltech C3P#292b, 1987.

[6] [Fox G. C. - A review ol automatic load balancing and decomposition methods lor the
hipercube-In M Shultz, ed., Numerical algorithms for modern parallel computer architectures,
Springer Verlag, pp 63-76, 1988.

,'. o.¡\,.! \, .' .. !,',' " 1,lj¡!:/;¡\ ¡('./e/ i,,/Ielllc'(''- _ !J I,,} ...

: 01 (ir;lh:1I11 R, l .. ' /:0/11/1/' ,1/1 1II/l11/¡'/'Ih ('\'IIi,~: ¡/lIillI"u'/¡·, U//(/ fh/cf"iil)..:. U/goriIÍlIII,\,- PrOl:I,;¡,;Jill~~

(ll I/¡;: AFlPS 1972 Sprillt'- Juilll C(\l11plilcr (óllJIl'I\.:IlCl.:. pp 20:\-217. 197'2,

101

10] Mansour N:. Fox G.C.·~Ahybrid genetic algorithmfor task allocation inmulticomputers.'
Proceedings of the Fourth lntemational Conference on Genetic Algorithms, pp 466-473, 1991.

