
Logic Modules for Communicating Distributed Agents

Alejandro Zunino and Analía Amandi

ISISTAN Research Institute, Facultad de Ciencias Exactas,

Universidad Nacional del Centro de la Peía. de Buenos Aires

Campus Universitario Paraje Arroyo Seco - (7000) Tandil - Bs. As., Argentine

E-mail: {azunino.amandi}@exa.unicen.edu.ar

WWW: http://www.exa.unicen.edu.arrisistan/

Abslract

The development of isolated agents involves the manipulatioiJ of components such as actions,

mental attitudes and decisions. Multi-agent systems have to deal with these components from dif­

ferent agents, without to forget the privacy and autonomy of each agent. For programming simple

agents, both object-oriented and logic paradigms have shown advantages in terms of behavior en­

capsulation and mental model manipulation, respectively. Multi-paradigm languages allowing the

usage of both programming paradigms can sol ve sorne troubles in agent-oriented programming.

However, problems about interaction among agents, especially in physically distributed environ­

ments, can not directly be sol ved with that solution. This paper presents an approach based on

the usage of logic modules for supporting interaction among agents in a multi-paradigm environ­

ment. Logic modules encapsulate a part of a mental state of an agent, being each logic module

composed by a sequence of clauses. Objects representing agents manipulate these logic modules.

They can transport their own logic modules to the location of another agent. Thus, agents can

integrate logic knowledge to their own decision process.

1 Introduction

Agent-oriented prograrnrning has been introduced as a specialization of object-oriented program­

ming [Sh093]. This presentation was materialized by both languages using object-oriented concepts

for supporting agent programming (i.e. AgentSpeak [WRR94] and Metatem [Fis94]) and the usage

of object-oriented language for programrning agents.

In spite of those evidences on the significance of object-oriented prograrnming in agent program­

ming, objects managing mental attitudes present one important limitation. The origin of such lirni­

tation is the lack of practical object-oriented approaches related to logic formalisms for representing

mental attitudes.

Object-oriented prograrnrning sol ves the encapsulation of actions and the hiding of private knowl­

edge of agents. Logic programming, in contrast, allows logic clauses being used for representing

mental attitudes. Thus, an integration of both paradigms sol ves some problematic points to built

agents.

For agent programming, we can certainly achieve a simple solution fro!TI a multi-paradigm point

of view. For multi-agent programming, we must sol ve one problem more: interaction among agents.

To solve this problem involves distribution considerations, sínce agents may be physícally distríbuted.

This papcr prescnts how interaction among agents can be handled from a multi-paradigm point of

víew for programming agents. In this way, an integration between Java and Prolog named JavaLog is

first introduced.

The structure of this paper is as follow. In section 2 we set the ground for the following discussion

makíng precise our assumptíons and defining the conventions to be used in the rest of the article. In

section 3 we introduce JavaLog. In section 4 we present how the manipulation of logic modules can

resolve the interaction among agents. Finally, we comment on our results.

2 Basic Assumptions

We work on agents following the guides provided by a software architecture [SG96] for building

agents named Brainstorm. The Brainstorm architecture [AP97, AP98] prescribes agents supported by

an integration of object-oriented and logic paradigms. In Brainstorm, an object containing internal

knowledge in logic modules represents agents. Each logic module contains a subset of the mental

state of the agent expressed as logic clauses.

For introducing the components of the architecture that manage the integration between both

paradigms, we illustrate it by :m example, an object-agent salesman. This object has associated logic

modules for representing the mental state of the agent. A logic module records a sequence of clauses.

The decision component of agents can combine these modules, manipulating thus rules to achieve the

wanted behavíor.

Being logic modules are defined as a sequence of Horn clauses followíng the definition of 0'­

Keefe [0'K85], two algebraic operators are applied for combining logic modules. These operators

are named union and overriding union [BLM94].

The Brainstorm approach al so allows logic modules as part of methods for manipulating common

dealing of mental attitudes of agents that belong to one agent class.

In resume, the mani pulation of logic modules represents the basis of the agent prograrnming from

he Brainstorm point of view. Such a manipulation is constrained to each agent for supporting privacy

n the decisions of each agent. We show a way for supporting such a view for prograrnming agents

nd, additíonally, we present a way for manipulating these logic modules on distributed environments.

2

3 Prograrnrning agents frorn a rnulti-paradigrn view

JavaLog 1 is the result of integrating the Java language and a Prolog interpreter following the Brain­

storm architecture. In a first step, we built a Prolog interpreter using the Java language, and then we

integrate it with Java through preprocessing. We first built our Prolog interpreter because we aim that

this interpreter composed by classes can be specialized for supporting logic extensions to manipulate

complex mental attitudes.

JavaLog provides integration between Java and Prolog allowing developers to define logic mod­

ules into Java instance variables 01' inside methods. Furthermore, it enables developers to manipulate

Java objects from Prolog clauses.

For example, CommerceAgelll is an agent c1ass that models salesmen. Objects of this class have

the ability to select and buy items taking into account user preferences. In order to enable changes on

the preferences, they are recorded in logic modules. The following example presents a logic module,

which records the preferences of a user for cards and motorcyc1es.

preference(car, [ford, Model, Price])

Model > 1998,

Price < 60000.

preference(rnotorcycle, [yarnaha, Model, Price])

Model >= 1999,

Price < 9000.

Using JavaLog. we can define the CommerceAgent c1ass in the following way:

public class CornrnerceAgent {

private P1LogicModule userPreferences;

public CornrnerceAgent(PILogicModule userPreferences {

this.userPreferences = userPreferences;

public boolean buyArticle(Article a~~rticle) {

userPreferences.enable()

type = anArticle.type;

if (?-preference((#anArticle#, [#type#,#brand#,

#rnodel#, #price#]).) buy(anArticle)

userPreferences.disable()

1 JavaLog is available as free software from ht tp: /\tMW. exa. unicen. edu. ar ¡ -amandi

The example defines a variable named userPreferences, which references a logic module containing

user preferences. When the agent needs to decide if he have to buy a given artiele, user preferences

are analyzed. The buyArticle method first enables the userPreferences logic module to be queried. In

this way, the knowledge ineluded in that module is added to the agent knowledge. Then, an embedded

Prolog query is used to test if it is acceptable to buy the artiele. The Prolog query is started by ?-, fol­

lowing it there is a Prolog termo To evaluate preference(Type,[Brand, Model, Price J J, userPreferences

elauses are used.

The query contains a Java variable enclosed into #. This 1.1ark allows developers to use Java

objects inside a Prolog clause. In the query, send is used to send a messag:'! to a Java object from

a Prolog programo For instance, send(#anArticle#,brand,[],BrandJ in Prolog is equivalent to Brand

= anArticle.brand() in Java. Finally, the buyArticle method ends disabling the userPreferences logic

module. This operation deletes the logic module from the active databas e of the agent.

In the example, we have shown how to define Java methods with embedded Prolog, how to use

knowledge (represented by Prolog elauses) referenced by a Java variable and how to use Java objects

within a Prolog query.

Now we show how to define logic modules embedded in Java programs. For instance, to create an

. nstance of the CommerceAgent class we must use its constructor with a logic module as argument:

CornmerceAgent anAgent = new CornmerceAgent(

{{ preference(car, [ford, Model, PriceJ) :­

Model > 1998,

Price < 200000.

preference(motorcycle, [yamaha, Model, PriceJ)

Model >= 1998,

Price < 9000.}}

this fragment of program, a logic module is defined as a sequence of Prolog elauses between { {

a d } }. Such a module contains preferences of a user.

A preprocessor that translates a Java program with embedded Prolog into a pure Java program

h ndles the integration between Java and Prolog offered by JavaLog.

4 Agent Interaction

I JavaLog, the interaction among agents is performed basically by messages. Messages are enable

b tween two agents or to a common blackboard. As messages can carry logic modules out, logic

k owledge can travel among agents both in point-to-point communications and blackboards reposito­

ri s for group interactions.

For example, the CommerceAgent agent is able to find and buy artieles based on preferences of

us rs. A user can instruct to this agent about he wants to buyo This instruction is made by sending a

4

message containing a logic module with its prefercnces aml/or a list of artieles to buy.

In the following example, thc CommerceAgent tries to buy a car, a radio and a TV from differ­

ent Shops. A blackboard is uscd to store offers. Shops publishing logic modules post these offers.

Examples of these modules are:

logicModule (Shopl) : - {

}

article{tv, [Hitachi TV, 20 in, 800])

article{radio, [Panasonic, h7823, 80])

logicModule(Shop2) :- {

article{tv, [Philips TV,20 in, 900])

}

When the C;ommerceAgent receives a buy message (figure 1), it iterates over the list of elements to buy

(tv, car, radio) looking into the blackboard for the offers that satisfy user interests. The buy method of

the CommerceAgent class is exposed:

buy{ LogicModule userPreferences, Vector articles) {

userPreferences.enable{)

}

for{ Enumeration e = articles.elements() e.hasMoreElements{)

if{ ?- send{#anArticle#,type, [],Type)

rcall(//blackboard, article(Type, Offer))

preference{ Type, Offer buy{ e)

userPreferences.disable{)

In the code, rcall(//blackboard,article(Type,Offer)) looks for artieles of type Type into the blackboard

taking into account user preferences. The first argument of rcall specifies the network location of

the blackboard. The second argument is a logic query. The coordinator executes this query on the

knowledge base composed by logic modules stored into the blackboard. In this example, the first

result to rcall is the instantiation Offer = article(tv,IHitachi T\~ 20 in, 8(0)). Using that offer, the

CommerceAgent analyzes the similarities between artiele properties and user preferences.

In the example, we have shown how an agent could share its mental state with other agentsand

can send queries to others agents (i.e. CommerceAgent to the coordinator). In JavaLog, an agent could

share one or more of its logic modules. This facl implies that other members of the comrnunity can

use the mental state defined in these shared modules.

JavaLog defines comrnunications mechanisms based on logic modules. They are enumerated

by: publication of logic modules (mental state); subscription to a published logic module owned by

another agent; delegation using mobility of logic modules (to an agent or a coordinator).

5

Off8rs are sto red into
logic modules

Shop1

Shop2

CommerceAgent

~. -2 bÚY¡ú_""e,e""""[",,,,"'d~,tvll
" ~ , ,

1 Modules are published
by shops \ '.

.......... . 3 article(tv,Ofl~~:
............... "

Blackboard

,.'

'4 article(tv,['Hitachi','20 in', 800])

Figure 1: Interaction among agents

5 Conclusions and Future Work

In this paper, we have addressed agent interaction in mu1ti-agent systems. Our multi-paradigm ap­

proach allows developers to solve the interaction problems by combinations of logic modules. This

support for programming distributed agents has been used in several developments, showing advan­

tageous related to manipulation of mental attitudes with logic clauses. These advantageous are based

on the efficiency and simplicity of JavaLog.

We are working on extending JavaLog to support the construction of mobile agents. The low level

mobility mechanisms will be supported by the Aglets framework [L098].

References

[AP97] A. Amandi and A. Price. Object-oriented agent programming through the brainstorm sys­

temo In PAAM '97 (Practica! Applications of Intelligent Agents and Mu!ti-Agents), London,

Apri11997.

[AP98] A. Amandi and A. Price. Building object-agents from a software meta-architecture. Lec­

ture Notes in Computer Science, LNCSD9 1515:21-30, 1998.

[BLM94] Michele Bugliesi, Evelina Lamma, and Paola Mello. Modularity in logic programming.

The Jouma! of Logic Programming, 19 & 20:443-502, May 1994.

6

[Fis94] M. Fisher. Representing and executing agent-based systems. In ECAI-94 Workshop on

Agent Theories, Architectures, and Languages, pages 307-323, Amsterdam, The Nether­

lands, August 1994.

[L098] Danny Lange and Mitsuru Oshima. Programming and Deploying Java Mobile Agents with

Aglets. Addison-Wesley-Longman. Computer & Engineering Publishing Group, 1998.

[O'K85) R. O'Keefe. Towards an algebra for constructing logic programs. In J. Cohen and J. Con­

ery, editors, Proceedings of IEEE Symposium on Logic Programming, pages 152-160,

New York, 1985. IEEE Computer Society Press.

[SG96] Mary Shaw and David Garlan. Software Architecture. Prentice-Hall, New Jersey, 1996.

[Sho93] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51-92, March

1993.

[WRR94] D. Weerasooriya, A. Rao, and K. Ramamohanarao. Design of a concurrent agent-oriented

language. In ECAI-94 Workshop 011 Agent Theories, Architectures, and Languages, pages

386-401, Amsterdam, The Netherlands, August 1994.

7

