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Abstract

A job shop is a facility that produces goods according to specified production plans under
several domain-dependent constraints. Job Shop Scheduling (JSS) attempts to provide
optimal schedules. Common variables to optimize are total completion time (makespan),
machine idleness, lateness and total weighted completion time. According to this variables
different objectives can be devised.

Multiobjective optimization, also known as vector-valued criteria or multicriteria optimization,
have long been used in many application areas where a problem involve multiple objectives,
often conflicting, to be met or optimized.

Co-evolution, as an extended evolutive model, can be applied to solve multicriteria
optimization for the JSS problem using a plain aggregative approach.

This presentation will show the design, implementations and results of a co-evolutive
approach solving a multiobjective optimization problem involving the makespan, machine
idleness and total weighted completion time as criteria to be optimized.
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ANPCYT (National Agency to Promote Science and Technology).



Cucliion

i mulvobjecuve opumizaton Fonseca and Flemming [2] classified  as plain aggregative
approaches those methods where a singie objecuve tunction resulting as a numerical
combination of objectives values is to be optimized. Tere decisions on multicriteria are
madce before searching. The unique objective funcuion obtained by aggregation of multiple
cojectnes Iy used o establish o wotal ordes s thie soiuton’s space. This measure provides
then a basis for selection of individuals.

In this way, a genetic algorithm performs as usual finding the fittest individuals for that
single aggregated function. Bhanu and Lee [1] and Vemuri and Cedefio [5], worked on this
linear combination approach.

In nature, individuals do not evolve in isolation. Instead, there is a co-evolution [4] that
involves interactions between individuals of diverse evolving populations (species).
Co-evolution can be applied to solve multicriteria optimization for the JSS problem using a
plain aggregative approach. The idea is to create one sub-population for each criterion and
evolve them until convergence. At this point another evolutionary process begin actuating
on the_whole wpggglatmn whose objective is an aggregation of the partial objecug,cg,,Thxs_
‘evolution ste step continues until reaching convergence. After that the whole population is
subdivided into sub-populations and the original process is started again. A final stop
criterion is defined to terminate the entire process.

As a result, it is expected that at the end of the co-evolutive process, we obtain a set of good
performers which optimizing the aggregated objective are also the best on their
corresponding partial objective.

2. The Job Shop Scheduling Problem (JSSP)

This scheduling is related to the allocation of limited resources (machines) to jobs over
time. This is a decision making process that has as a goal the optimization of one or more
objectives.

The model considered here assumes that the system consists of a number of different
machines and only one job may execute on a machine at a time. All schedules and jobs are
non-preemptive. Jobs can have distinct priorities and all of them are available at production
initiating time. There are no restriction on due dates for the jobs. Each job visits all
machines, only once, following a predetermined sequence of machines, called a route.
Consequently a job can be seen as composed by various steps, called operations.

So. a job can be represented by a vector where its components are the successive operations
to be performed. These components are 2-tuples of the form (machine, duration),
specifying the machine where the job must be allocated and the time spent in that machine.
An instance of the JSSP is matrix where the rows specifies the jobs as above described.
This matrix is called the instance marrix for the specific JSSP.

Associated with the instance matrix is a priority list, which is used at the building stage of a
schedule to solve conflicts between jobs requiring resources.

Let us consider the following example:
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A schedule specified by the following Gantt chart can be built,

As we can see, glV(il:l_ an ﬂstance of the JSSP, different schedules can be | bmlt when we use
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3. The co-evolutionary approach for multiciteria optimization

Given an instance of he JSSP, of » jobs and m machines we considered three performance
parameters to minimize:

MS = max {C,....,Cp}, where C; is the completion time of Job i. It is the makespan an it is
equivalent to the completion time of the last job to leave the system.

m

TIT= ) IT, where IT, is the idle time of machine ;. It is the total idle time.

J=1

WCT=ZW,C, , where w; is the weight associated to the completion time of Job i. It is the
i=]

weighted completion time.

Our co-evolutionary approach considered the 3-criteria problem optimizing three objective
functions, 17, /> and f;, corresponding to MS, TIT and WCT, respectively and the aggregation

f=af| +ﬁfz +7f?

An individual in any population is an integer vector representing a priority list.
Consequently a population evolves by creating new individuals (priority lists) optimizing
some of the above mentioned objective functions (criteria).

There exist two different evolutionary processes:
1) Independent evolution. Here three populations evolve independently. each one

optimizing one of the above mentioned criteria. This process is performed until each
population reach convergence.
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merged o o simgic populauon and the cvolutionary process optmize now lhc

agercgation 7. That means that the independent evolved individuals are now submiued
10 a new environment. This stage mvolves interactions between mdividuals of diverse
cvolving populations under new environmental conditions.

Both processes are repeuatea until tie lermination eriterion 10t tie uniticd popuiation hoids.
The whole co-evolutive process can be delineated as follows:
Begin Co-evolutive process

Initialize 3 distinct populations of size s (one for each objective)
Evolve independently each population until the termination criterion 6, holds.
Merge the independently evolved population into a single unified population of size 3s.
Evolve the unified population until the termination criterion 6, holds.
If the termination criterion 6-holds then stop
e e seamerre - o~ o else rank individuals-according-to: -+ e
f1 and create a new population w1th the best
one third of the unified population.
/2 and create a new population with the best
one third of the unified population.
/3 and create a new population with the best
one third of the unified population.
go to step 2.
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End of Co-evolutive process.

Termination criterion &, stops the evolutionary process when after 10 consecutive
generations the difference between mean population fitness values remains less than 1%.
Termination criterion 6 stops the co-evolutionary process when after 5 consecutive
generations of the unified population the difference between mean population fitness
values remains less than 5%.

4. Experiments and results

The co-evolutionary approach was contrasted against an evolutionary approach. In both
cases simple but non canonical genetic algorithms were used.

For our experiments, randomised initial populations of size fixed to 30 individuals were used
to optimize each criterion, using integer representation, elitism. one point crossover and big
creep mutation. The number of generations was bounded by the corresponding termination
criterion and probabilities for crossover and mutation were fixed to 0.65 and 0.03 respectively.
Ten instances of two types. small and big, with known optimal makespan were used. small
instances were of 10 jobs and 5 machines while big instances were of 20 jobs and 10
machines.
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reduction ol the mean error was observed v\hm the co-cvolutive approach was contrasted
agamst the evolutive approach.

On the small mstances the error of 2.482 % went down 10 2.398% and on the big instances
the value o 91429 was reduced 1o 8.822%.
Regarding to the other performance variables. 7/7 and 'CT. mean error values could not
DY Cstalmisiica because oplimum values are unknown. Ineverineless the values tound by the
co-evolutionary approach are 1n general shghtly better than those obtamed thh the
evolutionary approach: - o :
Referring to the minimum value of the aggregation fafter co-evolution it worth saying that
it is quite near of the value obtained by computing the linear combination of the best
independent evolved values.

5. Conclusions

This presentation shows an application of co-evolution to face an aggregative multicriteria
optimization approach for the JSSP.

—-Independent and unified evolution were introduced 10, obtain.pa ization.of th
“distinct criteria, 17, ﬁ and /}, and the aggregatlon criterion f at the same time.

Results of these preliminary experiments with co-evolution show some enhancements when
compared with the conventional evolutionary approach.

Future work include diverse parameter settings, recombination and hybridization expecting

better performance for the method proposed here.
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