
An Animated Metaphor 
for Agent Oriented Programming 

Sonia V. Rueda 
Departamento de Ciencias de la Computación 

UNIVERSIDAD NACIONAL DEL SUR 

Bahía Blanca, ARGENTINA 
e-mail: srueda<Ocriba.edu.ar 

Abstract 

The term Animated Systems has been introduced in the bibliography in reference to 
interactive dynarnic worlds simulations, composed of interacting independent objects [Tra96]. 
Simulation is a powerful tool because it allows the construction of virtual worlds that model 
a part of the real world. The laws of physics, the animal behavior patterns, are no longer 
abstract theories, and they transform into tangible realities. Through the creation, the 
observation and the modification of the virtual world it is possible to obtain an enhanced 
comprehension of the world that is being modeled. 

The most flexible way to create a simulation is by programming it [Cyp95]. The en­
vironments and languages of conventional programming allow the development of virtual 
worlds, but they are not adequate for this task. The conception of a program as a sequence 
of instructions, on what the procedural model is based, requires a considerable capacity for 
mental contortion. Even object oriented prograrnming, based on message passing, demands 
a strong level of abstraction. In particular, they are too complex for novice users. 

We cannot eliminate the inherent complexity of the problem of building a virtual world, 
but we can search for tools that are expressive enough so the task is not complicated any 
further. So, the construction of dynamic worlds requires paradigms, environments and pro­
grarnming languages that provide a new way of thinking about programs [Cyp94]. 

This article proposes agent based prograrnming as a metaphor for building worlds of 
interactive autonomous objects. This alternative is attractive because it is natural to build 
animated systems on the base of a metaphor that takes elements of live agents of the real 
world to build a virtual world. 

1 Introduction 

The computer is a universal medium that can be used to create interactive dynamic models of 
any mathematical, physical, biological, etc. process. The laws of physics, the animal behavior 
patterns can be comprehended on the base of concrete and visible simulations. The computa­
tional environments that allow this type of activity are particularly powerful tools for education 
because they can change the way children think and learn. 

The activity of expressing dynamic ideas in an interactive medium is known as prograrnming. 
Papert: "When a child learns how to program, it is the learning process that is transformed, it 
becomes an active and auto directed part." [Pap80] 

Conventional programming requires the learning of a language. A programming language 
demands the use of a very rigorous and inflexible syntax that constantly distracts the child from 
his main task. Learning a new language just to communicate with the computer is not attractive 
to the vast majority of thern. They love to manipulate it, have control over it, but it is not 
natural to them the way they have to express their wishes to it. 

The working environment should favor the creative process and not burden it. Sorne much 
more simple and natural, but at the same time rich and expressive, alternative should then be 



used. The graphic interfaces have resulted in trus sense very attractive because they are easy to 
use and very intuitive. 

The programming language is not the only aspect that burdens this activity. Writing a 
program requires a process of abstraction whose complexity depends on the problem. One 
alternative is to totally modify the way of thinking about programs using a metaphor that takes 
elements of the real world to build symbolic simulations [Rue98]. 

The term rnetaphor is usually used in reference to a linguistic resource destined to use the 
language in a figured sense. In this article when we speak of metaphor we do not refer to 
the literary sense but to a more ample notion developed in the Contemporary Theory of the 
metaphor, 

Agent based programming is a programming model strongly based on the arumated 
metaphor. The most important technique in the construction of agents consists in associating 
explicit goals to them. The goals make agents have a completely anthropomorphic appearance: 
an agent has a job to do, reacts upon the events that affect its work and is capable of detecting 
conflicts with the goals of other agents. 

2 Agent-Based Programming 

Agent based programming can be thought as a particular way of orgaruzing the fragments that 
compose a programo In object oriented programming the procedures are methods that describe 
the behavior of the instances of a class: The procedures are grouped then by the recognition 
of classes. In agent based programming the procedures allow the agents to carry out actions 
that allow them to reach their goals. The procedures are then grouped by their goals. Both 
models provide a great level of modularity and encapsulation through the separation between 
the interface and the internal implementation. 

In agent based progra.mming the arumated metaphor has a lead role. The anthropomorphic 
characteristics are present in the language as in the interface and the user is encouraged to think 
in terms of the agent's activity. These agents are not just mere "instruction followers" but are 
characterized by purpose, autonomy and reactivity. FinaHy they are animated entities. 

2.1 Contemporary Theory of the Metaphor 

In the classic language theory, the metaphor is associated to the literary language, in particular 
to poetry. In this conception a metaphor is a linguistic expression in wmch one or more words 
are used in a figured sense. That is, an expression is used to denote a "similar" concept to which 
it is reffering literally. So, in classic theory, metaphors are language resources and are not tied 
to thought. 

Contemporary theory tries to find a rigorous generalization to govern metaphors. AH 
metaphors establish a mapping between domains. Under this conception a metaphor is no 
longer a literary resource, it has to do with thought: a metaphor allows to tie a mental domain 
with another. 

In contemporary theory metaphors are no longer a mechanism exclusive to literature, they 
are resources of common use. In its place, the term "metaphoric expression" refers to a phrase 
that is the concrete realization of a metaphor. 



Metaphors are a central topic for the study of semantics ina natural language, but they 
are not part of the language but of the underlying conceptual system [Lak93]. The Contem­
porary Theory of Metaphors has discovered a metaphorical system that structures our current 
conceptual system. 

When a concept is used in reference to another, it is generally not a poetic expression used 
as a rethoric resource, but a way of reasoning about a domain starting from a more familiar 
one. The understanding of a domain and a strongly structured correspondence allow to reason 
about a less familiar one. Many physical experiences give place to literals, while less abstract 
concepts like emotions, causes and purposes are expressed through metaphors. 

The metaphor concept is attached to the analogy concept but they encase different meanings. 
They both allow to establish mappings between domains, but while in an analogy an explicit 
mapping is built between precisely specified domains, in a metaphor the mapping and even the 
domains remain implicit. An expression like: "my life is like a drifting ship" establishes an 
analogy, while "my life is a drifting ship" is a metaphor. 

Many metaphors are so rooted to our thinking habits and our language that it is difficult to 
see them as metaphors. A dead or transparent metaphor is a phrase that is so conventional 
that it is not possible to distinguish the mapping between domains. Some authors do not 
consider these phrases as metaphors. 

Metaphors play a key role, although a controverted one, in the discourse of science because 
they act as tools for building new concepts and terminology. Notwithstanding some computer 
science formalists oppose to the use of metaphors because they consider them a not rigorous 
way of thinking. 

2.2 Metaphors and Computing 

Our science is probably the one that most exploits the use of metaphors. Metaphors are so 
natural in computing that many times it is difficult to note their presence. Their use has been 
a permanent resource to explain new concepts in terms of others already known and to explore 
new domains and describe their characteristics. 

The use of the term "computing" to refer to the activity carried out by a complex electronic 
device, is itself a metaphor. As any other, this metaphor privileges certain aspects ofthe domain 
over others, in this case the operations carried out internally. 

Many terms with metaphoric roots, like "tree" or ''trash collection" have taken a technical 
meaning so strong that the original domain is no longer in sight. This phenomenon, in which 
metaphorical terms are transformed into literals, exists in many fields of science, but in particular 
in computing. 

Metaphors -are a frequent resource in the formation of programmers. In the majority of 
the initial programming courses a program is defined as a recipe. This metaphor allows the 
students to comprehend the behavior of the computer in terms of a domain that is familiar to 
them. Another concrete example is to draw rectangles to represent variables that contain values, 
even further these variables allow to name memory cells. Memory, as a storage place, is also a 
metaphor. In any case the purpose is to describe something little tangible through something 
more concrete. 

The use of the anthropomorphic metaphor for the description of programs is not a partic­
ularly new idea. In a greater or lesser measure it appears in object based programming, in 



the actors model and even in Logo. Notwitbstanding, in these models the metaphor has fun­
damentally a didactive role, it is used to illustrate initial concepts. The only animated part 
that persists in the systems developed under these models can be thought as an "instruction 
follower" 

Agent based programming begins with the conventional anthropomorphic mapping but 
changes in two ways. First it establishes a mapping where the computer is no longer pre­
sented as a simple anthropomorphic entity, but as a society of interacting autonomous agents. 
Second, it extends the mapping between the anthropomorphic representation and the underlying 
computational reality to include new characteristics, such as goals and emotions based on the 
goals' status. 

2.3 The AniPlated Metaphor 

An anthropomorphic metaphor is a mapping that describes the activity of a machine or another 
inanimate object in terms of human qualities. Anthropomorphic metaphors are useful and 
powerful because they al10w to explain the functioning of complex systems, too complex to be 
comprehended in mechanical or physical terms exclusively, from our knowledge of the human 
being and its actions. 

Computing systems, hardware and software, are particularly propense to be anthropomor­
phized, due to their complexity and apparent autonomy. In every programming language there 
underlies a metaphoric model that is in some way anthropomorphic [Tra96]. 

An animated metaphor is a mapping, even more general because it describes the activity of 
a machine or another inanimate object in terms of an animated creature. Animated metaphors 
allow to think in a system starting from its purpose and function, in a way that it is possible 
to understand it even without knowing its implementation. Computers erase the limit between 
the animated and the inanimate like few other objects can. 

The animated metaphor has been exploited during years to explain the operations of the 
Logo language to children. Under this metaphor the computer is a little person capable of 
performing some specific tasks and ordering other little people to perform other tasks. Every 
little person is asleep until someone wakes it up so it can perform its task. When it is over it 
goes back to sleep. All the Httle people are reactive but not autonomous, the specialization is 
in some way a form of purpose. 

The syntax of Logo approaches the natural language and puts the user in the role of the 
computer's instructor. In this way the animated metaphor is not only a didactic resource for 
the teachers to introduce the notion of procedure, but it also suggests a way to program with 
animated components. 

In the design of graphic interfaces for users there also underlies an animated metaphor. An 
interface can be thought as an intermediary between the user and the system. In this focus an 
interface in which a character controls the environment is an anthropomorphic entity. 

A goal of Artificial Intelligence is to derive computational models of human thought. The 
nature of this process is essentially metaphoric, but the direction of the mapping is opposite to 
the one we have seen up to now. In the field of distributed artificial intelligence, a system is 
divided into communicating concurrent components. The anthropomorphic metaphor is present 
in the representation of the components and in the way they communicate. 

The animated metaphor has then played a transcendental role in diverse areas of computing. 
Notwitbstanding, if our intention is to build virtual worlds that simulate a part of the real world, 
it is necessary to explore programming models with greater support for the animated metaphor. 



2.4 Animated Systems 

The concept of animation is so primitive that it is difficult to define it with precision. Animation 
can be thought as a basic category of the human mind, that appears in a variety of different 
forms in the different cognitive levels [Tra96, Min87]. 

The roots of animation are found based on perceptual processes, but its ramifications escape 
perception and affect the way we think about the actions and social behavior. 

The division between animated and inanimate would seem to be universal and innate. The 
capacity to carry out this division is in some sense perceptual because in a first level it is based on 
the capacity to distinguish movement from immobility and then the autonomous movement from 
the induced one. Notwithstanding, in this capacity, animated and life are equivalent categories. 

Children have the tendency to attribute properties of the animated to things that are noto 
The qualities projected over the inanimate world include life and conscience. The categories 
of animated and life are related but are clearly different. Plants are living things but are not 
animated while a robot is not in the category of living things and could be animated. 

The three key concepts that define the properties of an animated creature are: 

• Autonomy: an animated creature is capable of initiating an action without an external 
cause. 

• Purpose: the actions that are carried out by an animated creature are oriented to the 
concretion of a goal. Thus, the actions can be evaluated in terms of their effectiveness. 

• Reactivity: animated creatures modify their actions to adapt to the changes in the envi­
ronment. 

These properties are tied in concordance to a complex structure inside which these concepts 
confront themselves. The most controverted relation is given between autonomy and reactivity: 
as a creature reacts in function of the environment it loses autonomy. 

An animated system is a virtual world formed by multiple dynamic and interactive objects. 
The objects of an animated system must be: 

• Tangible, that is, concrete from the senses, and directly manipulable. 

• Reactive, they react on their own motivated by the user or other objects. 

• Incrementable, they must be modifiable to explore new possibilities. 

• Flexible, the system must allow the new abilities to be built from the older ones. 

A symbolic simulation, of the type we have named as valuable for the constructivist point 
of view, is an animated system. 



3 Agent Properties 

The idea of agents is not new. Many authors have studied problems involving the agent concepto 
It should thcn not be difficult to define an agent. Notwithstanding, the term agent, as has 
occured with many others, has been used to refer to or describe many related concepts but 
frequently different. The situation is further complicated if we consider the word agent related 
to sorne other term, for example intelligent agents, network agents, software agents, etc. 

In an interpretation that supports the animated metaphor, the agent must be characterized 
by the three basic properties of animation: purpose, autonomy and reactivity. This characteri­
zation must be able to be represented in concrete computational terms. 

In the implementation the goals of the agents must be explicit, that is they must have a 
concrete and accessible representation. The goals can support reactivity and conflict detection, 
in a way that the agent can react before events that affect its goals or interferences with other 
agents' goals. 

In a more ample sense, an agent based system is that whose functionality is distributed 
among active functional modules. Every module that carries out actions to reach a purpose is 
considered part of the agency. In concordance to this criterio n the roots of the metaphor of 
agents are in procedural programming. The procedures in a program can be thought as agents 
that cornmunicate through calls. Notwithstanding the three basic properties of animation, now 
associated to the concept of agents, are not present in the former programming models. 

3.1 Purpose, Goals and Conflict 

In a software system each component has a specific goal, but in a complex system it can be 
difficult to understand the function of every module an the way they relate. 

In an agent based system, the purpose of each agent should be explicit inside its computa­
tional representation. The goals are then the conceptual and computational base, giving each 
agent an explicit representation of its purpose. 

Each agent uses the explicit goals with different purposes, in particular: 

• Control: It is the basic use, the goals are used to control and structure the agent 's activity, 
calling procedures when it is necessary. That is, the goals indicate an agent when it should 
be run because it's goal is not yet satisfied. 

• Verification: Goals allow an agent to monitor the success or failure of its actions. An 
agent can create a subagent to try and reach its own goal following a specific method, if 
the method fails the subagent is removed and the superior agent grows in knowledge and 
can create another agent with the same goal but another method. 

• Conftict Detection: When an agent satisfies its goal it can continue monitoring it to 
detect if the intervention of another agent provokes his goal to become unsatisfied again. 

• Organization: Agent based programming can be thought as a way of organizing the 
fragments that compose a programo In the way that object oriented prograrnming organizes 
the procedures in function of the manipulated objects, agent based programming organizes 
them in function to the goals they try to reach. Both modularization alternatives offer 
a high level of encapsulation, that is, they allow to separate the external interface from 
the internal implementation. In object oriented programming, an object communicates 



with another by sending messages, without knowing about its internal representation or 
the implementation of the methods with which it will attend its message. In agent based 
programming an agent can try to ::>atisfy its goal and detect confiicts without knowing 
about the other agents' implementutions. 

• Visualization: Explicit goals allow to write easier to read programs and thereafter easier 
to verify and modify. 

The most simple alternative for representing explicit goals is to associate textual comments 
to the programs. Notwithstanding, this alternative only satisfies the last purpose. A richer 
possibility is to associate to each agent declarative information that allows it to know when to 
run, when to create subagents to aid it in fulfilling it's objectives, monitor it's own actions and 
those of it's subordinates and detect confiicts. 

Goals form the conceptual and computational base that allows to associate explicit repre­
sentations to the agents and contribute to the realization of the other two principIe qualities of 
animation: autonomy and reactivity. 

3.2 Autonomy 

In the standard procedural model the procedures are only run when they are explicitly called. 
On the other hand, agents are autonomous, this is to say they are capable of initiating actions 
on their own, without external calls. 

It is clear that this autonomy is in last instance apparent and that at last the running of an 
agent will respond to an external condition. In this way the actions of an agent can be seen in 
to levels: causal and autonomous. 

The most simple alternative to reach autonomy is based on concurrence. Each agent is a 
concurrent process that runs a simple loop. Concurrence is the mínimum mechanism to support 
autonomy but it requires sorne additional facilities for following goals and detecting confiicts. 

Another alternative is to allow agents to go off when an event is produced or a specific state is 
reached. This alternative is more efficient because the constant checking that the agent perfonns 
on the environment to decide if it should carry out an action is avoided. Notwithstanding, this 
causality compromíses autonomy because the agent is activated by an external force. 

3.3 Reactivity 

Agents operate on a changing world, in a way that they must be capable of sensing these 
changes and react adequately. Reactivity is the property that distinguishes an agent from the 
dumb executor suggested by the "follower of instructions". Even though an agent is capable of 
executing instruction sequences, it should also be capable of responding to the changes that the 
environment suffers. 

Reactivity is a property that is highly bonded with autonomy and purpose. An autonomous 
entity initiates an action on its own, but it must have a reason to do it. The most simple reason 
is a reaction to a change in the environment. 



3.4 Other anthropomorphic qualities of Agents 

The characterization of agents in anthropomorphic terms can be extended in various ways. 

It is possible to increase the computational states to refiect emotional states. Moreover, it is 
possible to use these computational states to modify the facial and corporal appearance of the 
characters. 

The activity and behavior of an agent can be refiected following different alternatives. Qne 
little exploited alternative, and without a doubt one of the most interesting open areas of agent 
based programming is the use of narrative techniques. 

An agent system must support the possibility to reach goals through different methods. Qne 
alternative to attack this problem is that each agent governs the work of a set of subordinate 
agents or subagents. Subagents have the same goal as the main agent, but they try to satisfy it 
through different methods. The main agent activates subagents following sorne strategy, until 
the goal is satisfied. Subagents lose in sorne way the property of autonomy because their behavior 
is ultimately reactive. 

An agent's actions are oriented towards the concretion of a goal. The agent should then have 
sorne form of planning for its actions that refiect its intentions, without violating the metaphor 
of agents, that is without contradicting the principIes of reactivity and autonomy. 

An agent system requires sorne mechanism to resolve conflicts among agents. Qne alternative 
is to use "mediators" that use the Würld's information and implement sorne form of negotiation 
to find a solution of compromise for each dispute. 

Agents should be able to acquire experience, remembering the methods that resulted ad­
equate to attack a problem and the circumstances under which they worked. Expert agents 
are capable of remembering their decisions without having to repeat actions that resulted fruit­
less. In particular, mediator agents should keep a record of the disputes that occured and the 
decisions taken to resolve them. 

The challenge consists in finding an adequate representation for each situation in a way that 
finding coincidences results relatively easy. It is clear that the agents expertness compromises 
the system's simplicity. 

As in a real society, an agent system requires an organization that controls its operation. 
'Whatever the chosen alternative there will be cost to payo 

The hierarchic model is the most popular in the real world and in agent systems. The 
world of agents is divided in domains that are controlled by subordinate agents. The greatest 
challenge of the hierarchic organization is to maintain the balance between subordination and 
the autonomy of the subagents. A subagent with few attributions will handle little information 
and will transfer the majority of the decisions to its superior. Through communication even 
more relevant information might be lost. This problemcan be attacked by increasing the level 
of autonomy of the subagents, the risk being the loss of control and the potential incoherence 
of the system. 

There are other ways of organizing an agent system, for example through "groups of ne­
gotiation by consensus" These organizations are little scalable and as the system grows it is 
more difficult to comprehend. Hierarchy makes systems easy to understand because they can 
be studied in a modular formo 



4 Environments for the development of agent based systems 

An agent is a program, or better yet, a portion of programo The interpretation of this portion 
can be made in accordance to different views. As any program, it is possible to qualify an agent 
in virtue of its correctness, efficiency and reliability. 

By nature, agent based programming emphasizes the actions over the computing. It is 
fundamental, then, that the agents be imbibed in an environment in which they can act upon 
other agents, passive or active. 

An agent based programming language must respect the basic principIes of 1lllderstandability, 
"expressitivity", modularity and "composicionallity" It must be possible to represent goals, 
detect conflict with other agents and react in correspondence. 

4.1 Agents as processes 

The most simple alternative consists in implementing each agent as a concurrent process that 
runs an iterative block. Inside the iterative block a specific action can be executed -specialized 
agents- or call any procedure -general purpose agents. 

Agents do not have expIicit goals or a declarative aspect, nor do they communicate with 
each other. The condition of agent is circumscribed to carry out actions without control by the 
environment. Agents modify their environment, modifying the values in slots. 

The system is completed with a driver that consists of a simple loop, in each cycIe the agents 
are called in a random sequence -round robin- and each one is executed in a cIock cycle. The 
concurrence is then implicitly synchronized. 

This execution by turns creates impredictability problems and dependence of the execution 
order. Two identical agent systems can exhibit different behavior according to the order in 
which the agents are executed. 

Example: Multilogo. In Multilogo the agents are processes that can execute any procedure. 
Agents are then general purpose entities. Each one of them has assigned a turtle and can 
communicate with the Lego creatures' sensors and effectors. Many agents can then control the 
same creature. Agents communicate among themselves by messages. 

In Multilogo agents are autonomous but there is no explicit support for goals, reactivity and 
conflict detection in trying to control the same creature. The goals can be implemented through 
conditionals in the procedures. 

Multilogo's greatest problem is that modularization is performed in two levels: processes for 
concurrent execution and ,procedures because the base language is Logo. This division by levels 
can result particularly complex for a child. 

4.2 Simulated Concurrence 

Ideally the agents should be executed concurrently, that is, the order of execution should not 
affect the results. One way of simulating concurrence keeping the aboye scheme is to post pone 
the sideffects produced by each agent over the slots until a complete cycle is performed. 

The driver works in two phases: it computes and it refreshes. This scheme presents two 
inconveniences. First, if an agent modifies a slot and then it accesses its value, the modification 



will not be visible. Moreover, if two agents provoke sideffects over the same slot, the final value 
will depend on the order in which the second faze is carried out. 

The first problem is resolved by preventing the agents to access the slots they modify. Tl1e 
second conflict is resolved associating to each agent an "urgency" value and to each slot a list of 
pairs (new value, reference to the agent that produces the value). Urgency is a dynamic value 
that can change. 

In the first phase each slot col1ects a list of "proposals" for new slots. In the secondphase the 
conflicts are resolved using a function that maximizes the utility, in this case the urgency. For 
each slot the urgency values of the agents that propose a change are compared. It is assumed 
that the urgency values are different. 

The resolution of conflicts can be performed by the user himself, that is, once the conflict 
is detected, the eÍfect of carrying out the different proposals is shown. This alternative is r.ot 
reasonable in complex systems in which the list of proposals can be very large. 

4.3 Agents as rules 

Another model for agents is based on rules. Each agent is associated to a rule, that is a condition 
or action. The agent executes the action when the condition is verified. 

A rule system is composed oí a set oí agents and a procedure that resolves conflicts. The 
system is not managed in function oí goals, but by the current state. The system is essentially 
reactive. The agents can have purposes but not explicit goals. 

This alternative is more restricted but allows to obtain more efficient implementations and 
simplifies the resolution oí conflicts. 

Example: Kidsim is a rules based programming environment designed to allow children to 
build graphic simulations [Cyp95]. Kidsim provides a very simple interface based on the direct 
manipulation that all0WS to create and modify agents. Each agent is associated to some rules that 
are edited íollowing the graphic interface principIes íor users (GUI). Kidsim uses rlemonstration 
programming to transíorm the graphic rules into conventional programs. 

4.4 Agents as extended objects 

In this alternative an agent is an object, oí object oriented programming, extended with the 
internal state and its communication protocol redefined to support intention. A conventional 
object keeps arbitrary values and communicates with unstructured messages. The state oí an 
extended object is defined as a mental state, it contains belieís, in contraposition to conventional 
objects that can be thought as simple minds. 

The role oí an agent is completely representational, it maintains a belieí system. There is 
no notion oí explicit goal and there isn't autonomy because the agents are passive, therefor 
there isn't conflict either. Each agent is also responsible íor maintaining consistency through 
memories. Agents communicate among themselves through a restricted set oí types oí messages: 
reports, demands, resolutions, devolutions. 

Example: Shoham Agent Oriented programming íormalism is a computational environment 
designed as an extension to object oriented programming [Sh093]. 



4.5 Agents as slots anci value generators 

In this view the actions of an agent only affect the agent itself and not the environment that 
surrounds it. The agents are active but their actions do not affect the world. The functional 
metaphor can be extended in accordance to this view. 

The agents are autonomous in the sense that they permanently change their own value, but 
they do not have an explicit goal representation or purpose. Because there exists one agent per 
slot there is no possibility for conflicto An agent can be thought as a cell in a worksheet. In this 
case an agent is part of an object. 

Example: Playground [Fen89] is an interactive environment organized from the functional 
model and designed as a platform for building worlds of graphic objects that execute actions. 
The basic unit of computing is an agent that works like a cel1 in a worksheet. The process­
ing is fundamentally based on the parallel recomputation of the cells, starting from functional 
expressions. 

4.6 Agents as behavior controllers 

An intelligent action arises in response to a condition in the world. Systems are organized as 
modules more or less independent each one of which has associated a specific behavior. the 
modules are connected through a net but moreover each one has its own sensors and effectors 
by which they communicate with the world. 

5 Conclusions 

The technology in our days provides an enormous variety of forms of communication. Some of 
them can be used to express ideas even without being an experto On the other hand, others 
require certain specialization to be used effectively. 

Programming is a very powerful alternative for it 's interactivity, dynamism and generality, 
but it requires certain dexterity, hard to acquire for the inexpert user. For years a great number 
of investigations and projects have been oriented to the study of paradigms, languages and 
environments that reduce the complexity of programming. Even though it is true that today 
programming is a relatively accessible activity, the difficulty level is still considerable. 

In the case of children learning to program it is required, as in any other genuine learning, 
that they feel motivated to doing it and the best way to obtain this is to design activities that 
reconcile the interests of children with those if the school [Car93]. The conventional programming 
environments are generally little flexible for a novice user to express his ideas. 

The objective of this work has been to explore new ways of thinking about animated sys­
tems prograrnming. Of this exploration arises the metaphor of agents that captures the basic 
properties of an animation: purpose, autonomy and reactivity. 

Instead of writing programs with some formal commands, agent based programming allows 
to develop them in animated terms. Children program a world inhabited by characters with 
goals and conflicts, starting probably with a simple roodel and roaking it grow increroentally. 



References 

[Tra96] Travers, M., Prograrnming with Agents: New metaphors for thinking about computation. 
Ph.D. Thesis, MIT, Boston, Massachussets. 1996. 

[Car93] Carretero, M., Constructivismo y Educación. AIQUE. 1993. 

[Cyp95] Cypher, A. and D. Smith, KidSim: End User Programming of Simulations. CHI95. 
Denver, USA. 1995. 

[Cyp94] Cypher, A., D. Smith and J. Spohrer, KidSim: Programming Agents without Program­
ming Language. Communications of the ACM, (37) 7, pp 54-67, 1994. 

[Lak93] Lakoff, G., The contemporary theory of metaphor in Mebphor and Thought, A. Ortony 
Ed., Cambridge University Press. 1993. 

[Pap80] Papert, S., Mindstorms: Children, Computers and Powerful Ideas. Basic Books, New 
York. 1980. 

[Min87] Minsky, M., Society of Mind. Simon & Schuster, New York. 1987. 

[Sho93] Shoham, Yoav,Agent Oriented Programming. Artificial Intelligence, 60(1),51-92, 1993. 

[Rue98] Rueda, S., La simulacion simbolica desde una perspect'iva constructivista. CACIC'98, 
Neuquen, Argentina, 1998 

[Fen89] Fenton, J. and K. Beck, Playground: An Object Oriented Simulation System with Agents 
Rules for children 01 all ages. in Proceeding of OOPSLA'89, ACM. 1989. 


