
Parallel Construction of Dialectical Trees 
for Defeasible Logic Programming1 

(Preliminary Report) 

Alejandro J. García Guillermo R. Simari 

Grupo de Investigación en Inteligencia Artificial (GllA) 
Departamento de Ciencias de la Computación, 

UNIVERSIDAD NACIONAL DEL SUR 
Av.Alem 1253 - (8000) Bahía Blanca, ARGENTINA. FAX: (54) (291) 4595136 

e-mail: ccgarcia©criba.edu.argrs©criba.edu.ar 

KEYWORDS: Defeasible Reasoning, Argumentation, Parallelism. 

1 Introduction 

Defeasible Logic Programming (DLP) [2] is an extension of logic programming based 
on the defeasible argumentation formalism developed in [12, 11, 6]. In DLP a query 
q succeeds when a justification for q is found. The defeasible argumentation formal
ism obtains justifications through a dialectical analysis, where arguments and counter
arguments are considered For implementing this dialectical analysis, a dialectical tree 
is used [6]. 

In [4], implicitly exploitable parallelism for DLP was studied. Since DLP is an 
extension of Logic Prograrnming, the four kinds of parallelism already studied for 
traditional Logic Prograrnming can be exploited [7]: oR-parallelism, independent and 
dependent AND-parallelism, and also unification parallelism. Besides, there are new 
sources of parallelism that can be implicitly exploited in a defeasible argumentation 
system: (1) several arguments for a conclusion q can be constructed in parallel, (2) once 
an argument A for q is found, defeaters for A can be searched in parallel, and (3) the 
dialectical analysis between arguments and defeaters, can also be done in parallel. In 
this work we propose an implementation for exploiting this last source of parallelism. 

In order to develop an efficient implementation of DLP [2], an abstract machine 
called Justification Abstract Machine (JAM) has been designed as an extension of the 
,i\iarren's abstract machine (WAM) [13,8]. The JAM architecture has an instruction set, 
a memory structure and a set of registers expecially designed for building arguments, 
counterarguments and dialectical trees. The JAM inherits the WAM sequential archi
tecture and the dialectical analysis is done sequentially, building the dialectical tree in 
a depth firsta approach. 

In the last 15 years, several models for exploiting parallelism in Logic Programming 
has been developed [7], and several parallel extension for the WAM have been proposed. 
In [9], an efficient parallel execution model for logic programs was proposed, and the 

lThis work was partially supported by the Secretaría de Ciencia y Técnica, Universidad Nacional 
del Sur and FUndación OSDIC. 

1 



RAPWAM, an abstract machine for restricted and-parallel execution of logic programs 
was designed as an extension of the WAM (see also [10]). 

The goal of this work is to introduce an implementation for constructing dialectical 
trees in parallel. We propose an implementation that extends the JAM, and is a com
bination between RAPWAM and JAM techniques. One of the main design objectives is 
to make these techniques c8mpatible with those used in high performance sequential 
implementations. 

This paper is organized as follows. First we introduce the main ideas of RAPWAM, 
then \ve describe a distribute model for building a dialectical tree in parallel. and 
finally we propose an extension of the JAM. 

2 Restricted And-parallelism implementation 

In Logic Programming, once a rule "Head +- B l , B 2 , . . , Bn" is selected during exe
cution, And-pamllelism consists on solving the body queries B l , B 2 , , Bn in parallel. 
However, given a rule as "p(X, Z) +- q(X, Y), r(X, Z)", there could be variable bind
ings conflicts if the queries q and r are executed in parallel and each execution binds 
the shared variable X with different terms. Restricted And-Pamllelism (RAP) [lJ is a 
technique which deals with these variable bindings conflicts by combining a compile
time analysis of the clauses involved, with simple checks performed on variables at 
run-time. Since our interest is focused only on the implementation of RAP as an 
abstract machine, we refer the interested reader to [1, 9, 10J for more details about 
RAP 

Although logic programs can present considerable opportunities for And-Parallelism, 
there are always code segments requiring sequential execution. Therefore, parallel im
plementation techniques should extend those used in high performance sequential im
plementations. RAPWAM is an abstract machine for restricted and-parallel execution 
of logic programs, designed as an extension of WAM, so sequential execution is still as 
fast and space efficient as in WAM implementations (except for sorne minimal run-time 
checks). 

The lack of space prevents us from fully describing the WAM and RAPWAM here. 
Instead we will only point out those basic concepts which are necessary for the under
standing of our extensions. Therefore, we will descrive only the memory architecture 
of these abstract machines. 

The WAM has four main memory areas: 

1. the Code are a, which holds the compiled program, 

2. the Heap, which holds the terms produced by unification, 

3. the Stack, which holds environment registers for supporting the execution chain, 
and choice point registers for implementing backtracking, 

4. and the Tmil where references to variables which need to be un done upon back
tracking are stored. 

In the WAM, choice points are created only when they are needed. Identifying the 
most recently choice point is immediate, since it is always pointed by a machine register 
B. The top of the Heap is stored in the choice point and updated upon backtracking. 

2 



Thus, the data just made obsolete by the failure that caused the backtracking is dis
carded. Prolog relies heavily on this retrieval of space during backtracking in order to 
avoid garbage collection. 

In RAPWAM, each processor is equivalent to a standard WAM, except for 

a) the inclusion of "Parcall Frames" in the local stack together with environments 
and choice-points, and 

b) the addition of a "Goal Stac!(' to the memory areas. 

Each processor has a Goal Stack where goals which are ready to be executed in 
parallel are pushed on too Each entry in the Goal Stack is called a Goal Frame and 
contains all the necessary information for starting the remote execution of a goal. 
Suppose that the program rule "Head +- Body" is selected for execution, and that the 
queries B 1 , B2 ,. ,Bk E Body could be executed in parallel; then, instead of starting 
a sequential execution of B 1 , and then B2 , and so on, the queries B 1 , B2 ,. ,Bk are 
pushed on to the Goal Stack. Therefore, a goal can be "stolen" from the Goal Stack 
by any remote processor, which will copy the information of the Goal Frame, and will 
start execution from there. For avoiding idle waiting, a pro ces sor can also pick up a 
goal from its own Goal Stack. 

Entries in the Goal Stack completely disappear after they are "picked up" by pro
cessors. However, the Parcall Frames are updated remotely and therefore they always 
have the informationabout the parallel activities of the children processors. Thus, the 
appropriate actions during backtracking can be selected. 

3 Building a Dialectical Tree in Parallel 

In Defeasible Lqgic Programming a query h succeeds if the supporting argument A for h 

is not defeated; A then becomes a justification. In order to verify whetber an argument 
A is non-defeated, its associated counter-arguments B1 , B2 , Bk are examined, each 
of them being a potential (defeasij--·le) reason for rejecting A. If any Bi is better than 
(or unrelated to) A, then Bi is a candidate for defeating A. 

Since defeaters are arguments, there may exist defeaters for defeaters, and so on. 
In order to obtain a justification for a given query, a dialectical analysis is needed. The 
PROLOG program of Figure 1 shows the specification of this analysis (\+ stands for 
PROLOG'S negation as failure). 

justify(Q) :- find_argument(Q,A), 
\+ defeated(A) 

defeated(A):- find_defeater(A,D), 
\+ defeated(D) 

Figure 1: J ustification specification 

The specification of Figure 1 leads, in a natural way, to the use of trees to organize 
our dialectical analysis. In order to accept an argument A as a justification for q, a 

3 



tree structure can be generated. The root of the tree wiII correspond to the argument 
A and every inner node will represent a defeater (proper or blocking) of its father. 
The leaves in this tree correspond to non-defeated arguments. This structure is called 
a dialectical tree. 

Definition 1 (Marking of a dialectical tree) Let A be an argument far a literal 
h, and ~A.h) be its assaciated dialectical tree. Nades in ~A.h) are recursively marked as 
defeated ar undefeated nades (D-nades and U-nades respectively) as follaws. 

1. Leaves af ~A. h) are U-nodes. 

2. Let (8, q) be an inner nade af~A.h)' Then (8, q) will be aT.. U-node iff every child 
af (8, q) is a D-node. In cantrast, the nade (8, q) will be a D-node -iff it has at 
least an U-no de as a child. 

Figure 2 shows the graphical representation of a marked dialectical tree for (A, h), 
where every node (argument) is represented by a triangle. 

Figure 2: Marked Dialectical Tree 

Definition 2 (Justification) Let A be an argument far a literal h, and let ~A.h) be 
its associated dialectical tree. The argument A will be a justificatian far a literal h if 
the raat af ~A.h) is a U-nade. 

In the current (sequential) system the dialectical tree is explored in depth-first order. 
However, given an argument A, its defeaters can be computed in parallel. Therefore, 
the dialectical tree can be computed in parallel, if every time a node (argument) is 
obtained, its children (defeaters) are computed in parallel. This parallel process wiII 
give to the search tree a breadth-first flavor. 

3.1 Parallel Execution Model for the Dialectical Tree 

If the dialectical tree is computed in parallel, then the control of the justification pro
cess will be distributed over the no des. Thus, the marking procedure of D-nodes and 
U-nodes wiII be done by message passing between the nodes of the dialectical tree. 
Next, we will introduce a model for building justifications in parallel. For the sake 
of clarity we wiII separate the construction of the dialectical tree, from the marking 

4 



procedure of the nodes. Our design goal is to delegate as much as possible work to the 
children process. 

a) Parallel construction of the dialectical tree: 
After constructing an argument A by a local processor P, the following actions will be 
carried out: 

1. The set Co(A) of potential counter-argument points \Vill be obtained by the local 
processor P 

2. For every l E Co(A) the construction of arguments for I will be called in parallel. 
These arguments are potential defeaters, and some of them could be the children 
of A. 

3. Once, the parallel calls are fired, the local processor P could also execute one of 
these parallel calls in order to avoid an idle waiting. 

4. When a remote processor finish its execution, informs its father about its status: 
failure (no argument or D-node), or success (U-node) (see below). 

5. Once at time .all the children processors have finished, the local processor can 
evaluate the status of the argument A that has been built, and then informs this 
status to its father processor (see below). 

The previous algorithm indicates how to build the dialectical tree. However, we 
also need to mark every node in order to know whether the root node is a U-node. 

b) Parallel marking procedure of a dialectical tree. 
In order to mark a node as U-node or D-node, the following criteria are used: 

1. If a no de B (argument) has no defeaters then B sends a message to its father 
indicating its success (it becomes a U-node). 

2. If a node A receives from one of its children B the message that B is a U-node, 
then (as B defeats A): (1) the node A becomes a D-node, (2) A sends a message 
to its father to inform that it is now a D-node, and (3) in order to prune the 
dialectical tree, A sends a message to its children that are still alive, to abort 
their dialectical process. 

3. If every 'potential' defeater of A has failed, (no argument could be constructed 
or the argument was defeated) then A becomes a U-node, and sends a message 
to its father indicating this. 

3.2 Implementation 

As e:>"1>lained before, an efficient implementation of DLP [2], has been designed as 
an extension of the WAM: the Justification Abstmct Machine or JAM for short. The 
JAM architecture has an instruction set, a memory structure and a set of registers 
especially designed for building arguments, counterarguments and the dialectical tree. 

5 



The JAM inherits the WAM sequentiaI architecture and the dialecticaI analysis is done 
sequentially, building the dialecticaI tree in depth first. In this section we wiII show 
how the implementation techniques of the RAPwAM can be used for extending and 
modifing the JAM, in order to have a paraBel justification procedure. We wiII call this 
extension P-JAM. 

In P-JAM, each processor is equivalent to a standard JAM, except for 

a) the inclusion of "Defeaters Prames" in the local stack together with environments 
and choice-points, 

b) the addition of a "Goal Stac¡¿' to the memory areas, 

c) and new instructions for dealing with paraBel calls, and message passir,g. 

In P-JAM, each processor has a Goal Stack where goals which are ready to be ex
ecuted in parallel are pushed on too These goals are actually the complement of the 
points of attack in the argument that the local processor has just constructed. Each 
entry in the Goal Stack is called a Goal Frame and contains all the necessary informa
tion for starting the remo te execution of a goal that looks for a defeater. Following the 
parallel execution model for building the marked dialectical tree, every time a processor 
finish the construction of an argument A, the P-JAM instruction prepare_par-defeat 
will do the following: 

1. Looks in the TFT for N points of attack (each temporary fact). 

2. For each point of attack "P" creates JAM code called "defeatK_aLpointP" 

3. Creates the Defeaters Frame caBed D-Frame (like the Parcall Frame) with N slots 

4. Loads the Goal Stack 

5. and finally loads the last goal to be executed locally 

Suppose that an argument A has the following points of attack: PI,P2,. ,Pk, then, 
instead of starting a sequential execution for looking for a defeater of PI, and then P2, 
and so on, the complements of the queries PI,P2, ,Pk are pushed on to the Goal 
Stack. Therefore, a goal (point of attack) can be "stolen" from the Goal Stack by any 
remote processor, which will copy the information of the Goal Frame, and will start 
the execution from there. As in the RAPwAM, a goal can be picked up from its own 
Goal Stack by the local processor avoiding idle waiting. 

Since entries in the Goal Stack completely disappear after they are "picked up" by 
the remo te processors, then the Defeaters Frames are updated remotely and therefore 
have the information of the parallel activities in the children processors. Thus, the 
appropriate actions for marking a node as D-node or U-no de can be carried out. 

Sometimes, a processor will finish its own work and will need to wait for the in
formation of its children processors, while its Goal Stack is not empty. In this case, 
the instruction pop_pending_defeaters executed locally avoid idle waiting: if there are 
pending goals in the Goal Stack and there is not a successful defeater, then pop another 
goal from the goal stack and update D-frame properly, otherwise continue with next 
instruction. 

6 



If the Goal Stack of a processor is empty, but the processor has to wait for in
formation from its children, then the instruction wait..foLdefeaters could also avoid 
id le waiting popping another goal from some other goal stack. However, if at least the 
D-frame contains one successful defeater then the node of the local processor becomes 
a D-node and the pending defeaters could be killed. 

Finally when the instruction inform..father D is executed, if all the defeaters slots 
in current D-Frame are [ail the father D-frame at address "D" will be updated with 
"success" or othenvise they will be updated with "fail" 

References 

[1] Doug DeGroot. Restricted And-Parallelism. In Proceedings of the International 
Conference on Fifth Generation Computer Systems 1984, pages 471-478, 1984. 

[2] Alejandro J. García. Defeasiule Logic Programming: Definition and Implementa
tion (MSc Thesis). Departamento de Cs. de la Computación, Universidad Nacional 
del Sur, Bahía Blanca, Argentina, J uly 1997 

[3] Alejandro J. García and Guillermo R. Simari. Defeasible logic programming. 
Technical report, Compllter Science Department, Universidad Nacional del Sur, 
October 1998. Technical Report GIIA-1998-20. 

[4] Alejandro J. García and Guillermo R. Simari. Sources of parallelism in defeasible 
logic programming. In Proceedings of the IV Congreso Argentino en Ciencias de 
la Computación, October 1998. 

[5] Alejandro J. García and Guillermo R. Simari. Strong and default negation in defea
sible logic programming. In In proceedings ofthe Fourth Dutch-German Workshop 
on Nonmonotonic Reasoning Techniques and Their Applications, DGNMR '99. In
stitute for Logic, Langllage, and Computation, Amsterdam, The Netherlands, 
March 1999. 

[6J Alejandro J. García, Guillermo R. Simari, and Carlos 1. Chesñevar. An argumen
tative framework for reasoning with inconsistent and incomplete information. In 
Workshop on Practical Reasoning and Rationality. 13th biennial European Con
ference on Artificial Intelligence (ECAI-98), August 1998. 

[7] Gopal Gupta, Khayri, A.M. Ali, Manuel Hermenegildo, and Mats Carls
son. Parallel execution of prolog programs: A survey. Technical re
port, Department of Computer Science, New Mexico State University, 1994. 
http:j jwww.cs.nmsu.edujlldapjpub_parajsurvey.html. 

[8] Ait-Kaci Hassan. Warren's abstract machine, a tutorial reconstruction. MIT Press, 
1991. 

[9J M. Hermenegildo. An Abstract Machine Based Execution Model for Computer 
Architecture Design and Efficient Implementation of Logic Programs in Parallel. 
PhD thesis, Dept. of Electrical and Computer Engineering (Dept. of Computer 

7 



Science TR-86-20), University of Texas at Austin, Austin, Texas 78712, August 
1986. 

[10] M. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution 
of Logic Programs. In Third Inlemaiional Conference on Logic Programming, 
number 225 in Lecture Notes in Computer Science, pages 25-40. Imperial College, 
Springer-Verlag, July 1986. 

[l1J Guillermo R. Simari, Carlos 1. Chesñevar, and Alejandro J. GarcÍa. The role of 
dialectics in defeasible argumentation. In A nales de la XIV Conferencia Interna
cional de la Sociedad Chilena para Ciencias de la Computación. Universidad de 
Concepción, Concepcién (Chile), November 1994. 

[12] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible 
Reasoning and its Implementation. Artificial Inielligence, 53:125-157, 1992. 

[13] David Warren. An abstract prolog instruction seto Technical report, SRI Interna
tional, Menlo Park, CA, October 1983. Technical Note 309. 

8 


