
Design Patterns as an Explicit Part o/ Applications 

Claudia Marcos*t and Marcelo Campo* 

*Univ.. Nacional del Centro Prov. Bs. As. - Fac. Ciencias Exactas 
lSlSTAN - Grupo de Objetos y Visualización, 

Paraje Arroyo Seco - Campus Universitario, (7000) Tandil, Bs. As., Argentina 

tUniversité catholique de Louvain - UCL 
lAG - lnstitute d'Administration et Gestion 

1 Place Doyens, (1348) Louvain-Ia-Neuve, Belgium 

E-Mail: {cmarcos.mcampo}@exa.unicen.edu.ar 

1. Design Patterns 

Design patterns are becoming increasingly popular as mechanisms to describe general 
solutions to design problems that can be reused in the construction of different applications. 
Gamma et al. [Garnma95] define design patterns as descriptions of communicating object 
classes that are customized to solve a general problem in a particular contexto The basic 
rnotivation behind the pattern idea resides in the fact that similar design problems recur in 
different context [Cockburn96, Pree94, Riehle96, Buschmann96]. The main goal of patterns is 
to solve a specific design problem allowing flexibility of evolution. 

Patterns make possible to talk, as well as to think about designs on a higher level of 
abstraction. Instead of thinking in terms of individual classes and their behavior, it is possible to 
start to think in terms of collaborating classes, their relationship and responsibilities. This raises 
the level in which designers communicate and discuss design decisions. In this sense, one ofthe 
potential benefits that the use of patterns brings to software development is the understanding 
and maintenance of designs. 

Essentially, a design pattern expresses a design intent, suggesting a generic organization 
of classes and distribution of responsibilities among them, that solve a design problem. If a user 
has a design problem and knows which pattern intent to solve his problem, and what classes and 
methods the pattern prescribes. Then, the user can apply this pattern in his design making more 
reusable ones. Once the design has been finished, a11 methods prescribed by the pattern must be 
implemented. If a pattern was used more than one time in the same application, its methods 
must be implemented each time. 

2. Tbe Problem 

To be the patterns effectively useful in the maintenance phase, it is necessary that they 
are well documented and reflected in the program codeo Unfortunately, this not always happens 
mainly because the pattern implementation depends on the facilities provided by the target 
programming language. 

In catalogues, the pattern implementation is often given by several informal 
recommendations, in terms of examples or template code, mainly in c++ and Smalltalk. Sorne 
languages can support a pattern directly by means of constructs or mechanisms of the language 
itself. For example, the pattern Singleton in Modula-3 through the module construct, or the 



Iterator pattern in CLU. On the other hand, the same pattem can be distorted or complicated 
because of the lack of a supporting language construct or mechanism. For example, the pattem 
Proxy in C++, because of C++ is a strongly typed language, or the Adapter in Smalltalk, 
because of the pattem Adapter needs multiple inheritance. Furthermore, the same pattem can be 
implemented in very different ways in the same programming language. For example, in the 
pattern Observer a c1ass can have the responsibility of taking the decision to notify a 
modification and another c1ass can have the responsibility of notifying the modification to all its 
dependents. Another altemative is that the same class can -have both responsibilities, that is, to 
take the decision and to notify the modification to aIl its dependents. 

In this way, with the usual programming languages, there is no easy way to keep a trace 
in the application code that parterns were applied during designo This causes valuable 
information to be lost during maintenance of application programs. Maintenance consists in 
assessing and adapting an operational system according to changes in the environment of the 
system and in the needs that the system is supposed to fulfil1. Maintenance is best conduced 
when all the information produced during the system life cycle is available, in particular which 
patterns were applied during designo Unfortunately, the current practice in that maintenance is 
most often based on the application code of the operational system and not in the application 
designo In this way, the advantages given by parterns in the design phase, like understanding and 
communicating design, are not applied in the maintenance phase. 

Several works have been developed to maintain design parterns in the application codeo 
Design parterns are recovered from application code in [Camp097] and [Lange95] works. In 
these works, particular characteristics of each partern have been identified that aIlow the 
identification ofthe potential parterns used in an application. These characteristics are compared 
with an existing application and the potential parterns used in the application are identified. The 
defmition of partern characteristics is a very hard task, for example, it has been very difficult to 
make a differentiation among the characteristics of similar parterns (such as, Composite and 
Decorator, or State and Strategy). Furthermore, for sorne patterns, it was not possible to find 
them, so the authors took into account specific aspects of a particular implementation language. 
This aIlows finding more potential parterns but it depends ón a specific programming language. 
Another drawback is that these works assume that the application to be analyzed was made 
using parterns, on the contrary case any partern would be found . 

• Another approach to maintain a trace of partems in the application code is the 
construction of a tool for automatically generating partern code from information supplied by 
the designer [Eden97, Budinsky96, Bosh96]. These tools introduce new notations by which the 
user can specify the parterns to be applied in the application. The tool uses this information to 
generate the code corresponding to those parterns in a specific programming language. This 
solution has sorne drawbacks, each time a partern needs to be incorporated or deleted, the 
application code must be regenerated, this can produce errors in the classes affected by the 
partern. Moreover, when new parterns are added in a tool it must be modified, this can produce 
errors in applications already created with the too1. 

The proposition to represent each design pattem with a special class, called Pattern 
class, implemented in C++ was presented in [Soukup92]. This class is a friend class and has the 
same pattern logic and behavior as the partern, the main purpose of the Pattern class is the 
interface. However, only few partern classes are represented and is uncertain whether -all 
partems can be implemented as this kind of c1ass. The class that represents a partern manipulates 
the internal object structure ofthe classes that form the partem violating the encapsulation. Ifthe 
attribute name of a c1ass is changed the corresponding Pattern class must be changed to 
maintain consistency. 

2 



The definition of several general-purpose language constructors and mechanisms that 
would simplify design patterns implementation was proposed in [Baumgartener96]. In this work 
each design pattern has been examined in detail, taking into account its implementation in 
different prograrnming languages. Using this analysis the authors describe the main 
characteristics that a programming language must have in order to simplify the pattem 
implementation. Unfortunately, a programming language with these characteristics does not 
currently exist. 

In all cases, any solution should consider the fact that is necessary to recognize that the 
design Uves inside the running system, defining the way such system behaves at runtime. 
Statically, on the other hand, the design also defines how the different components ofthe system 
are structured to implement such behavior. In other words, the design can be seen as a 
metamodel of the software system, which defines how such software is structured and behaves. 
If a mean to represent and implement such a metamodel at runtime were available then an 
explicit trace of the involved design structures could be deduced from the code itself. In this 
sense the use of computational reflection techniques appears as a reasonable altemative. 

3. Our Approach - Reflective Architecture for the Representation of 
Design Patterns 

In this work we propose a reflective model that allows representing design pattems as 
an explicit part of applications. In this model, pattems are reified as metalevel constructs, which 
provide the essential control structure that drives the program behavior during runtime. 

The reflective architecture proposed has two levels: metalevel, or rejlective level, and 
base level (Figure 1). The metalevel allows representing design pattems and the base level 
contains the specific information of the application under development. In this architecture the 
metalevel represents design pattems and the base level represents the specific elements of an 
application. Application classes, their methods, and relationships among classes are designed at 
this level. At run-time, the metalevel manipulates the objects at the base level according to the· 
architecture defined by the pattems used in the application. 

Design Patterns 
Representation Level 

Application Level 

Figure. 1 

DesignPattemB 

AppClass1 AppClass2 

BaseMethodA () BaseMethodB () 

Reflective architecture for the representation of design patterns. 

When a pattem is used in an application the association between the base and metalevel 
is done. At run-time, when an object at the base level receives a message the reflection 
mechanism takes the decision whether redirects the thread of control to the metalevel, according 
to the applied pattem. 



A pattern can be seen as a fine-grained frarnework, which prescribe a template of the 
control structure to solve a design problem. This control structure is represented by a metaobject 
class [Maes88] at the metalevel. Several design patterns have been analyzed, such as Gamrna's 
and Buschman's patterns and another patterns proposed in the literature (e.g., the Backup pattern 
[Subranmanian97]), and their template ofthe control structure represented by a rnetaobject class 
at the metalevel. By means of the use of metaobject classes for representing design patterns it is 
possible to maintain traceability in order to preserve patterns information for helping in the 
understanding and maintenance of applications. Metaobject classes can be reused whenever the 
patterns are used in the same or different applications. If a new pattern is necessary in an 
existing application to increase its functionality, it is possible to incorporate the new pattern 
dynamically. To do this, it is necessary to identify the pattern that we want to use and the 
application classes involved in the pattern, and codify sorne methods prescribed by the pattern. 

The reflective architecture supports several patterns but not all patterns proposed in the 
literature, however it is possible to need a pattern not represented yet in the reflective 
architecture for the construction of a new application. There are mechanisms to introduce a new 
pattern in the reflective architecture, it is only necessary to identify the template of the control 
structure ofthe new pattern and represent it in a new metaobject class. 

Sorne patterns are naturally formulated using one strategy where all methods and 
objects of a class go through a reflective behavior: we call this strategy class reflection. For 
other patterns, it is sufficient to apply a reflective behavior to sorne methods of the class: we call 
this strategy method reflection. Still other patterns are naturally formulated by having sorne 
objects of a class go through the reflective behavior: we call this strategy object reflection. 
These strategies define a reflection taxonomy. 

The reflective architecture and taxonomy was implemented in the CLOS [Kiczalzes91] 
prograrnming language by the introduction of sorne changes in its kernel. The most important 
change concerns to the re-defmition of the primitive message-passing function, which checks if 
there is a }netaobject bound to the target object [Marcos99]. If there is one, the message is 
delegated to the metaobject. The taxonomy can be used in the construction of several systems 
which need reflective characteristics. 

4. References 

[Baumgartner96] 

[Bosch96] 

/ 

[Budinsky96] 

[Buschmann96] 

Baumgartner G., Laüfer K., and Russo V. On the Interaction of Object­
Oriented Design Patterns and Programming Languages. Technical Report 
CSD-TRS-96-020. Department of Computer Sciences Purdue University. 
February 29, 1996. 

Bosch 1. Language Support for Design Patterns. In Proc. of Technology of 
Object-Oriented Languages and Systems, Tools Europe '96. Paris, France 
February 1996. Pretince-HaH. http://www.pt.hk-r.se/-bosh. 

Budinsky F., Finnie M., Vlissides 1., and Yu P. Automatic Code Generation 
from Design Patterns. mM System Journal Vol. 35 No 2 1996. 
http://www.almaden.ibm.comljournal/sjlbudinlbudinsky.html 

Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal Michael. 
Pattern-Oriented Software Architecture - A System of Patterns. John Wiley 
& Sons 1996. 

4 



[Campo97] Campo M., Marcos C., and Ortigosa A. Framework Comprehension and 
Design Patterns: A Reverse Engineering Approach. In Proc. of the Ninth 
International Cm?ference on Software Engineering and Knowledge 
Engineering SEKE'97, Madrid, Spain, June 18-20. 

[Cockburn96] Cockburn A. The Interaction of Social Issues and Software Architecture. 
Communication ofthe ACM. October 1996, Vol. 39 No.lO. pp. 40-49. 

[Eden97] Eden A. and Yehudai A. Patterns of the Agenda. Published in LSDF'97, 
Workshop in conjunction with ECOOP'97 European Conference on Object 
Oriented Programming Ireland July 1997. 

[Gamma95] Gamma E., Helm R., Johnson R., and Vlissides J. Design Patterns. 
Elements of Reusable Object Oriented Software. Addison Wesley 1995. 

[Kiczalzes9I] G. Kiczales, J. des Rivihres, and D. Bobrow. The Art of the Metaobject 
Protocolo MIT Press, 1991. 

[Lange95] Lange D. and Yuichi N. lnteractive Visualization of Design Patterns can 
Help in Framework Understanding. In Wirfs-Brock R., editor. Proc. of the 
10th Conference on Object-Oriented Programming Systems, Languages and 
Applications, OOPSLA'95, October 1995, Austin, Texas, ACM SIGPLAN 
Notices 3010. pp. 342-357 

[Maes87] Maes P. Concepts and Experiments in Computational Reflection. In 
Meyrowitz N.K., editor, Proc. of the 2nd Conference on Object-Oriented 
Programming Systems Languages and Applications, OOPSLA'87, 
December 1987, Orlando, Florida, ACM SIGPLAN Notices 2212. 

[Marcos99] Marcos c., Campo M., and Pirotte A. Extending eLOS to Support a 
Rejlection Taxonomy. Technical Report YEROOS TR-99/04, IAG-QANT, 
Université catholique de Louvain, Belgium, March 1999. 

[Pree94] Pree W. Design Patternfor Object Oriented Development. Addison Wesley 
1994. 

[Riehle96] Riehle D. and ZüIlighoven H. Understanding and Using Patterns in 
Software Development. Theory and Practice ofObject Systems 2, 1, 1996. 

[Soukup95] Soukup J. Implementing Patterns. In: J. O. Coplien, and D. C. Schmidt 
editors. Pattern Languages of Program Design. Chapter 20, pp 395-412, 
Addison Wesley 1995. http://www.codefarms.com/papers/patterns.htmI 

[Subramanian96] Subramanian S. and Tsai W. Backup Pattern: Designing Redundancy in 
Object-Oriented Software. In Pattern Languages of Program Design 2. 
Chapter 13, pp. 207-225, Addison-Wesley 1996. 




