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A job shop is a facility that produces goods according to specified production plans under 
several domain-dependent constraints. Job Shop Scheduling (JSS) attempts to provide 
optimal schedules. Cornmon variables to optimize are total completion time (makespan), 
machine idleness, lateness and total weighted completion time. According to this variables 
different objectives can be devised. 
Multiobjective optimization, also known as vector-valued eriteria or multieriteria optimization, 
have long been used in many applieation areas where a problem involve multiple objeetives, 
often eonflieting, to be met or optimized. 
Co-evolution, as an extended evolutive model, ean be applied to solve multieriteria 
optimization for the JSS problem using a plain aggregative approach. 
This presentation will show the design, implementations and results of a co-evolutive 
approaeh solving a multiobjeetive optimization problem involving the makespan, maehine 
idleness and total weighted eompletion time as eriteria to be optimized. 

1 The Research Group is supported by the Universidad Nacional de San Luis and the 
ANPCYT (National Ageney to Promote Seienee and Technology). 
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then a basis for selection of individuals. 
In this way, a genetic aIgorithm perfonns as usual finding the fittest individual s . for that 
single aggregated function. Bhanu and Lee [1] and Vemuri and Cedeño [5], worked on this 
linear combination approach. 

In nature, individuals do not evolve in isolation. Instead, there is a co-evolution [4] that 
involves interactions between individuals of di verse evolving populations (species). 
Co-evolution can be applied to sol ve multicriteria optimization for the JSS problem using a 
plain aggregative approach. The idea is to create one sub-population for each criterion and 
evolve them until convergence. At this point another evolutionary process begin actuating 
B~l~~;:;:~e.o;~~~~~a~~·:-~llose.~bj~~~y,.~;~~:¡~,~sWjQ!t.9ít,ge...-P~, objecti,Yr~Ihis. 
evolution step continues until reaching convergence. After that the whole population is 
subdivided into sub-populations and the original process is started again. A final stop 
criterion is defined to terminate the entire process. 

As a result, it is expected that at the end of the co-evolutive process, we obtain a set of good 
performers which optimizing the aggregated objective are also the best on their 
corresponding partial objective. 

2. The Job Shop Scheduling Problem (JSSP) 

This scheduling is related to the allocation of limited resources (machines) to jobs over 
time. This is a decision making process that has as a goal the optimization of one or more 
objectives. 
The model considered here as sumes that the system consists of a number of different 
machines and only one job may execute on a machine at a time. All schedules and jobs are 
non-preemptive. Jobs can have distinct priorities and all of them are available at production 
initiating time. There are' no restriction on due dates for the jobs. Each job visits all 
machines, only once, following a predetermined sequence of machines, called a roUle. 
Consequently ajob can be seen as composed by various steps, called operations. 
So, ajob can be represented by a vector whereits components are the successive operations 
to be performed. These components are 2-tuples of the form (machine, duration), 
specifying the machine where the job must be allocated and the time spent in that machine. 
An instance of the JSSP is matrix where the rows specifies the jobs as aboye described. 
This matrix is called the insrance matrix for the specific JSSP. 
Associated with the instance matrix is a priority list, which is used at the building stage of a 
schedule to solve conflicts between jobs requiring resources. 
Let us consider the following example: 
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A schedule specified by the following Gantt chart can be built, 

3. The co-evolutionary approach for multiciteria optimization 

Given an instance of he JSSP, of n jobs and m machines we considered three performance 
parameters to minimize: 

MS = max {C\, ... ,Cn}, where C¡ is the completion time of Job i. It is the makespan an it is 
equivalent to the completion time ofthe lastjob to leave the system. 

111 

TIT= L/T) where IT, is the idle time ofmachinej. lt is the total idle time . 
./=1 

n 

WCT= I w¡C¡, where '11'; is the weight associated to the completion time of Job i. It is the 
1=1 

weighted completion time. 

Our co-evolutionary approach considered the 3-criteria problem optimizing three objective 
functions,f¡,.f2 and.f3, corresponding to AIS, TIT and WCT, respectively and the aggregation 
f=~ +f3f2 +r.f.~. 

An individual in any population is an integer vector representing a pnonty list. 
Consequently a population evolves by creating new individual s (priority lists) optimizing 
sorne ofthe aboye rnentioned objective functions (criteria). 

There exist two different evolutionary processes: 

1) Independent evolution. Here three populations evolve independently. eachone 
optimizing one of the aboye mentioned criteria. This process is performed until each 
population reach convergence. 
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The whole co-evolutive process can be delineated as follows: 

Begin Co-evolutive process 

lo Initialize 3 distinct populations of size s (one for each objective) 
2. Evolve independently each population until the termination criterion el holds. 
3. Merge the independently evolved population into a single unified population of size 3s. 
4. Evolve the unified population until the termination criterion el holds. 
5. If the termination criterion e~ holds then stop 
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End of Co-evolutive process. 

fJ and create a new population with the best 
one third of the unified population. 
12 and create a new population with the best 
one third of the unified population. 

j3 and create a new population with the best 
one third of the unified population. 
go to step 2. 
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Termination criterion el stops the evolutionary process when after 10 consecutive 
generations the difference between mean population fitness values remains less than 1 %. 
Termination criterion e] stops the co-evolutionary process when after 5 consecutive 
generations of the unified population the difference between mean population fitness 
values remains less than 5%. 

4. Experiments and results 

The co-evolutionary approach was contrasted against an evolutionary approach. In both 
cases simple but non canonical genetic algorithms were used. 
For our experiments, randomised initial populations of size fixed to 30 individual s were used 
to optimize each criterion, using integer representation, elitism, one point crossover and big 
creep mutation. The number of generations was bounded by the corresponding termination 
criterion and probabilities for crossover and mutation were fixed to 0.65 and 0.03 respectively. 
Ten instances of two types. small and big. with known optimal makespan were used. small 
instances were of 10 jobs and 5 machines while big instances were of 20 jobs and 10 
machines. 
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Referring to the minimum value of the aggregation f after co-evolution it worth saying that 
it is quite near of the value obtained by computing the linear combination of the best 
independent evolved values. 

5. Conclusions 

This presentation shows an application of co-evolution to face an aggregative multicriteria 
optimization approach for the JSSP. 

=lPQepende~L~q.,1l11.i.ge~~1!íi.eE.;;;~~g2~.J.cec:l;1o; ().~¡9.R!~I;~,~~:~t-,;e 
. distinct criten~01i,~hoandf3, and the aggregation criterionfat the same time. . 

Results of these preliminary experiments with co-evolution show some enhancements when 
compared with the conventional evolutionary approach. 
Future work incIude diverse parameter settings, recombination and hybridization expecting 
better performance for the method proposed here. 

6. Bibliography 

[1] Bhanu B, Lee So. Genetic learning for adaptive image se.gmentation, (Boston MA: 
Kluwer)o 19940 

[2] Fonseca C. M., Fleming P. 1.- Genetic Algorithms for Multiobjective Optimization: 
Formulalion, Discussion and Generalization - Proco of the 5th In. Conf. on Genetic 
AIgorithms, pp 416-423, Urbana- Champaign, IL, Morgan Kaufmann, 1993 

[3] Leitmann G., Marzollo A., Multicriteria Decision Making - CISM No 211, Springer 
Verlag, Wien , NY. 1975. 

[4] Paredis J., Coevolutionary constraint satisfaction. Proc. 3rd Ann. Conference on 
Parallel Problem Solving from Nature (New York: Springer) pp 46-55, 1994. 

[5] Vemuri R .. Cedeño Wo. A new gene/ic algorithm for multiobjective optimization in 
water resource management. Proc. of the 1 si IEEE Intemational Conf. pn 
Evolutionary Compulation (ICEC'94), pp 495-500, Orlando, USA, 1994. 


