INTERACCIONES MAGNETICAS EN LA FASE MONOCLINICA
DEL PIROFOSFATO DE SODIO Y HIERRO.

Tesis

Luis Terminiello*

Director: Dr. Roberto C. Mercader

1988

a Rosa

a Clari, Luli y Luichi
En memoria y homenaje......

...a mi madre.

...a mi amigo entrañable Dr. Juan Carlos Quiroga.

...a todos mis amigos y compañeros que están detenidos-desaparecidos.
AGRADECIMIENTOS

Quiero expresar mi sincero agradecimiento en primer lugar al Dr. Roberto C. Mercader, quien me dirigió en este trabajo con gran profesionalismo y seriedad brindándome además su amistad, posibilitando así que la tarea cotidiana fuese realizada con responsabilidad pero también con alegría.

También deseo agradecer profundamente a todos los que de una manera u otra hicieron posible que esta tarea pudiese concretarse. Al Dr. F. H. Sánchez y a la Dra. C. Caracoche delDto de Física de la Fac. de Ciencias Exactas de la Univ. Nac. de La Plata (DF-FCE-UNLP), por sus fructíferas discusiones y sugerencias. A la Dra. G. Punte (DF-FCE-UNLP) por sus valiosas discusiones y por su colaboración y sugerencias en el análisis de los difractogramas de neutrones. Al Dr. B. Rivero (DF-FCE-UNLP) por su colaboración en el manejo del programa de cálculo de las distancias interiónicas. Al personal del laboratorio de rayos X del Dto. de Física de la Universidad Federal de Minas Gerais (DF-UFMG), Brasil, por la realización de los difractogramas de polvo de rayos X entre 77 y 300 K. Al Dr. E. De Campo Valadares del DF-UFMG, por sus valiosas explicaciones sobre aspectos teóricos de los diferentes modelos y aproximaciones utilizados en fenómenos de ordenamiento magnético. Al Dr. A. Vasquez del Dto. de Física de la Universidad Federal de Rio Grande do Sul (DF-UFRGS), Brasil, por posibilitar la realización de las medidas Mössbauer entre 4.2 y 32 K. Al Dr. A. Gomes por su discusión y sugerencias sobre el modelo propuesto en este trabajo. Al Dr. G. Long del Dto. de Química de la Universidad de Missouri, EE.UU., por la realización de las medidas de difracción de neutrones. Al Dr. M. Tovar y al Lic. R. Zysler por la realización de las medidas de magnetización. Al Dr. E. Baran del Dto. de Química (DQ-FCE-UNLP), por su asesoramiento y colaboración para la preparación de las muestras. Al Dr. A. López-García (DF-FCE-UNLP) por su constante estímulo, confianza y amistad. A todos mis compañeros del Laboratorio de Espectroscopía Nuclear e Interacciones Hiperfinas (DF-FCE-UNLP) por alentarme y apoyarme en la realización de este trabajo. Al Lic. H. Viturro (CINDECA-FCE-UNLP) por su fundamental apoyo y compañerismo a lo
largo de la trabajosa etapa de redacción final de esta tesis. A la Dra. L. Rebollo Neira por su colaboración para tipar varios manuscritos, y por su inmensa amistad. Al Dr. Agustín Rodriguez (DF-FCE-UNLP) por su colaboración en el ajuste de los parámetros críticos y fundamentalmente por su amistad y compañerismo desde nuestra época estudiantil. Al Dr. Antonio Rodríguez del Instituto de Física de Líquidos y Sistemas Biológicos (IFLysB-FCE-UNLP) por haberme brindado su confianza y apoyo para el inicio de mi actividad científica. A todos mis amigos que me alentaron y me brindaron su cariño siempre.

También quiero expresar mi agradecimiento a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA) por el otorgamiento de becas de iniciación y perfeccionamiento en la investigación que hicieron posible la realización de este trabajo.

A mi esposa y a mis hijos también reitero mi gratitud, por apoyarme, por estimularme, por comprenderme, por quererme y acompañarme siempre en todos mis emprendimientos. Gracias.
Una piedra imán es una cosa maravillosa en muchísimos experimentos, y se parece a un ser viviente. Y una de sus virtudes notables es aquella [que causa rotación] que los antiguos consideraban como un alma viviente en el cielo. Porque sospechaban que tales movimientos no podían surgir sin una naturaleza divina y animada.

William Gilbert
INDICE GENERAL

INTRODUCCION...3

Capítulo I. ORDEN MAGNETICO

1.1. Tipos de estructuras magnéticas.................................8
1.2. Orden magnético espontáneo..................................10
1.3. Comportamiento magnético de sólidos por encima de la temperatura de orden.........................14
1.4. Interacciones magnéticas por debajo de la temperatura de orden...18
1.5. El modelo de campo molecular para sólidos ordenados magnéticamente.................................27
1.6. Campo molecular e interacciones de intercambio..32
1.7. Interacciones indirectas en sólidos iónicos: Superintercambio...37

Capítulo II DIFRACCION DE NEUTRONES EN MATERIALES MAGNETICOS.

2.1. Introducción..48
2.2. Determinación de la estructura magnética..........................60
2.3. El uso de las representaciones de simetría en la determinación de la estructura magnética...........64
2.4. Utilización de muestras policristalinas para la determinación de estructuras magnéticas...............67
Capítulo III INTERACCIONES HIPERFINAS EN MATERIALES MAGNETICOS.

3.1. Introducción.. 71
3.2. Interacciones magnéticas hiperfinas.
 Desdoblamiento Zeeman.................................... 72
3.3. Orígenes del campo magnético hiperfino............. 74
3.4. El efecto Mössbauer....................................... 78

Capítulo IV CARACTERISTICAS ESTRUCTURALES Y MEDIDAS EXPERIMENTALES.

4.1. Características estructurales del NaFeP₂O₇........... 87
4.2. Medidas de Susceptibilidad................................ 91
4.3. Medidas de Difracción de Neutrones.................... 99
4.4. Medidas Mössbauer... 107

Capítulo V. MODELO DE INTERACCIONES MAGNETICAS EN EL NaFeP₂O₇.

5.1. Modelo propuesto para la evaluación de las interacciones de intercambio a partir de los resultados experimentales................................. 114
5.2. Interpretación de los resultados y discusión del modelo... 122

Capítulo VI CONCLUSIONES.. 128

Apéndice A... 131
Referencias.. 138
INTRODUCCION

A pesar del tiempo transcurrido desde la aparición de los
primeros modelos, no existe hasta el presente una teoría general
que permita explicar en forma única los diferentes tipos de
fenómenos magnéticos que aparecen en diversos materiales.

Debido al gran número de factores intervinientes y a la
complejidad de tratar sistemas de muchos cuerpos, para avanzar en
la comprensión de las propiedades magnéticas es conveniente
investigar compuestos con adecuadas condiciones de simplicidad en
el entorno de sus iones magnéticos, de modo que se puedan analizar
por separado las contribuciones de las variables relevantes. Esto
permite postular modelos más sencillos donde los hechos de los que
la teoría no da cuenta aparecerán como correcciones en las
relaciones que expresan las propiedades observadas. Así, se puede
profundizar su análisis sin que las perturbaciones desdibujen
completamente el fenómeno bajo estudio.

El modelo de Heisenberg es el fundamento de la mayoría de los
tratamientos teóricos actuales de los fenómenos magnéticos
cooperativos en cristales no metálicos. Este modelo supone que la
interacción entre los i-ésimo y j-ésimo átomos magnéticos en el
cristal está dada por \(- J_{i j} \mathbf{S}_i \cdot \mathbf{S}_j\), donde \(J_{i j}\) es la interacción
de intercambio y \(\mathbf{S}_i, \mathbf{S}_j\) son los operadores de spin de los
respectivos átomos. Entonces el hamiltoniano para un cristal con
una sola clase de átomo magnético se puede escribir como:
\[H = - \sum_i \sum_{j \neq i} J_{ij} \hat{S}_i \cdot \hat{S}_j. \]

Prácticamente todas las propiedades magnéticas de un cristal (estructura magnética, temperaturas de transición, etc.) dependen de manera sustancial del signo y la magnitud de las interacciones de intercambio. Sin embargo, no es posible resolver el hamiltoniano de Heisenberg para cristales tridimensionales ni aún considerando sólo interacciones entre primeros vecinos. Es necesario introducir aproximaciones cuyos errores en la determinación de las \(J \) son difíciles de estimar pues no hay soluciones exactas como patrón de comparación.

La utilización de métodos semiempíricos para la determinación de las interacciones de intercambio son una posible solución al problema. Las estimaciones de las \(J \) se efectúan a través de valores experimentales de propiedades físicas que son luego usados en relaciones teóricas entre las interacciones de intercambio y dichas propiedades.

Hay dos razones para encarar este tipo de aproximación. En primer lugar, si un valor particular de \(J \) surge como resultado de varias clases diferentes de medidas, el acuerdo entre los valores obtenidos por distintas técnicas será una comprobación de la consistencia interna del modelo de Heisenberg y permitirá sugerir refinamientos y mejoras al mismo. En segundo término, los valores experimentales dan pautas de la validez de los supuestos fundamentales en los que están basados los cálculos teóricos de las interacciones de intercambio.
El NaFe$_2$O$_7$ se presenta como un sistema conveniente para la investigación de las interacciones de intercambio, debido a las características de su estructura cristalina, a la baja distorsión que presentan los entornos octaédricos de los iones con momentos magnéticos localizados, a la débil anisotropía, y al hecho de que al actuar el hierro en un estado de ionización 3+ su estado fundamental sea $^{6}S_{5/2}$. Esto último permite aproximar el estudio del sistema con un hamiltoniano de Heisenberg isotrópo para un spin 5/2.

En este trabajo se plantea la investigación de los acoplamientos magnéticos en el NaFe$_2$O$_7$ por medio de diferentes técnicas, se procura una explicación de los fenómenos observados y se calcula el tipo de interacciones básicas que llevan a las propiedades medidas, por medio de una aproximación semiempírica.

El trabajo está organizado en seis capítulos y un apéndice. En el capítulo I se desarrollan algunos conceptos generales sobre el ordenamiento de los sistemas magnéticos. Se dan las características más significativas de los tres grandes grupos de sistemas ordenados, ferro, ferri y antiferromagnéticos. Se analiza el comportamiento de los mismos por encima y por debajo de la temperatura de orden y el rol jugado por las interacciones responsables del ordenamiento magnético. Se introduce el modelo de campo molecular como una herramienta teórica apropiada para el estudio de este tipo de fenómeno y se establecen las relaciones formales que ligan los parámetros del modelo con las integrales de intercambio. Finalmente se analizan las particularidades que adoptan los acoplamientos en el caso de sistemas iónicos.
El capítulo II comprende una breve introducción a nociones básicas sobre difracción de neutrones con el objeto de comprender la interpretación de los difractogramas realizados a la muestra. Se evalúa la importancia de las consideraciones de simetría para la interpretación de las medidas y se describe en forma resumida el método de análisis del perfil de línea de Rietveld para muestras policristalinas, con el que fueron ajustados los datos.

En el capítulo III se introducen las interacciones hiperfinas nucleares, mostrando la relación entre éstas y el comportamiento magnético del material. Se establece el origen del campo magnético hiperfino, y se analiza su medición a través del efecto Mössbauer. Se estudian los efectos que la relajación provoca en los parámetros Mössbauer medidos y se plantea la posibilidad de la comprensión detallada de las propiedades magnéticas de un compuesto cuando se hace uso de toda la potencialidad de la espectroscopía Mössbauer.

Las características estructurales del pirofosfato de sodio y hierro se analizan en el capítulo IV, donde también se describen los resultados experimentales obtenidos por medidas magnéticas, de difracción de neutrones y Mössbauer.

En el capítulo V se desarrolla el modelo propuesto para la explicación del ordenamiento magnético observado, y se presenta la evaluación de las integrales de intercambio calculadas. Se hace un análisis e interpretación de los resultados obtenidos y se discuten algunas características del modelo.

El capítulo VI contiene las conclusiones más importantes de esta investigación así como las indicaciones de cuáles son los
estudios necesarios para llegar a una comprensión aún mayor del sistema.

Finalmente se incluye en un apéndice A una breve descripción de los detalles experimentales de la espectroscopía Mössbauer.
Capítulo 1. ORDEN MAGNETICO.

1.1. TIPOS DE ESTRUCTURAS MAGNETICAS.

En algunos sólidos, los momentos magnéticos están asociados a iones individuales localizados en sitios de red. Por debajo de cierta temperatura crítica T_c, aún en ausencia de campo externo, éstos adoptan espontáneamente direcciones definidas. Tales sólidos se conocen como ordenados magnéticamente. En algunos de ellos, los momentos dipolares individuales localizados pueden presentar una densidad de magnetización volumétrica neta llamada magnetización espontánea. En ese caso, el estado ordenado correspondiente se conoce como ferromagnético. En presencia de un campo magnético externo, la magnitud de la magnetización en el material crecerá hasta un valor máximo llamado de saturación.

Más frecuentes aún (Ashcroft, 1981) son los sistemas en los que un arreglo antiparalelo de los momentos locales conduce a una magnetización macroscópica nula. Esos sistemas ordenados se llaman antiferromagnéticos.

En los ferromagnetos más simples todos los momentos locales tienen en promedio la misma magnitud y dirección. El estado antiferromagnético más simple ocurre cuando los momentos locales definen dos subredes interpenetradas de idéntica estructura. Dentro de cada subred los momentos tienen la misma magnitud y dirección en promedio, pero las magnetizaciones netas de las dos subredes son exactamente iguales y opuestas, sumando a cero el momento magnético total del cristal.
fig 1.1.1: Ordenamiento antiferromagnético en una red bcc.
Los espines de la misma clase forman dos redes cubicas simples interpenetradas.

El término ferromagnético también se usa en un sentido más restringido, para distinguir entre estados magnéticos que aparecen cuando hay varios iones magnéticos por celda primitiva, no necesariamente idénticos. Así el término ferromagnético se reserva para aquellas estructuras magnéticas en las que todos los momentos locales tienen componentes en la misma dirección que la magnetización espontánea. Aquellos sólidos que exhiben magnetización espontánea, pero cuyos momentos individuales no satisfacen este criterio se llaman ferrimagnéticos. En un estado ferrimagnético simple la interacción de intercambio entre vecinos próximos favorece el alineamiento antiparalelo, como en los antiferromagnetos, pero siendo que los momentos magnéticos de iones vecinos no son iguales, la magnetización no se cancela completamente, dejando al sólido con un momento total no nulo.
1.2. ORDEN MAGNETICO ESPONTANEO.

Aún cuando el origen del campo magnético interno de un ferromagneto está asociado exclusivamente a la existencia de los momentos magnéticos permanentes de iones en la red, la magnetización inducida por un campo aplicado sobre una muestra ferromagnética dependerá generalmente de la forma de la muestra, de su historia magnética y de la intensidad del campo aplicado (Martin, 1967). Una descripción aceptable del ferromagnetismo debe dar cuenta de las características básicas de esta situación compleja. Un punto importante es que por lo general una muestra ferromagnética continua algo magnetizada aún en ausencia de campo externo. Esta magnetización remanente revela una de las propiedades más características de los materiales ferromagnéticos, es decir, el ordenamiento espontáneo de largo alcance de las direcciones de los momentos magnéticos asociados a algunos de los
electrones atómicos.

El fenómeno de magnetización espontánea se observa más fácilmente en monocristales. En éstos es posible encontrar una dirección cristalográfica según la cual un campo de pocos Oersteds sea suficiente para magnetizar el sólido hasta valores próximos a la saturación. En otras direcciones cristalográficas, es más difícil inducir una magnetización neta y se necesitan campos externos mucho mayores para que la magnetización adopte la dirección de dichos campos.

Esta observación denota la existencia de direcciones de fácil magnetización, o direcciones preferenciales que induce naturalmente la idea de que un cristal ferromagnético está espontáneamente magnetizado localmente en un alto grado, aún en ausencia de campos aplicados, pero que esas diferentes regiones del cristal tienen magnetizaciones orientadas en direcciones diferentes (aunque equivalentes cristalográficamente) (Kanamori, 1963). Por ejemplo, un cristal de α-Fe (hierro alfa) es cúbico bcc, teniendo seis direcciones preferenciales equivalentes (considerando ambos sentidos), paralelas a las aristas de la celda cúbica elemental. En consecuencia, un cristal de Fe desmagnetizado está naturalmente subdividido en regiones, o dominios, cada una magnetizada espontáneamente en una de las seis direcciones preferenciales equivalentes. Si se estableciera localmente un campo interno, muy pequeño, en alguna de estas seis direcciones, aquellos dominios magnetizados se expandirían en esa dirección a expensas de las otras, de tal modo que, idealmente, el cristal se transformaría en un único dominio. Este tipo de descripción, debida originalmente a Weiss (Weiss, 1907), da cuenta de la
facilidad con que un monocristal se puede magnetizar hasta la saturación en cualesquiera de sus direcciones preferenciales. La energía necesaria para pasar de una dirección a otra determina la altura de las llamadas barreras de anisotropía magnética.

Hay muchos casos, en general determinados por la simetría del compuesto cristalino estudiado, en los que fuerzas anisotrópicas juegan un rol importante en la formación de las estructuras magnéticas de equilibrio. Estas fuerzas son de naturaleza diferente a las de intercambio (que tienen un carácter isotrópo).

La forma específica de los términos anisotrópicos está determinada por la simetría del cristal, y no puede decirse nada de éstos en forma general, excepto que son varios órdenes de magnitud más pequeños que las fuerzas de intercambio. Esto se vincula al hecho de que las fuerzas de intercambio son de origen electrostático y las anisotrópicas son de origen magnético (spin-spin, cuadrupolar, spin-órbita). En consecuencia, cuando se establece el orden magnético en el cristal difieren los roles de estos dos tipos de fuerzas. Las fuerzas de intercambio determinan la orientación mutua de los momentos magnéticos de las subredes en el cristal, pero sus orientaciones específicas con respecto a los ejes cristalográficos se deben a las fuerzas anisotrópicas. En ciertos casos, como resultado de la simetría específica del cristal, las fuerzas anisotrópicas también pueden desviar la orientación mutua de los momentos magnéticos de subred, debida originalmente a las fuerzas de intercambio. Esto da lugar, por ejemplo, a la aparición de pequeños momentos magnéticos espontáneos en un cristales antiferromagnéticos (ferromagnetismo débil) (Moriya, 1963, 1960a, 1960b; Turov, 1961).
Resumiendo, podemos considerar distintos tipos de interacciones anisotrópicas. Una es la interacción dipolar entre los momentos magnéticos; otra, un tanto más complicada, se la conoce usualmente como interacción anisotrópica de intercambio o interacción pseudodipolar. Esta última se debe a un efecto combinado del acoplamiento L-S y de la interacción de intercambio. Además de estos dos tipos de acoplamiento debemos considerar la contribución anisotrópica debida a efectos del campo cristalino actuando sobre el ión magnético, que se expresa como una función del spin de dicho ión. Las sales paramagnéticas exhiben generalmente factores g anisotrópicos, que reflejan dependencia direccional en los efectos de campo cristalino. Finalmente, en el caso de sustancias antiferromagnéticas también se pueden considerar (Nagamiya, 1955) estás tres fuentes principales de energía de anisotropía: la interacción dipolar magnética, la interacción anisotrópica de intercambio, y la anisotropía del campo cristalino.
1.3. COMPORTAMIENTO MAGNÉTICO DE SOLIDOS POR ENCIMA DE LA TEMPERATURA DE ORDEN.

Veremos ahora qué ocurre con los sistemas magnéticos por encima de su temperatura de orden. Consideremos las propiedades magnéticas de un sólido. Por un lado, la interacción de intercambio tenderá a alinear los momentos magnéticos permanentes, por otro, la energía térmica tiende a desordenarlos. Si el sistema está en equilibrio térmico con la red cristalina, la distribución de los átomos entre los diferentes valores posibles de M, (-J, -J+1, ..., J-1, J), que caracterizan las distintas orientaciones que puede tomar el momento total J de un conjunto de electrones con respecto a un campo magnético H, estará gobernada por la estadística de Maxwell-Boltzmann. La probabilidad de que un átomo o íón esté en un estado M será proporcional a $\exp (-\frac{U_M}{k T})$, donde k y T son la constante de Boltzmann y la temperatura absoluta, y U_M la energía magnética del sistema en el estado M.

Por lo tanto el momento dipolar por unidad de volumen será

$$
m_d = \frac{N \sum_M m_H \exp (-\frac{U_M}{k T})}{\sum_M \exp (-\frac{U_M}{k T})}, \quad (1.3.1)
$$

donde N es el número de átomos por unidad de volumen y m_H la proyección del momento dipolar en la dirección de H. Substituyendo U_M y m_H por
\[U_M = M g \mu_B H \quad y \quad m_H = -M g \mu_B, \]

donde \(g = \frac{3J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} \) es el factor giromagnético de Landé, y \(\mu_B \) el magnetón de Bohr, obtenemos

\[
m_\nu = \frac{N \sum m - Mg\mu_B \exp\left(-\frac{Mg\mu_B H}{kT}\right)}{\sum \exp\left(-\frac{Mg\mu_B H}{kT}\right)}. \tag{1.3.2} \]

Poniendo \(x = g\mu_B H/kT \) y desarrollando la exponencial obtenemos para \(x \ll 1 \) (esto es exceptuando campos muy grandes o muy bajas temperaturas)

\[
m_\nu = \frac{N g\mu_B \sum (-M + M^2 x)}{\sum (1 - Mx)}. \tag{1.3.3} \]

La suma sobre \(M \) da cero pues sus valores varían desde \(-J\) a \(+J\). Puesto que la suma de los cuadrados de los primeros \(M \) números naturales es \(M(M+1)(2M+1)/6 \), obtenemos

\[
m_\nu = \frac{N g\mu_B x J(J+1)(2J+1)}{3(2J+1)}, \tag{1.3.4} \]

o sea

\[
m_\nu = \frac{N g^2 \mu_B^2 H J(J+1)}{3kT}. \tag{1.3.5} \]

La susceptibilidad por unidad de volumen está dada por \(m_\nu/H \),
es decir

\[\chi_\nu = \frac{Ng^2 \mu_B^2 J(J+1)}{3kT}. \]

(1.3.6)

La restricción de que \(x << 1 \) limita la validez de las expresiones anteriores como podemos ver del hecho de que para \(g=2 \) y \(T = 1K \) es \(x=1 \) cuando \(H \) toma el valor 7.4 kG. Entonces las expresiones (1.3.3) a (1.3.8) no serán válidas para campos muy grandes o a muy bajas temperaturas. En estos casos debe recurrirse a la ecuación (1.3.2) original que adopta la forma:

\[m_\nu = Ng\mu_B J \left[\frac{2J+1}{2J} \coth \left\{ \frac{(2J+1)x}{2} \right\} - \frac{1}{2J} \coth \left(\frac{x}{2} \right) \right]. \]

(1.3.7)

La expresión entre corchetes se llama función de Brillouin. Para valores grandes del argumento la coth tiende a la unidad, de modo que para campos grandes o bajas temperaturas \(m_\nu \) alcanza el valor de saturación

\[m_\nu = Ng\mu_B J. \]

(1.3.8)

La ecuación (1.3.6) muestra que bajo las condiciones mencionadas la susceptibilidad debería ser inversamente proporcional a la temperatura. Esta es la conocida ley de Curie, y a menudo se la escribe como

\[\chi_\nu = C/T. \]

(1.3.9)

Los datos experimentales se comparan con una relación de este
tipo, donde \(C = \frac{N g^2 \mu^2}{3k} J(J+1) \) se denomina constante de Curie.

En los iones de metales de transición, la capa parcialmente llena 3d es la responsable del momento dipolar magnético permanente (Freeman, 1965). Esta capa es la más externa del ión y por lo tanto interactúa fuertemente con el campo cristalino, produciéndose un desdoblamiento en los niveles de energía del ión. Por regla general, cuanto menor sea la simetría de un campo, tanto mayor será la tendencia de los estados de ión libre a desdoblarse y tener diferentes energías.

Un campo cristalino de baja simetría desdoblará los niveles 3d dejando un nivel fundamental electrónicamente no degenerado. En este nivel el valor medio del impulso angular orbital \(\langle \vec{L} \rangle \) es cero y en consecuencia es, en primera aproximación, nulo el momento dipolar magnético de origen orbital asociado con dicho nivel. En este caso decimos que el impulso orbital ha sido "extinguido" por efecto del campo cristalino (White, 1970). Así, en general, solo el spin electrónico \(\vec{S} \) contribuirá al momento magnético del estado fundamental que será \(2S+1 \) veces degenerado de acuerdo con las orientaciones posibles de \(\vec{S} \). Entonces en (1.3.2) los valores permitidos de \(M \) estarán comprendidos entre \(+S \), \(S-1 \), \(S-2 \),..., \(-S\). La expresión para la susceptibilidad será la misma que en (1.3.6) excepto que \(J \) debe ser reemplazado por \(S \), y \(g \) tendrá el valor 2, correspondiente a los estados de spin solamente.
1.4. INTERACCIONES MAGNÉTICAS POR DEBAJO DE LA TEMPERATURA DE ORDEN

1.4.1. Interacción de Intercambio.

Como ya adelantamos en el parágrafo 1.1, la interacción de intercambio es la principal responsable del ordenamiento magnético espontáneo que manifiestan algunos materiales por debajo de la temperatura de orden. En realidad existe para todas las temperaturas y compite permanentemente con el desorden que inducen los fonones. Es una consecuencia de la naturaleza cuántica del sistema y no tienen contrapartida clásica.

Si las funciones de onda de los electrones de dos átomos se superponen, entonces los electrones del átomo 1 estarán de alguna forma asociados con los del átomo 2 y vice versa. En consecuencia debe haber alguna interacción entre los dos grupos de electrones ya que de esa manera pueden "intercambiar" sus roles. En particular habrá una correlación entre los momentos dipolares de los electrones. En general, se encuentra que el sistema tendrá una energía menor si los momentos magnéticos de los átomos vecinos son antiparalelos (Martín, 1967). Sólo en el caso de materiales ferromagnéticos la orientación paralela tiene una energía menor. La magnitud de la interacción de intercambio dependerá de la magnitud de la superposición de funciones de onda de los electrones y, por lo tanto, de la dilución paramagnética. Sin embargo, una dilución alta no es suficiente para evitar los efectos del intercambio ya que puede tener lugar un mecanismo indirecto o de superintercambio a través de interacciones de
intercambio con un ión diamagnético vecino como intermediario entre iones paramagnéticos. Un ejemplo de sistemas donde pueden ocurrir estos mecanismos lo constituye las sales del grupo del hierro, entre las que se encuentra el compuesto NaFeP₂O₇, cuyo estudio es objeto de este trabajo.

1.4.2. Ferromagnetismo.

Para materiales ferromagnéticos la energía de intercambio tiene un mínimo cuando el sistema de spines de átomos vecinos están paralelos entre sí. En el modelo de campo molecular propuesto por Weiss podemos reemplazar el efecto producido por la interacción de intercambio sobre un ión particular como generado por un campo magnético interno \(\vec{H}_{\text{int}} \) sobre el ión, que será proporcional al momento magnético de sus vecinos. Por lo tanto \(\vec{H}_{\text{int}} \) puede escribirse como

\[
\vec{H}_{\text{int}} = \lambda \vec{m}_\nu
\]

(1-4-1)

donde \(\lambda \) es una constante y \(\vec{m}_\nu \) es el momento magnético por unidad de volumen del material. Debemos recordar sin embargo que, si bien se acostumbra a discutir el efecto de las fuerzas de intercambio en términos de un campo magnético interno, en realidad la interacción se debe al potencial coulombiano entre los electrones. El efecto de \(\vec{H}_{\text{int}} \) en la susceptibilidad se encuentra substituyendo \(\vec{H} + \vec{H}_{\text{int}} \) por \(\vec{H} \) en la expresión \(\vec{m}_\nu = \chi_\nu \cdot \vec{H} = (C/T) \cdot \vec{H} \), o sea

19
\[
\hat{\mathbf{m}}_\nu = C (\hat{\mathbf{H}} + \lambda \hat{\mathbf{m}}_\nu) / T , \tag{1.4.2}
\]

y por lo tanto la susceptibilidad definida por \(\mathbf{m}_\nu / H \) es

\[
\chi_\nu = C (H + \lambda \mathbf{m}_\nu) / HT = C / (T - \lambda C) . \tag{1.4.3}
\]

En consecuencia

\[
\chi_\nu = \frac{C}{T - \theta_\nu} , \tag{1.4.4}
\]

donde \(\theta_\nu = \lambda C \). Esta es la ley de Curie-Weiss y \(\theta_\nu \) es la constante de Weiss.

A temperaturas mayores que \(\theta_\nu \) la substancia muestra una susceptibilidad paramagnética dependiente de la temperatura según la ec. (1.4.4). Este comportamiento difiere de un paramagneto puro en el desplazamiento que las interacciones de intercambio siempre actuan en la curva de la inversa de la susceptibilidad con la temperatura. En las cercanías de \(\theta_\nu \) la energía asociada a la interacción de intercambio compite con el desorden debido a la energía térmica de los iones y entonces los spins vecinos tienden a alinearse paralelamente entre sí aún en ausencia de un campo magnético externo. Esta alineación incrementará el valor de \(\mathbf{m}_\nu \) haciendo así más grande el valor de \(\hat{\mathbf{H}}_{\text{int}} \), que a su vez hará que la interacción de intercambio sea más fuerte aún, provocando en consecuencia un alineamiento más eficiente de los spins. De este modo se desencadena un proceso cooperativo que da como resultado un completo alineamiento de los spins a temperaturas no mucho menores que \(\theta_\nu \). La temperatura de la transición, distinta de \(\theta_\nu \), se llama temperatura de Curie, \(T_c \).
1.4.3. Antiferromagnetismo.

La energía de intercambio entre dos iones es muy sensible a la distancia que los separa, y ocurre que sólo para un pequeño rango de separaciones la energía es mínima cuando los spines vecinos son paralelos. En la mayoría de los casos, la energía de intercambio es más pequeña cuando los spines vecinos son antiparalelos. El alineamiento de los spines en un arreglo antiparalelo también es un efecto cooperativo que ocurre a una temperatura conocida como la temperatura de Neél (T_N). A este fenómeno L. Neél (1932) lo llamó antiferromagnetismo. Podemos considerar a un material antiferromagnético como un arreglo de dos redes interpenetradas con spines paralelos en cada una de ellas pero antiparalelos entre sí (Hastings, 1958). Haciendo un tratamiento de campo medio, similar al caso del ferromagnetismo (Neél, 1948), podemos suponer que sobre un ión de una red A actúan (además del campo externo \mathbf{H}) preponderantemente sus primeros vecinos (que estarán en una red B) por medio de un campo interno \mathbf{H}_{ib}. Si \mathbf{m}_b es la magnetización por unidad de volumen de la red B, entonces podemos escribir para el campo total \mathbf{H}_A sobre A.
\[\mathbf{H}_A = \mathbf{H} + \mathbf{H}_{ib} = \mathbf{H} - \lambda \mathbf{m}_b \quad , \quad (1.4.5) \]

análogamente
\[\mathbf{H}_B = \mathbf{H} + \mathbf{H}_{ia} = \mathbf{H} - \lambda \mathbf{m}_a \quad . \quad (1.4.6) \]

Se usan los signos negativos pues la interacción de intercambio tenderá a destruir el alineamiento paralelo a \(\mathbf{H} \). Podemos calcular la susceptibilidad, por encima de \(T_N \), para cada red separadamente, usando \(\mathbf{H}_A \) y \(\mathbf{H}_B \) en lugar de \(\mathbf{H} \), como hicimos en (1.4.2). Entonces
\[\mathbf{m}_a = (1/2) C (\mathbf{H} - \lambda \mathbf{m}_b)/T \quad y \quad \mathbf{m}_b = (1/2) C (\mathbf{H} - \lambda \mathbf{m}_a)/T \quad . \quad (1.4.7) \]

(el factor 1/2 surge pues la mitad de los átomos están en cada subred), luego
\[\mathbf{m}_v = \mathbf{m}_a + \mathbf{m}_b = (1/2) C \{2\mathbf{H} - \lambda (\mathbf{m}_a + \mathbf{m}_b)\}/T \quad . \quad (1.4.8) \]

Por lo tanto
\[\chi_v = m_v / H = C \{1 - \lambda (m_a + m_b)/2H\}/T \quad , \quad (1.4.9) \]

\[\equiv C / (T + \theta') \quad , \quad (1.4.10) \]

donde
\[\theta' = \lambda C / 2 \quad . \quad (1.4.11) \]

En consecuencia la temperatura de Neél de una sustancia antiferromagnética obedece una ley de Curie-Weiss, pero con una \(\theta' \) de signo opuesto a \(\theta_v \).

La temperatura de Neél puede ser deducida de (1.4.5) y (1.4.6) haciendo igual a cero el campo externo \(H \). Cuando ocurre el alineamiento antiferromagnético, puede obtenerse una solución no trivial del sistema de ecuaciones. Sustituyendo \(\lambda \) de (1.4.11)

22
\[
\begin{align*}
\hat{H}_A &= -2\theta' \hat{P}_B / C \\
\hat{H}_B &= -2\theta' \hat{P}_A / C
\end{align*}
\]
(1.4.12)

Si ahora suponemos que cada subred obece una ley de Curie, o sea

\[
\hat{\mathbf{m}}_\alpha = (1/2) \hat{H}_\alpha C / T, \quad \alpha = A, B
\]
(1.4.13)

\[
\begin{align*}
\hat{H}_A &= 2T\hat{\mathbf{m}}_A / C \\
\hat{H}_B &= 2T\hat{\mathbf{m}}_B / C
\end{align*}
\]
(1.4.14)

De manera que (1.4.12) se transforma en

\[
\begin{align*}
(T/C)\hat{\mathbf{m}}_A &= -(\theta'/C)\hat{\mathbf{m}}_B \\
(T/C)\hat{\mathbf{m}}_B &= -(\theta'/C)\hat{\mathbf{m}}_A
\end{align*}
\]
(1.4.15)

Si ponemos la condición de que \(\hat{\mathbf{m}}_A, \hat{\mathbf{m}}_B \neq \mathbf{0}\), entonces la solución de (1.4.15) es \(T = \theta'\). En consecuencia la temperatura de Neél, \(T_N\), deberá ser \(\theta'\).

Sin embargo, aunque hemos identificado \(\theta'\) y \(\theta_w\) en (1.4.10) y (1.4.4) con las temperaturas a las cuales los materiales se transforman en antiferromagnéticos y ferromagnéticos respectivamente, esto no surge precisamente de la experimentación (Rosenberg, 1985). Los valores de \(\theta'\) y \(\theta_w\) obtenidos de (1.4.10) y (1.4.4) usando medidas de susceptibilidad en altas temperaturas no son exactamente las mismas que las temperaturas de transición en las que se observa el comienzo de los efectos cooperativos. Para antiferromagnetos, en particular, el valor real de \(T_N\) es mucho
menor que θ'. Esta discrepancia podría explicarse tomando en cuenta las interacciones de los iones con sus segundos vecinos. Estos, perteneciendo a la misma red que el íón considerado, producirán una interacción que tenderá a perturbar el arreglo antiparalelo, reduciendo así la temperatura de orden.

1.4.4. Susceptibilidad de una sustancia antiferromagnética por debajo de la temperatura de Neél T_N.

En el punto anterior se mostró que la susceptibilidad χ de un antiferromagneto sigue una ley de tipo Curie, por encima de la temperatura T_N. En un cristal cúbico χ debería ser isotropa. Esto no es el caso por debajo de T_N. Si consideramos un pequeño campo magnético aplicado sobre la muestra, podemos hacer un análisis simple del comportamiento de la susceptibilidad. Primero supongamos que el campo lo aplicamos perpendicularmente a la orientación de spin en campo cero. Supondremos, también, que en el cero absoluto las subredes se alinean perfectamente antiparalelas, pero que en presencia de un pequeño campo sus spines rotan un ángulo ϕ con respecto a sus direcciones originales.

La interacción de la subred B sobre la subred A puede considerarse como debida a un campo $-\lambda \hat{\mathcal{M}}_B$ que actuará en dirección opuesta a $\hat{\mathcal{M}}_B$, como se muestra en la fig. 1.4.1.
fig.1.4.1: Magnetización de un antiferromagneto cuando se aplica un campo perpendicular a la orientación de spin. Cada subred rota un pequeño ángulo ϕ, generando un momento magnético neto.

Por lo tanto, la componente de este campo perpendicular a \vec{m}_A será $-\lambda \vec{m}_B 2\phi$ (ya que si $\phi\ll 1$, es $\sin\phi \cong \phi$), y en el equilibrio esto debería ser igual y opuesto a la componente debida al campo externo \vec{H}. Ya que ϕ es pequeño, esta componente será aproximadamente igual a \vec{H}. En consecuencia

$$\vec{H} = \lambda \vec{m}_B 2\phi.$$ \hspace{1cm} (1.4.16)

El cambio en el momento magnético de las dos subredes debido a la orientación producida por \vec{H} será para cada una $\vec{m}_A\phi$ y $\vec{m}_B\phi$, y ya que estas son iguales entre sí, el momento magnético total será

$$\vec{m}_\nu = 2\vec{m}_B\phi,$$ \hspace{1cm} (1.4.17)

y la susceptibilidad

$$\chi = m_\nu / H = 1/\lambda.$$ \hspace{1cm} (1.4.18)

Podemos ver de (1.4.10) y (1.4.11) que a $T=T'$, χ_ν también es
igual a $1/\lambda$, y por lo tanto de estos simples argumentos podríamos esperar que por debajo de la temperatura de transición χ debería ser aproximadamente constante con un valor cercano a $1/\lambda$.

Si se aplica \mathbf{H} en forma paralela a los spines, se desarrolla una situación muy diferente. A $T=0$ K los spines en las dos subredes están perfectamente alineados y en consecuencia la aplicación de un campo paralelo no producirá un momento resultante sobre ellos. Por lo tanto $\chi_{||}$ será cero. Al elevar la temperatura se desordena ligeramente el alineamiento y de esta manera \mathbf{H} será capaz de producir una pequeña rotación de los spines y por lo tanto una pequeña susceptibilidad. Al aproximarse a T_N, $\chi_{||}$ se hará más grande tendiendo hacia $1/\lambda$.

Así, cuando una sustancia antiferromagnética se ordena a bajas temperaturas, la susceptibilidad de un monocristal será fuertemente anisotrópica.

Cuando se mide una muestra en polvo de un antiferromagneto (con todas las direcciones igualmente probables), la susceptibilidad por debajo de T_N será un promedio de las componentes paralelas, $(1/3)\chi_{||}$, y las perpendiculares, $(2/3)\chi_{\perp}$, y está dada por

$$\chi_{\text{polvo}} = (\chi_{||} + 2\chi_{\perp})/3 \quad (1.4.19)$$

En consecuencia a $T=0$ K, χ_{polvo} será igual a $2/3$ de su valor a T_N.
1.5. EL MODELO DE CAMPO MOLECULAR PARA SOLIDOS ORDENADOS MAGNETICAMENTE.

En los puntos anteriores hemos descripto someramente los hechos principales que caracterizan los comportamientos ferro, ferri y antiferromagnético de los materiales con ordenamiento magnético de largo alcance. Los materiales que pertenecen a estas clases tienen en común el hecho de que sus dipolos magnéticos elementales están espontáneamente ordenados por algún tipo de interacción mutua.

En este punto mostraremos la forma notable en que se pueden obtener las propiedades peculiares de las tres clases principales de materiales ordenados magnéticamente aplicando el concepto de campo molecular (Weiss, 1907), en el que los efectos de las interacciones de orden se representan por un campo efectivo interno, o "molecular", proporcional al grado de magnetización presente en el material. Aunque los modelos de campo molecular no se pueden considerar como teorías completas del magnetismo (porque no indagan sobre los orígenes de las fuerzas de ordenamiento sino que sólo reproducen la forma más general de sus efectos), proveen la descripción más concisa de las principales características del ferro, ferri y antiferromagnetismo y constituyen un buen punto de partida para investigaciones más detalladas de aquellos aspectos de mayor significación.

Para entender cómo el método de campo molecular representa las interacciones en un dado material ordenado, consideremos el caso del ferromagnetismo (históricamente el método apareció por
primera vez para explicar este tipo de ordenamiento). El rasgo distintivo característico de una muestra ferromagnética es el hecho de que la misma está subdividida en regiones, llamadas dominios, cada una de las cuales está espontáneamente magnetizada prácticamente a su valor de saturación. Se puede cambiar la dirección de magnetización espontánea de un dominio por aplicación de un campo magnético, pero su magnitud depende sólo muy débilmente de la intensidad del campo aplicado. La magnetización espontánea dentro de un dominio sólo puede decrecer en forma significativa por aumento de la temperatura, cayendo a cero en una temperatura crítica, la temperatura de Curie.

El carácter espontáneo de la magnetización local se revela claramente por la existencia de imanes permanentes. También lo sugiere la facilidad con la que ciertos materiales pueden magnetizarse hasta la saturación. Con algunas aleaciones cuidadosamente preparadas, la saturación se puede conseguir con campos aplicados menores que 0.01 Oe.

Esto contrasta con el comportamiento de materiales paramagnéticos en los que se pueden observar los efectos de saturación sólo si la energía potencial de un dipolo atómico en el campo aplicado \(\vec{H} \), es comparable a su energía de agitación térmica, o sea si

\[
\mu H \leq kT
\] \hspace{1cm} (1.5.1)

El momento dipolar atómico \(\vec{\mu} \) es del orden de magnitud del magnetón de Bohr \(\mu_B \) \((\approx 9.3 \times 10^{-21} \text{ e.m.u.})\), y esto muestra que
debería ser necesario un campo de alrededor de 5×10^5 Oe para detectar efectos de saturación en una muestra paramagnética a temperatura ambiente. Esto es más de cien veces el campo producido por un gran electroimán. En contrapartida, los dominios ferromagnéticos presentan magnetización espontánea de saturación aún a temperaturas cercanas a la de Curie, que es de 1393 K para el cobalto, alrededor de 20 K para el erbio, y entre esos límites para otros materiales magnéticos.

Cualquiera sea la naturaleza de las fuerzas que causan las magnetizaciones espontáneas, queda claro que éstas son equivalentes a las que inducirían en sistemas paramagnéticos campos de varios millones de Oersteds.

Un dipolo atómico ejercerá fuerzas magnéticas sobre sus vecinos, pero cualquier intento de hacer responsables a estas interacciones (dipolo-dipolo) de la magnetización espontánea observada no puede justificarse ya que las mismas son varios órdenes de magnitud más pequeñas que las requeridas. El campo a una distancia r de un dipolo magnético de momento μ es máximo en puntos sobre su eje, donde toma la magnitud $2\mu/r^3$, y considerando que los núcleos atómicos están separados en los sólidos por distancias del orden de 3×10^{-8} cm, y los momentos dipolares atómicos son del orden de $3\mu_B$, entonces resulta un campo de interacción dipolar del orden de 2×10^3 Oe.

La fuerte interacción responsable de la magnetización espontánea en materia condensada fue reconocida por Heisenberg en 1926 como una interacción cuántica de intercambio entre electrones. Esta interacción tiende a ordenar los momentos de spin
de dos electrones próximos en un alineamiento paralelo o antiparalelo, dependiendo de sus estados de movimiento. Las fuerzas de intercambio son, en su origen, básicamente electrostáticas, y pueden tener consecuentemente una intensidad varios órdenes de magnitud más grande que las fuerzas magnéticas ordinarias entre los momentos de spin.

En 1907 Weiss había postulado la hipótesis de "campo molecular", por la que cada átomo de un material ferromagnético se comporta como un dipolo magnético que está sujeto a un intenso campo magnético proporcional y paralelo a la magnetización local en la región que lo rodea. Esta idea tuvo considerable éxito al describir la magnetización espontánea y su variación con la temperatura. Weiss observó que el campo molecular era demasiado intenso para ser generado por fuerzas magnéticas ordinarias, pero no consiguió aclarar su origen. En realidad, el campo molecular constituye una representación de los efectos netos de las interacciones de intercambio. Los dípolos elementales se comportan 'como si' estuviesen experimentando un intenso campo magnético como resultado de las interacciones de intercambio entre ellos. La dependencia proporcional del campo molecular con la intensidad de magnetización que existe en los dominiós refleja el hecho de que el acoplamiento neto de intercambio que tiende a orientar el momento magnético de un iones en una dirección particular es proporcional al número de sus vecinos que apuntan en esa dirección. La intensidad de magnetización es una medida del número de tales iones promediado sobre un volumen que contiene un número muy grande de átomos.
Ahora se ve más claramente la naturaleza cooperativa del fenómeno de magnetización espontánea. El acoplamiento que tiende a orientar un dipolo en la dirección preferencial de magnetización es más grande cuanto mayor sea el grado de alineamiento general ya obtenido. Aún si los dipolos estuviesen momentáneamente dirigidos al azar, la más pequeña fluctuación que produjese un alineamiento localizado tendería a producir una propagación espontánea con intensificación del alineamiento, que sólo estará limitado por la agitación térmica.

Las consideraciones precedentes también se aplican, con modificaciones mínimas, a materiales ferri y antiferromagnéticos. El ordenamiento espontáneo también ocurre en dichos materiales y persiste, en muchos casos, hasta temperaturas mayores de 100 K, de manera que las fuerzas de intercambio aparecen de nuevo como las principales responsables.
1.6. CAMPO MOLECULAR E INTERACCIONES DE INTERCAMBIO.

Cuando dos electrones están separados por una distancia lo suficientemente grande para que sus funciones de onda Ψ_1 y Ψ_2 no se superpongan, la interacción electrostática entre ellos es la clásica de Coulomb. Siendo $|\Psi_1|^2$ y $|\Psi_2|^2$ las densidades de carga de las nubes electrónicas, la energía electrostática del par es entonces

$$E_c = \int \int \frac{|\Psi_1|^2 \, d\tau_1}{r_{12}} \frac{|\Psi_2|^2 \, d\tau_2}{r_{12}},$$

(1.6.1)

donde los dos volúmenes elementales $d\tau_1$ y $d\tau_2$ están separados por la distancia r_{12}, y la integral se extiende a los volúmenes de ambas nubes de carga. Sin embargo, si las nubes de carga se superponen en alguna medida aparece una energía electrostática adicional como consecuencia del requerimiento cuántico de que la función de onda para dos electrones debe ser antisimétrica en las coordenadas de ambas. Este término adicional a la energía electrostática de la ecuación anterior es la energía de intercambio. En esta sección trataremos sobre la relación entre la energía de intercambio y el modelo de campo molecular.

La energía de intercambio de un par de electrones depende fuertemente de las orientaciones relativas de sus spines. Para órbitas dadas la dependencia con el spin está determinada por el valor esperado del producto escalar de los vectores de spin de los dos electrones:

32
\[E_{\text{int}} = -2 \, J \, \frac{<\mathbf{S}_i \cdot \mathbf{S}_j>}{\hbar^2}, \]

(1.6.2)

donde \(<\) indica un promedio cuántico sobre el movimiento de los electrones, y \(\mathbf{S}_i, \mathbf{S}_j\) son operadores de spin electrónico (si se mide en unidades de \(\hbar\), entonces hay que omitir \(\hbar^2\) en la ecuación anterior). Existen reglas cuánticas que restringen los valores medios que puede tomar el producto escalar. Para dos electrones aislados, \(<\mathbf{S}_i \cdot \mathbf{S}_j>\) sólo puede ser igual a \((1/4)\hbar^2\) o \((-3/4)\hbar^2\), para las orientaciones relativas paralela y antiparalela. La constante \(J\) en la ecuación anterior es la denominada integral de intercambio. Este valor está determinado por la naturaleza y el grado de superposición de \(\Psi_i\) y \(\Psi_j\). La magnitud de \(J\) decrece rápidamente cuando disminuye la superposición y, en principio, puede ser positiva o negativa. Se encuentra una forma similar a la ecuación anterior para la interacción de intercambio resultante entre dos átomos o iones; en este caso la energía de intercambio total viene determinada por los momentos de spin resultantes de cada ión, \(\mathbf{S}_i\) y \(\mathbf{S}_j\),

\[E_{\text{int}} = -2 \, J_{ij} \, \frac{<\mathbf{S}_i \cdot \mathbf{S}_j>}{\hbar^2}, \]

(1.6.3)

donde ahora \(J_{ij}\) es una integral de intercambio promedio para el par de iones.

Supongamos que, en un sólido, cada uno de los iones magnéticos interactúa por igual con sus \(z\) iones vecinos. Su energía de intercambio total es
\[E_{\text{int}}^z = -2 J \sum_{j} \frac{\langle S_i \cdot S_j \rangle}{\hbar^2} \]

(1.6.4)

donde la suma se extiende a los \(z \) vecinos. El momento dipolar \(\vec{m} \) debido a los \(z \) iones es

\[\vec{m} = \sum_{j} g_j \frac{\mu_b}{\hbar} \vec{S}_j \]

(1.6.5)

donde \(\mu_b \) es el magnetón de Bohr y \(g_j \) es el factor de Landé para el \(j \)-ésimo ión, que es la razón de su momento dipolar en magnetones de Bohr a su momento angular en unidades de \(\hbar \). Sólo el momento de spin contribuye al momento magnético (1.6.5) ya que aquí suponemos extinguido el orbital. Así factor \(g \) es el mismo para los \(z \), resultando

\[\vec{m} = \frac{g \mu_b}{\hbar} \sum_{j} \vec{S}_j \]

(1.6.6)

y ya que

\[E_{\text{int}}^z = -2 J \sum \frac{\langle S_i \cdot S_j \rangle}{\hbar^2} = -2 J \frac{\langle \vec{S}_i \cdot \sum_{j} \vec{S}_j \rangle}{\hbar^2} \]

(1.6.7)

entonces

\[E_{\text{int}}^z = - \frac{2 J}{g \mu_b} \frac{\langle \vec{S}_i \cdot \vec{m} \rangle}{\hbar} = - \frac{2 J}{g^2 \mu_b^2} \langle \mu_i \cdot \vec{m} \rangle \]

(1.6.8)
donde μ_i es el momento del i-ésimo $\mu = g \mu_B S_i$.

Veremos ahora las suposiciones sobre las que se basa el modelo de campo molecular.

La intensidad de magnetización de la muestra es:

$$\mathbf{M} = \frac{N}{z} \langle \mathbf{m} \rangle,$$

(1.6.8)

donde N es el número de iones magnéticos por unidad de volumen y $\langle \mathbf{m} \rangle$ es el valor de \mathbf{m} promediado sobre todos los grupos de z iones en la unidad de volumen. Si no hay fluctuaciones de \mathbf{m} al pasar de un punto a otro, entonces no debería haber distinción entre $\langle \mathbf{m} \rangle$ y \mathbf{M}, y en consecuencia la relación (1.6.8) se transforma en

$$E_{\text{int}}^z = -\frac{2 J}{g \mu_B^2} \frac{z}{N} \langle \hat{\mu}_i \cdot \mathbf{M} \rangle.$$

(1.8.10)

Ahora podemos comparar esta expresión con la energía de un dipolo de momento $\hat{\mu}_i$ en un hipotético campo molecular igual a $\gamma \cdot \mathbf{M}$. Esto es

$$E_{\gamma} = -\gamma \langle \hat{\mu}_i \cdot \mathbf{M} \rangle.$$

(1.6.11)

Hay así una correspondencia directa con la constante de campo molecular γ, igual a

$$\gamma = \frac{2 J}{g \mu_B^2} \frac{z}{N}.$$

(1.6.12)

En consecuencia, el uso de la hipótesis de campo molecular es equivalente a despreciar cualquier fluctuación, espacial o temporal, en el grado de orden entre grupos de z iones vecinos (para distintos puntos de la muestra en cualquier instante, o de instante en instante en un punto particular). Si las fuerzas de
intercambio fuesen de alcance extremadamente largo, de tal forma que \(z \) fuese un número muy grande, esas fluctuaciones deberían ser muy pequeñas. Pero las fuerzas de intercambio directo son, en general, de muy corto alcance, dependiendo de la superposición de las funciones de onda electrónicas. En consecuencia podría haber grandes fluctuaciones en el grado de orden de un sitio a otro de la muestra. De hecho se han observado estas variaciones cerca de las temperaturas de Curie y de Néel en sustancias ferro y antiferromagnéticas, respectivamente.

Si expresamos las interacciones de intercambio en términos de un Hamiltoniano efectivo, incorporando la aproximación de campo molecular para sustancias ferromagnéticas, resulta

\[
\mathcal{H}_{\text{int}} = - \frac{2 J_{ij}}{\hbar^2} \hat{S}_i \cdot \hat{S}_j ,
\]

\[
\cong - \frac{2 J_{ij}}{\hbar^2} \hat{S}_i \langle \hat{S}_j \rangle .
\] (1.6.13)

Cuando se usa la hipótesis de campo molecular para ferrimagnetismo o antiferromagnetismo, cada constante de campo molecular se refiere a la interacción total entre un ión y todos los otros iones sobre una subred particular.
1.7. INTERACCIONES INDIRECTAS EN SOLIDOS IONICOS: SUPERINTERCAMBIO

La interpretación basada en términos de intercambio directo entre electrones perfectamente localizados en iones individuales de la red cristalina no es adecuada ni aún para materiales magnéticos con enlaces puramente iónicos (Anderson, 1950). Tomemos como ejemplo la estructura del óxido de manganeso MnO (ver fig. 1.7.1) que muestra un fuerte acoplamiento magnético entre los iones de Mn, tanto entre primeros como entre segundos vecinos.

![Diagrama de la estructura antiferromagnética del MnO](image)

En MnO se observa que mientras los segundos vecinos están alineados antiparalelamente en todos los casos, los pares de primeros vecinos están en algunos casos en forma paralela y en otros antiparalelamente alineados. Los iones de oxígeno (O^-) ubicados entre cada par, fuertemente acoplado, de segundos vecinos
son los responsables de esta aparente anomalía. Se llega a conclusiones similares para los acoplamientos de intercambio de casi todos los materiales iónicos donde existen iones intervinientes en la interacción de acoplamiento, que no necesariamente deben ser oxígenos (comúnmente se encuentran iones fluoruro, cloruro, etc.). Algunos cristales paramagnéticos que contienen sólo una pequeña fracción de iones magnéticos, muestran un apartamiento de la ley de Curie a bajas temperaturas, lo que indica interacciones significativas entre iones que están separados por varios espaciados interatómicos. A tales distancias la superposición de las funciones de onda electrónicas, que están bien localizadas, es demasiado pequeña para dar lugar a acoplamientos significativos. Se aplican consideraciones similares a algunos materiales magnéticos metálicos. En particular, hay acoplamientos fuertes entre los electrones 4f desapareados en los átomos vecinos de los metales de tierras raras, contradiciendo el hecho de que los electrones 4f están fuertemente ligados y situados profundamente en los iones.

Cuando se observan acoplamientos intensos que ocurren a grandes distancias se dice que los mecanismos se deben a interacciones de intercambio indirectas (Anderson, 1959). Estas no son diferentes de las interacciones de intercambio en su forma general. Que los acoplamientos sean indirectos no significa necesariamente que sean débiles en comparación con los acoplamientos directos, como se evidencia por las temperaturas de Curie y de Néel de compuestos iónicos, que exceden los 300 K en muchos casos.

Consideremos a modo de ejemplo el fenómeno de
superintercambio entre iones de un metal de transición separados por un ión oxígeno (ver fig. 1.7.2). Por simplicidad supongamos que la configuración electrónica de cada ión metálico consiste en un único electron desapareado en un estado d. El ión oxígeno posee dos electrones p con spins opuestos. Los electrones d en los extremos opuestos del sistema lineal de tres iones podrían intercambiarse unos con otros, pero este efecto directo sería despreciablemente pequeño.

![Diagrama](image)

fig 1.7.2: Seis maneras de asignar las orientaciones de spin de cuatro electrones en los orbitales $3d$ y p de una configuración metal-oxígeno-metal.

La posibilidad de que un electrón d pueda sufrir un intercambio repetido, primero con un electrón p del oxígeno, y luego, desde el oxígeno, con otro electrón d introduce un fuerte acoplamiento $d-d$.

Si ocurriera un acoplamiento $d-d$ podría haber alguna distorsión de la configuración perfectamente iónica, debida al
solapamiento de los iones, pues los electrones en el oxígeno, estando apareados, no podrían tomar parte de ninguna manera en efectos de intercambio. Usando teoría de perturbaciones, la distorsión de la función de onda de un sistema debido a la introducción de una interacción o perturbación, puede ser escrita en forma más concisa por una combinación lineal de funciones de onda para estados excitados del sistema no perturbado. Entonces, si \(u_f \) es la función de onda espacial para el estado de referencia no perturbado y \(u_i \) la correspondiente al \(i \)-ésimo estado excitado, la función de onda espacial para el nuevo estado fundamental perturbado se escribe como

\[
A u_f + \sum B_i u_i .
\] (1.7.1)

Los coeficientes \(A \) y \(B_i \) se determinan por cálculos de variaciones o perturbaciones y obviamente dependerán de la naturaleza de la perturbación. Si esta es pequeña \(A \approx 1, \), \(B_i \). La ventaja de desarrollar la función perturbada de esta manera es que generalmente puede obtenerse una buena aproximación incluyendo solamente unos pocos estados excitados. La más pequeña de las contribuciones de los estados más altamente excitados la denominamos \(u \). Algunos de los niveles más bajos de los estados excitados no se necesitan en el desarrollo, ya que no representan la distorsión por razones de simetría. En el ejemplo que estamos tratando, el mejor estado no perturbado es uno en el cual los electrones están perfectamente localizados sobre un ión u otro, y un estado excitado importante es aquel en el cual uno de los
electrones p del ión oxígeno ha sido transferido a un estado vacante en uno de los iones metálicos. La inclusión de una mezcla de funciones de onda para este estado excitado representa las desviaciones de la ligadura oxígeno-metal de perfectamente iónica a parcialmente covalente. Por simplicidad consideraremos la influencia de este estado excitado aisladamente y escribiremos para la función de onda espacial perturbada del sistema de tres iones

$$u = Au_1 + Bu_\bullet,$$ \hspace{1cm} (1.7.2)

donde u_\bullet es la función de onda para el estado excitado y los valores de A y B serán considerados más adelante.

Tanto en el estado fundamental (no perturbado) como en los estados excitados, los cuatro electrones pueden adoptar configuraciones de spin triplete o singlete, dando un número cuántico de spin total $S = 1$ y $S = 0$ respectivamente (ver fig. 1.7.2). En el estado fundamental, perfectamente iónico, la energía del sistema es independiente de la configuración de spin ya que los electrones apareados en el ión oxígeno no pueden formar parte en efectos de intercambio y el intercambio directo entre iones metálicos será despreciable. Por otro lado, en el estado excitado la energía dependerá de la configuración de spin. El electrón transferido desde el oxígeno hacia el ión metálico estará sujeto a las reglas de Hund que gobiernan la influencia del intercambio intraiónico, y tendrá un alineamiento paralelo con respecto al electrón desapareado que yace sobre el ión. En este estado excitado habrá intercambio interiónico entre los iones de oxígeno.
y de metal, y si suponemos que el alineamiento antiparalelo se favorece (el hecho de que la gran mayoría de las moléculas son diamagnéticas demuestra que esto es realmente así en bandas covalentes), la configuración de spin de energía más baja es el estado triplete, que puede representarse como $\uparrow\downarrow\uparrow\uparrow$. El siguiente estado de energía más baja es el estado singlete representado por $\downarrow\downarrow\uparrow\uparrow$.

Si la forma de la perturbación que causa la distorsión de la ionicidad perfecta es independiente del spin, la perturbación no mezclará los estados triplete y singlete. En consecuencia, la función de onda perturbada de la ecuación (1.7.2) tiene dos formas cuando se incluyen fluctuaciones de spin: una como combinación del estado fundamental con los estados excitados tripletes y otra como combinación con los correspondientes estados singletes. Ello se puede escribir en la siguiente notación:

\[
\Psi^s = A^s \Psi_f^s + B^s \Psi_e^s \tag{1.7.3}
\]
\[
\Psi^t = A^t \Psi_f^t + B^t \Psi_e^t \tag{1.7.4}
\]

Los estados perturbados serán entonces estados singletes y tripletes bien definidos con número cuántico de spin total S igual a 0 y 1 respectivamente. Ahora veamos cómo difiere la energía del estado singlete de la del triplete, y que esta diferencia podrá ser considerada como la energía de intercambio. La diferencia surgirá sólo de funciones mezcladas de estados excitados pues la energía del estado fundamental es independiente del spin. Por lo tanto se deduce que Ψ^t tiene la energía más baja. Aunque la dependencia con el spin viene de la mezcla de estados excitados,
la distribución electrónica espacial aún se asemeja mucho a aquella para los estados iónicos no perturbados (ya que A ≫ B). Entonces se puede conservar el estado iónico puro como una representación aproximada del verdadero estado; el efecto neto de la perturbación aparece simplemente como un fuerte acoplamiento entre los momentos de spin de los iones metálicos, y la energía de la configuración triplete difiere de la de la configuración singlete. Este es un ejemplo de superintercambio.

Algunas veces se describe el acoplamiento figurativamente de la siguiente manera. El promedio temporal de la distribución de carga del estado perturbado es el mismo que el que debería encontrarse si el sistema alternase entre el estado fundamental no perturbado y el estado excitado, permaneciendo una fracción A·/(A+B)² de tiempo en el primero. En el curso de tal movimiento la configuración preferencial de spin adoptada por los cuatro electrones cuando están en el estado excitado deberá persistir al retornar el sistema a su estado fundamental no perturbado. Así, por ejemplo, la configuración $\uparrow\downarrow\uparrow\downarrow$, preferida en el estado excitado cuando la capa d está más llena que la mitad, persistirá para dar la configuración $\uparrow\downarrow\uparrow\downarrow$ en el estado fundamental, indicando un acoplamiento antiferromagnético entre los iones metálicos. Tales descripciones son útiles para visualizar los mecanismos de superintercambio, pero debemos recordar que sólo en el caso del promedio temporal de la distribución de carga hay una identidad entre el verdadero movimiento perturbado y la descripción que comprende transiciones inducidas por la perturbación. Dichas transiciones son virtuales, de vida corta. No conservan la energía y no podrían ser detectadas por absorción o
emisión de radiación.

Intentaremos mostrar ahora solamente a qué conducen los cálculos de superintercambio e ilustraremos algunas de las conclusiones que se alcanzan con esos cálculos. Supongamos, en principio, que usamos las formas de funciones de onda perturbadas dadas en las ecuaciones (1.7.3) y (1.7.4) para evaluar la energía total de un sistema, entonces

\[
E = \int \Psi^* \mathcal{H} \Psi \, d\tau = A^2 (f \mid \mathcal{H} \mid f) + B^2 (e \mid \mathcal{H} \mid e) + \\
+ A \cdot B (f \mid \mathcal{H} \mid e) + A \cdot B (e \mid \mathcal{H} \mid f), \quad (1.7.5)
\]

con \[
\int \Psi^*_f \mathcal{H} \Psi_e \, d\tau = (f \mid \mathcal{H} \mid e)
\]

donde \(\mathcal{H}\) es el Hamiltoniano total del sistema. Si, por simplicidad, eliminamos los términos no diagonales en los que los dos estados comprendidos en el elemento de matriz no son el mismo, tenemos

\[
E^s = (A^s)^2 E^s_f + (B^s)^2 E^s_e \quad (1.7.6)
\]

\[
E^t = (A^t)^2 E^t_f + (B^t)^2 E^t_e \quad (1.7.7)
\]

Hemos explicitado el hecho de que la configuración de spin total puede ser un triplete o un singlete tanto en el estado fundamental como en el excitado y hemos notado que \((f \mid \mathcal{H} \mid f)\) es simplemente la energía del estado fundamental, \(E_f\), y que \((e \mid \mathcal{H} \mid e)\) la del estado excitado, \(E_e\). La energía de intercambio, \(E_{int}\), se define como la diferencia entre las energías de los estados triplete y singlete, entonces
\[E_{\text{int}} = B^2 (E^a - E^t) = B^2 \Delta E_e, \quad (1.7.8) \]

ya que \(E^a = E^t \), suponiendo además que \(A^a \cong A^t \) y \(B^a = B^t \). Ahora \(\Delta E_e \), la diferencia entre las configuraciones triplete y singlete en el estado excitado, está determinada por las interacciones de intercambio entre electrones en los iones de oxígeno y de metal, o sea, entre primeros vecinos. Así, podemos ver que la teoría puede dar cuenta de las energías de intercambio indirecto, que se aproximan a las interacciones directas, de primeros vecinos, ya que \(B^2 \) debería ser, aproximadamente, del orden de 0.1 si la perturbación fuese medianamente grande. De acuerdo con esta representación las interacciones indirectas más fuertes observadas son generalmente aquellas entre iones separados por elementos cuyos átomos se caracterizan por exhibir un marcado grado de covalencia.

Cuando un par de iones interactuantes, con un único electrón desapareado cada uno, tienen diferentes energías para las configuraciones paralela y antiparalela, las energías de los dos estados relativas al valor medio pueden escribirse formalmente como

\[E = - J_{ij} \left(\frac{1}{2} + \langle \vec{s}_i \cdot \vec{s}_j \rangle \right), \quad (1.7.9) \]

con \(J_{ij} \) igual a la separación en energía. Esta energía puede ser entonces atribuida a un Hamiltoniano de intercambio efectivo

\[\mathcal{H}_{\text{int}} = - J_{ij} \left(\frac{1}{2} + \vec{s}_i \cdot \vec{s}_j \right). \quad (1.7.10) \]
Para iones con más de un electrón, el Hamiltoniano comprenderá los momentos de spin iónicos, \vec{S}_i y \vec{S}_j, en lugar de los spines de electrones individuales. Los autoestados de un par de iones pueden seleccionarse como autoestados de \vec{S}^2 y S_z, donde $\vec{S} = \vec{S}_i + \vec{S}_j$ de modo tal que el verdadero hamiltoniano del sistema no contenga términos dependientes del spin (restricción que obviamente no excluye las interacciones de Coulomb que son el verdadero origen de los efectos de intercambio). Un hamiltoniano de spin efectivo que generará tales autoestados será

$$\mathcal{H}_{\text{int}} = - J_{ij} \vec{S}_i \cdot \vec{S}_j + J_{ij}^\prime (\vec{S}_i \cdot \vec{S}_j)^2 + \ldots \ldots \ldots (1.7.11)$$

Los estudios de los mecanismos de intercambio en iones con más de un electrón desapareado (Anderson, 1983) mostraron que el primer término de esta serie debería ser el más importante. Además, cuando los iones magnéticos son parte de un cristal que contiene muchos otros iones, el hamiltoniano de intercambio total debería ser una suma de tales hamiltonianos de pares.

En definitiva, podemos decir que los spines de dos iones se pueden acoplar indirectamente por la intermediación de iones diamagnéticos intervinientes, tal que el par tenga una energía dependiente del spin de la forma

$$- J \langle \vec{S}_i \cdot \vec{S}_j \rangle , \ldots (1.7.12)$$

donde J puede ser positiva o negativa y, en condiciones adecuadas, puede tener una magnitud tan grande como kT, con T del orden de 100 K. En consecuencia el efecto neto para un sólido iónico puede representarse por la inclusión de un término de intercambio, en el
Hamiltoniano total, de la forma

$$ H_{\text{int}} = - \sum_{i,j} J \mathbf{S}_i \cdot \mathbf{S}_j, \quad (1.7.13) $$

donde \mathbf{S}_i y \mathbf{S}_j son los operadores de spin para los momentos de spin de los iones i y j. A la expresión anterior se la conoce como hamiltoniano de Heisenberg.
Capítulo II Difracción de neutrones en materiales magnéticos.

2.1. INTRODUCCIÓN:

En este capítulo se describen aspectos del fenómeno de difracción de neutrones por cristales, relevantes para el análisis e interpretación de las medidas realizadas en el NaFeF₂O₇.

La longitud de onda de de Broglie de haces monocromáticos de neutrones térmicos usados para investigar la estructura cristalina, molecular y magnética de sólidos son algo mayores que 1 Å (del orden de los espaciados atómicos). Este valor es similar a las longitudes de onda de los rayos X característicos usados en estudios estructurales (por ejemplo $\lambda_{\text{Cu}} = 0.154$ Å). La difracción se produce, sin embargo, por mecanismos diferentes: los rayos X interactúan con los electrones atómicos mientras que los neutrones lo hacen con los núcleos y con los momentos magnéticos de espines electrónicos desapareados. En ambos casos, el cristal produce haces difractados en direcciones determinadas por la ley de Bragg.

En el caso de rayos X, el ente dispersor fundamental es el electrón, cuya carga se acopla con la radiación X incidente. Así, un electrón libre sobre el que incide una onda electromagnética plana monocromática de amplitud \mathcal{F} dará a una distancia r una onda dispersada de amplitud igual a

$$\mathcal{F} \cdot \frac{e^2}{m^* c^2} \cdot \frac{1}{r} \cdot \text{sen} \, \xi, \quad (2.1.1)$$

donde e y m^* son la carga y la masa del electrón, c es la velocidad de la luz y ξ es el ángulo entre la dirección de propagación del
haz dispersado y la dirección de polarización de la radiación incidente. En particular, para la componente polarizada cuya intensidad eléctrica sea perpendicular al plano formado por los haces incidente y reflejado, la amplitud de la onda dispersada por el electrón es

\[\mathcal{A} \cdot \frac{e^2}{m \cdot c^2} \cdot \frac{1}{r} \] \hspace{1cm} (2.1.2)

La onda total dispersada por un átomo estará integrada por la suma de las contribuciones de sus Z electrones. En la dirección de la onda incidente, estarán todas las ondas parciales en fase y habrá entonces una amplitud resultante

\[Z \mathcal{A} \cdot \frac{e^2}{m \cdot c^2} \cdot \frac{1}{r} \] \hspace{1cm} (2.1.3)

proporcional al número atómico Z. A medida que aumenta el ángulo de Bragg \(\theta \) entre las direcciones incidente y dispersada, la amplitud disminuirá con bastante rapidez en razón de la cancelación parcial mutua entre las ondas parciales debido a que las dimensiones de la nube electrónica son comparables a las longitudes de onda de los rayos X. Para un átomo dado, la rapidez con que disminuye la amplitud depende de la diferencia de caminos para los haces dispersados por distintos electrones, quedando la amplitud modulada por el factor de dispersión atómico \(f_x \sim \lambda^{-1} \cdot \text{sen} \theta \).

En el caso de la dispersión de neutrones el ente dispersor fundamental es el núcleo y no el electrón, excepto para materiales magnéticos donde la dispersión electrónica (a través de los
momentos magnéticos) es también apreciable. La amplitud de dispersión nuclear de neutrones es isotropa debido al hecho de que las dimensiones nucleares son pequeñas en comparación con la longitud de onda del neutrón. La consecuencia de esto, como se puede ver en la figura 2.1.1, para el caso del Fe (Brown, 1973), es que el factor de forma para la dispersión de neutrones es independiente de θ (Bacon, 1955).

![Diagrama de dispersión de neutrones y radiación X](image)

fig 2.1.1: Diferencias en las magnitudes absolutas de las amplitudes de dispersión para rayos X, electrones y neutrones, y sus diferentes grados de variación con el ángulo de dispersión.
2.1.1 Dispersión de neutrones por un núcleo individual.

Si una onda plana de neutrones de función de onda

\[\psi = e^{ikz}, \quad (2.1.4) \]

donde \(k = 2\pi/\lambda \) es el número de onda, incide (en la dirección \(z \)) sobre un núcleo, la onda dispersada será esféricamente simétrica y de la forma

\[\psi = -(b/r) e^{ikr}, \quad (2.1.5) \]

donde \(r \) es la distancia del punto de medición a la posición del núcleo considerado, y \(b \) es la amplitud de dispersión nuclear.

La función de onda resultante del neutrón estará dada por

\[\psi = e^{ikz} - (b/r) e^{ikr}. \quad (2.1.6) \]

Definiendo la sección eficaz de dispersión \(\sigma \) del núcleo como la relación entre la corriente saliente de neutrones dispersados y el flujo incidente, resulta

\[\sigma = 4\pi r^2 v \frac{(b/r) e^{ikr}}{v |e^{ikz}|^2} = 4\pi b^2, \quad (2.1.7) \]

donde \(v \) es la velocidad del neutrón.
Breit y Wigner (Breit, 1936) calcularon σ para varios átomos, encontrando valores mucho menores que las secciones eficaces correspondientes a dispersión de rayos X. Esto exige la utilización de mayor cantidad de muestra para un experimento de difracción de neutrones que para uno de rayos X.

2.1.2 Difracción por un conjunto de núcleos.

Para un conjunto de núcleos dispersores la expresión (2.1.6) para la función de onda resultante adopta la forma

$$\psi = e^{ikz} - \sum_{p} \left(b_p / r \right) e^{ikr} e^{i\cdot(\hat{\mathbf{k}}-\hat{\mathbf{k}}')}$$

(2.1.9)

donde $\hat{\mathbf{p}}$ es el vector de posición del núcleo de cada átomo y $\hat{\mathbf{k}}$, $\hat{\mathbf{k}}'$ son los vectores de onda del neutrón antes y después de la dispersión. La expresión $\exp \left[i\cdot(\hat{\mathbf{k}}-\hat{\mathbf{k}}') \right]$ toma en cuenta la diferencia de fase entre las contribuciones de varios núcleos y toma el valor $\exp \left\{ 2\pi i (h x/a_o + k y/b_o + l z/c_o) \right\}$ donde x, y, z son las coordenadas cartesianas del núcleo, a_o, b_o, c_o son las dimensiones de la celda unitaria cristalográfica y h,k,l son los índices de Miller de la dirección particular $(\hat{\mathbf{k}}-\hat{\mathbf{k}}')$, según la que se produce una reflexión de Bragg en el plano cristalográfico (hkl).

La amplitud de la onda de neutrones dispersados por una celda unidad será proporcional a

$$- \sum_{p} b_p \exp \left\{ 2\pi i (h x/a_o + k y/b_o + l z/c_o) \right\}$$

(2.1.10)

y la sección eficaz por núcleo por unidad de ángulo sólido o
"sección eficaz diferencial", para dispersión en esta dirección, será

\[G_{hkl} = \frac{1}{N_0} \left| \sum p b_p \exp \left(2\pi i \left(\frac{h x}{a_o} + \frac{k y}{b_o} + \frac{l z}{c_o} \right) \right) \right|^2, \quad (2.1.11) \]

donde \(N_0 \) es el número total de núcleos por celda en el cristal bajo análisis. Se supone que dicho cristal es suficientemente pequeño como para poder ignorar los efectos debidos a extinción y absorción.

2.1.3 Dispersión coherente en sustancias policristalinas.

Debido a la interferencia entre los haces difractados coherente por distintas celdas cristalinas, la amplitud resultante es no nula sólo en las direcciones que cumplen con la ley de Bragg: \(2d \sin \theta = n \lambda \) donde \(d \) es la distancia de separación entre los planos atómicos.

Entonces, para hallar la dispersión producida por una muestra de \(N_c \) celdas consideramos el número total de neutrones dispersados coherente usando la dispersión coherente total por unidad de celda cristalina. Para hallar la expresión que define la sección eficaz de dispersión coherente total \(E(\sigma_{coh}) \) se integra la ecuación (2.1.11) para todo el espacio suponiendo que los microcristales están orientados aleatoriamente (Cassels, 1950):

\[E(\sigma_{coh}) = \frac{\pi N_c}{2k^2} \sum_{hkl} 4\pi F_{hkl}^2 d_{hkl}, \quad (2.1.12) \]
donde la suma se realiza sobre todos los átomos de la celda unitaria. En el caso de compuestos, la amplitud de dispersión b toma el valor correspondiente al átomo situado en cada posición.

Reemplazando el número de onda k por $2\pi/\lambda$ se puede reescribir la ecuación (2.1.12) en la forma:

$$E \left(\sigma_{coh} \right) = \frac{N_c \lambda^2}{2} \sum_{hkl} F_{hkl}^2 d_{hkl}.$$ \hspace{1cm} (2.1.14)

2.1.4. Dispersión de neutrones en materiales paramagnéticos.

Halpern y Johnson (Halpern, 1939) mostraron que para iones paramagnéticos orientados al azar, la sección eficaz de dispersión magnética por unidad de ángulo sólido y por átomo está dada por

$$d\sigma_{pm} = \frac{2}{3} s (s + 1) \left(\frac{e^2\gamma}{mc^2} \right)^2 f^2.$$ \hspace{1cm} (2.1.15)

En esta expresión s es el número cuántico de spin del átomo.
dispersor, γ es el momento magnético del neutrón en magnetones nucleares y f es el factor de forma magnético.

La presencia en (2.1.15) de un factor de forma f que disminuye con el ángulo de dispersión se debe a que los electrones que contribuyen al momento magnético están distribuidos en un volumen que tiene dimensiones comparables con la longitud de onda del neutrón. Por lo tanto, este factor de forma es de alguna manera similar al factor de forma electrónico de un átomo para dispersión de rayos X. Puesto que solamente unos pocos electrones de las capas más externas del átomo son los que contribuyen al momento magnético y por consiguiente aparecen en el factor de forma f de dispersión magnética, debería esperarse que el factor de forma para dispersión magnética disminuyese más rápidamente con el ángulo que lo que lo hace el factor de forma para dispersión de rayos X. Esto es justamente lo que ocurre tal como se ilustra en la figura 2.1.1.

De la ec. (2.1.15) se deduce que la sección eficaz total para dispersión paramagnética está dada por

$$\sigma_{pm} = \frac{8}{3} \pi s (s + 1) \left(\frac{e^2 \gamma}{mc^2} \right)^2 \overline{f^2}. \quad (2.1.16)$$

donde $\overline{f^2}$ es el factor de forma integral; esto es, el valor de f^2 promediado sobre todas las direcciones del espacio.

2.1.5 Dispersión en materiales ferro y antiferromagnéticos.

De la comparación de la dispersión de neutrones por materiales
paramagnéticos con la producida por cristales que presentan orden magnético, surgen dos diferencias notables. En primer lugar la sección eficaz diferencial, ec. (2.1.15), para dispersión magnética por unidad de ángulo sólido en dichos cristales toma la forma (Bacon, 1955)

\[d\sigma_m = q^2 s^2 \left(\frac{e^2 \gamma}{mc^2} \right)^2 f^2 , \]

(2.1.17)

donde \(\hat{q} \) es el vector de interacción magnética definido por

\[\hat{q} = \hat{\varepsilon} (\hat{\varepsilon} \cdot \hat{R}) - \hat{R} , \]

(2.1.18)

donde \(\hat{R} \) es el vector unitario en la dirección del momento magnético atómico y \(\hat{\varepsilon} \) es un vector unitario en la dirección perpendicular al plano de reflexión efectivo, también denominado vector de dispersión, como se indica en la figura 2.1.2.

![figura 2.1.2: Identificación de los vectores unitarios \(\hat{\varepsilon}, \hat{R}, \hat{\lambda} \) usados en la descripción de la dispersión magnética, junto con los ángulos \(\alpha \) y \(\theta \). El vector \(\hat{q} \) cae en el plano de \(\hat{\varepsilon}, \hat{R} \) y es perpendicular a \(\hat{\varepsilon} \) y de magnitud \(\varepsilon \).](attachment:image.png)
Las otras cantidades en (2.1.17) son las mismas que las definidas en (2.1.15). La aparición del factor \(q^2 \) en (2.1.17) y el reemplazo de \(s(s+1) \) por \(s^2 \) son consecuencia del alineamiento de los momentos magnéticos en una sustancia ferro ó antiferromagnética.

En segundo lugar, la existencia de orientaciones definidas de los momentos magnéticos de los iones, significa que habrá coherencia entre los neutrones dispersados por los átomos individuales. Los iones contribuyen con una amplitud de dispersión magnética \(p \), tal que

\[
p = \left(\frac{e^2 \gamma}{mc^2} \right) s f \quad (2.1.18)
\]

Esta amplitud de dispersión se suma a la amplitud de dispersión nuclear \(b \), contribuyendo al refuerzo de los picos de difracción coherente dependientes de la estructura magnética. El valor de \(p \) también depende del estado de valencia del átomo, como por ejemplo, el Fe\(^{2+}\) y el Fe\(^{3+}\) cuyos valores de \(s \) 2 y 5/2, respectivamente, dan contribuciones distintas a \(p \).

Si la unidad de celda magnética es del mismo tamaño que la unidad de celda cristalina ordinaria, entonces los picos de difracción magnética coherente aparecen en las mismas posiciones angulares que los picos de Bragg de dispersión nuclear.

Las contribuciones magnética y nuclear a un pico de difracción de neutrones no polarizados se agregan incoherentemente; la intensidad total de la reflexión es la suma
de las intensidades difractadas correspondientes.

Consideremos la expresión general de la dispersión completa de un átomo ó ion. De acuerdo con Halpern y Johnson (1939) la sección eficaz diferencial de un átomo, para dispersión magnética y nuclear, es

$$d\sigma = b^2 + 2bpq \cdot \hat{x} + p^2q^2,$$ \hspace{1cm} (2.1.20)

donde \hat{x} es un vector unitario en la dirección de polarización del neutrón incidente.

Cuando el haz de neutrones no está polarizado, el valor promedio de $\hat{q} \cdot \hat{x}$ será cero. En consecuencia la ec.(2.1.20) se reduce a

$$d\sigma = b^2 + p^2q^2,$$ \hspace{1cm} (2.1.21)

lo que expresa el hecho de que para el haz de neutrones no polarizados las intensidades de la dispersión nuclear y magnética son aditivas. El término magnético en (2.1.21) es idéntico con la expresión para $d\sigma_m$ dada en (2.1.17), donde se toma en cuenta la definición de p dada en (2.1.19).

Para determinar la intensidad total de dispersión para cualquier reflexión hay que calcular F^2, el factor de estructura de intensidad efectiva para la celda unitaria, de la siguiente manera:

1) Se calcula F^2_{nuclear} en la forma ordinaria con
\[F_{\text{nuc}}^2 = \left| \sum b \exp \left(2\pi i \left(\frac{h x}{a_o} + \frac{k y}{b_o} + \frac{l z}{c_o} \right) \right) \right|^2 e^{-2W}, \quad (2.1.22) \]

que es la misma expresión que (2.1.13), pero ahora se ha incluido el factor \(e^{-2W} \) tiene en cuenta el efecto de las vibraciones térmicas; \(W \) es el factor de Debye-Waller.

2) se calcula \(F_{\text{magnético}} \) (Shirane, 1959) de

\[F_{\text{mag}}^2 = \left| \sum p \exp \left(2\pi i \left(\frac{h x}{a_o} + \frac{k y}{b_o} + \frac{l z}{c_o} \right) \right) \right|^2 e^{-2\gamma}, \quad (2.1.23) \]

donde \(p \) se evalúa para los iones magnéticos a partir de la ec. (2.1.19) usando el valor del factor de forma \(f \), correspondiente al ángulo \(\Theta \) de Bragg de la reflexión bajo consideración. En los materiales antiferromagnéticos \(p \) será positivo o negativo para los momentos magnéticos iónicos paralelos o antiparalelos respectivamente.

3) Se determina el \(F^2 \) resultante mediante

\[F^2 = F_{\text{nuc}}^2 + q^2 F_{\text{mag}}^2, \quad (2.1.24) \]

De la definición de \(q \), ec. (2.1.18), surge que

\[q^2 = 1 - (\hat{\mathbf{q}} \cdot \hat{\mathbf{k}})^2 = \sin^2 \alpha, \quad (2.1.25) \]

donde \(\alpha \) es el ángulo entre los correspondientes vectores de dispersión y magnetización.
2.2. DETERMINACION DE LA ESTRUCTURA MAGNETICA.

2.2.1.-Observación del ordenamiento magnético:

Los materiales magnéticos además de la periodicidad atómica ordinaria de la red cristalina, tienen también la periodicidad particular de su orden magnético.

Para considerar la manera en que la simetría magnética influye en una figura de difracción, veamos antes algunos conceptos importantes relacionados con dicha simetría (Izyumov, 1970).

Las transformaciones de simetría cristalina son: rotaciones, reflexiones en un plano, traslaciones, y combinaciones de estas operaciones. La simetría translacional restringe el número de posibles transformaciones rotacionales a aquellas de ángulos 180, 120, 90 y 60°. Esto restringe a 32 clases el conjunto posible de simetrías puntuales asociadas con un cristal. El conjunto completo de todas las transformaciones de simetría, incluyendo las traslaciones, que caracterizan una estructura cristalina, constituyen los 230 grupos espaciales.

A partir de la observación de orden magnético en sólidos, y particularmente después del descubrimiento del antiferromagnetismo, se planteó la cuestión de cuáles operaciones de simetría dejaban invariante la orientación de los momentos magnéticos en el cristal. Para describir tales ordenamientos
magnéticos fue necesario agregar una nueva operación de simetría \(\mathbb{R} \), que invierte la dirección del momento magnético, a los grupos ordinarios. Combinando este nuevo elemento \(\mathbb{R} \) con los ordinarios se construyeron todos los posibles grupos de simetría magnética de los cristales. A esta operación se le asignó el símbolo \(1' \) (Shubnikov, 1951), en contrapartida a la operación identidad \(1 \).

Esta nueva operación puede describir un cambio de cualquier elemento de la base en su opuesto (puede cambiar, por ejemplo, el signo de una carga, la dirección de un momento magnético, etc.).

La simetría del cristal puede además conducir a extinciones sistemáticas de reflexiones de Bragg.

Para cada uno de los 230 grupos espaciales habrá un conjunto específico de puntos cristalográficamente equivalentes y en consecuencia una forma específica de expresión para el factor de estructura. El análisis de estas expresiones muestra que para todos los elementos de simetría, incluyendo translaciones no primitivas hay extinciones sistemáticas de algunas reflexiones. La introducción del elemento de anti-identidad \(1' \) aumenta el número de elementos de simetría agregando extinciones sistemáticas en la dispersión magnética de neutrones.

Para considerar la manera en que la periodicidad magnética se refleja en un diagrama de difracción, notemos que la celda unitaria en una estructura magnética puede coincidir con el de la estructura química o ser mayor. En el primer caso el orden magnético puede no reflejarse totalmente en el número de máximo de la figura de difracción, o conducir a la aparición de nuevos máximos como resultado de la disminución de la simetría.
cristalina. El segundo caso está asociado con la presencia de un elemento de antitranslación en la estructura. Aquí inevitablemente aparecen algunos nuevos máximos de dispersión magnética, principalmente a pequeños ángulos; sin embargo, su número está limitado por las extinciones asociadas con la simetría específica de la estructura magnética.

La diferencia entre las periodicidades de las estructuras molecular y magnética y también el hecho de que la simetría magnética sea menor que la molecular, contribuye a la aparición de máximos adicionales en los diagramas de difracción de neutrones. Estos máximos aparecen en posiciones en las que deberían estar prohibidos por las extinciones sistemáticas generados por la dispersión nuclear solamente.

Por lo tanto, cuando la periodicidad de la estructura magnética no coincide con la de la estructura molecular entonces, en el rango de pequeños ángulos (más pequeños que para reflexiones nucleares), deberían esperarse máximos de dispersión magnética coherente en puntos determinados por la periodicidad de la estructura magnética.

2.2.2 Determinación de la orientación y magnitud del momento magnético.

La intensidad de las reflexiones magnéticas dependen no sólo del valor de la amplitud del factor de estructura sino también del momento magnético $\mathbf{\mu}$, a través de la orientación mutua de $\mathbf{\mu}$ y el vector de dispersión. Esto se refleja en que la intensidad de las
reflexiones depende de la orientación de los momentos magnéticos en la celda unitaria; algunas veces esta relación puede dar la posibilidad de extinciones entre aquellas reflexiones en las que la parte trigonométrica de la amplitud de estructura no sea igual a cero. La observación de tales extinciones no sistemáticas, junto con el análisis de las intensidades de las reflexiones magnéticas, conduce a la obtención de una información más o menos completa acerca de la orientación de los momentos magnéticos en la celda unitaria.

Por último debemos destacar que para muestras policristalinas, como el NaFeF$_2$O$_7$ estudiado aquí, la determinación de la orientación de los momentos magnéticos es una cuestión bastante complicada, ya que los máximos de la figura de difracción se obtienen en general por superposición de reflexiones provenientes de una familia de planos cristalinos con la misma distancia interplanar d_{hkl} y no se puede introducir simplemente un único \mathbf{H}_{hkl} ya que el vector \mathbf{H}_{hkl} tendrá su propio valor particular para cada uno de los planos en cuestión.

Luego de haber determinado las posiciones de los momentos magnéticos en la celda unitaria (x_ν, y_ν, z_ν), junto con sus orientaciones relativas a los ejes coordenados (esto es, \mathbf{H}_ν), se puede determinar f_ν^m y en consecuencia, usando

$$f_\nu^m = (e^2 \gamma / 2 mc) s F(q)$$ \hspace{1cm} (2.2.1)

el número cuántico efectivo S que está relacionado al momento magnético efectivo μ_ν y también al factor de forma $F(q)$. El valor
de f^{m}_{ν} está determinado por medición de las intensidades de las reflexiones magnéticas.

2.3. EL USO DE LAS REPRESENTACIONES DE SIMETRIA EN LA DETERMINACIÓN DE LA ESTRUCTURA MAGNÉTICA

La resolución de la estructura magnética se reduce a determinar la orientación mutua de los momentos magnéticos entre sí, y respecto a los ejes coordenados. Para realizar esto de una forma relativamente simple se puede usar algún criterio basado en las relaciones de simetría conocidas del cristal.

En primer término se propone una disposición de los momentos que responda a la más alta simetría compatible con la estructura cristalina y al mismo tiempo que satisfaga los datos experimentales de difracción de neutrones. Si no se obtiene acuerdo entre las intensidades medidas y las calculadas, entonces se podría tratar de reducir la simetría, eliminando algunas operaciones o reemplazándolas por elementos de antisimetría.

También podría ocurrir que los datos experimentales de difracción de neutrones no se puedan interpretar sobre la base de la unidad de celda cristalina. Este hecho está asociado con la introducción de un elemento de antitranslación, que conduce a una nueva red de Bravais. La elección de una nueva red de Bravais está asociada con un incremento en el tamaño de la unidad de celda magnética en virtud de las antitranslaciones a lo largo de uno, dos, o los tres ejes. El nuevo tipo de red de Bravais magnética determina la ley de extinción para las reflexiones magnéticas del
diagrama de difracción de neutrones.

Por lo tanto el indicado de una figura de difracción de neutrones, junto con una determinación de las leyes de extinción de reflexiones magnéticas, hace posible la determinación del tamaño de la celda unidad magnética, el tipo de red de Bravais y la presencia de algunos elementos de simetría.

Los momentos magnéticos se transforman frente a distintos elementos de simetría como vectores polares en un caso (traslaciones y rotaciones), y como pseudovectores en otro (inversiones y reflexiones). En la fig. 2.3.1 (Donnay, 1958) se ilustra la acción de varios elementos de simetría y antisimetría sobre el momento magnético. Los elementos de antisimetría, como mencionamos antes, se denotan con primas. Se puede dar una representación de un vector momento magnético considerándolo como una corriente circular: las operaciones de simetría por lo tanto se aplican a corrientes circulares y la dirección de los momentos quedará fijada entonces de acuerdo con este modelo.
<table>
<thead>
<tr>
<th>TRANSLACIÓN</th>
<th>ROTACIÓN</th>
<th>INVERSIÓN</th>
<th>INVERSIÓN ROTATORIA</th>
<th>REFLEXION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2.3.1: Efectos de operaciones de simetría y antisimetría sobre momentos magnéticos.
2.4. UTILIZACION DE MUESTRAS POLICRISTALINAS PARA LA DETERMINACION DE LA ESTRUCTURA MAGNETICA

Resulta a menudo difícil y aún imposible obtener muestras monocristalinas de la calidad y tamaño adecuados para su utilización en un estudio por difracción de neutrones. Además, en los monocristales resulta problemático evaluar en forma completa la influencia que tienen sobre las intensidades de difracción los efectos de extinción y la existencia de estructuras de dominios magnéticos. El empleo de muestras policristalinas resulta así una solución conveniente para abordar aquellos problemas estructurales cristalográficos o magnéticos, donde la utilización de difracción de neutrones es indispensable. En particular, para el compuesto estudiado en este trabajo, la obtención de un monocristal del tamaño apropiado resultó imposible. No obstante ello, el estudio de la muestra a diferentes temperaturas utilizando los difractogramas de polvo permitió llegar a la determinación de la estructura magnética.

En el método de polvo la orientación al azar de los pequeños cristales que constituyen la muestra, trae aparejada la pérdida de parte de la información. Una pérdida importante se debe a la superposición, que suele ocurrir en el difractograma, de picos provenientes de difracciones con ángulos de Bragg iguales (dentro de la resolución del instrumental), pero correspondientes a reflexiones producidas en distintos planos.

Una posibilidad de recuperar esa información consiste en la utilización de las intensidades integradas totales de grupos de
picos superpuestos como "valores observados" para refinar la
estructura molecular mediante un ajuste por cuadrados mínimos a
partir de un modelo estructural propuesto. Este método tiene la
desventaja de no utilizar toda la información contenida en el
perfil de las líneas de difracción. Rietveld (1967, 1969) propuso
un método para el refinamiento por cuadrados mínimos de las
estructuras magnéticas y nucleares a partir del análisis de los
perfiles de las líneas de difracción de neutrones obtenidos
realizando un barrido por pasos en el ángulo de dispersión \(2\theta\) del
diagrama de difracción de muestras policristalinas.

La propusición de Rietveld se basa en el hecho empírico de
que, a pesar de los diferentes factores que influyen en la forma
de una línea de difracción de neutrones, la convolución de todos
ellos da lugar a un pico que es casi exactamente de forma
gaussiana. El perfil de un pico compuesto puede por lo tanto
considerarse como constituido por la suma de picos gaussianos
representando las reflexiones de Bragg. La contribución de los
picos contituyentes a la envolvente en la posición \(2\theta_i\) puede
expresarse (Rietveld, 1967) como

\[
y_i = a \cdot e^{-4 \ln^2 \left(2\theta_i - 2\theta_o \right)^2 / B^2}
\]

(2.4.1)

donde, \(B = \) ancho de línea a mitad de altura
\(2\theta_o = \) posición del pico
Estos valores se pueden obtener a partir del diagrama conociendo la longitud de onda y los parámetros de celda. El parámetro de ajuste es a

\[a \sim \frac{jF}{B}, \text{ donde } F = \text{factor de estructura: suma de las contribuciones nuclear y magnética.} \]

\[j = \text{multiplicidad del factor de estructura } F \]

En caso de superposición, la medida sobre la envolvente en \(2\theta_i \) puede escribirse como

\[y_{i,\text{obs}} = \sum_k w_k F_k^2, \quad (2.4.2) \]

donde la suma se extiende sobre todas las reflexiones que, por su posición y ancho de línea, pueden contribuir a la intensidad.

El fundamento del refinamiento de la forma de línea queda explícito en la función \(M \), que se minimiza para ajustar los parámetros nucleares y magnéticos

\[M = \sum_i w_i \{ y_{i,\text{obs}} - 1/c y_{i,\text{cal}} \}^2, \quad (2.4.3) \]

donde \(c \) es un factor de escala (que permite considerar \(y_{\text{cal}} = c y_{\text{obs}} \)), y \(\sum \) se extiende sobre todas las observaciones independientes.

Para poder evaluar cuantitativamente el acuerdo entre las intensidades integradas observadas y las calculadas a través de las intensidades de los perfiles, podemos hacer una aproximación a las intensidades integradas observadas por medio de una separación.
de los picos de difracción de acuerdo a los valores calculados de esas intensidades, es decir

\[
I_k^{(obs)} = \sum_j \left\{ \frac{\sum_j w_j F_k^{(cal)} y_j^{(obs)}}{y_j^{(cal)}} \right\}, \tag{2.4.4}
\]

donde \(\sum\) se extiende sobre todos los \(y_j^{(obs)}\) que teóricamente pueden contribuir a la intensidad integral \(I_k^{(obs)}\).

De los valores de \(I_k^{(obs)}\) podemos entonces obtener valores para \(F_k^{(obs)}\), así como también de \(F_{k,\text{mag}}^{(obs)}\) y \(F_{k,\text{nc}}^{(obs)}\), y definir un valor

\[
R_{\text{total}} = 100 \times \sum_i \left| \frac{F_i^{(obs)} - \frac{1}{c} F_i^{(cal)}}{\sum_i F_i^{(obs)}} \right|, \tag{2.4.5}
\]
y expresiones totalmente análogas para \(R_{\text{mag}}, R_{\text{nc}}\) y

\[
R_{\text{perfil}} = 100 \times \sum_i \left| \frac{y_i^{(obs)} - \frac{1}{c} y_i^{(cal)}}{\sum_i y_i^{(obs)}} \right|, \tag{2.4.8}
\]
que nos permitirá cuantificar el grado de acuerdo alcanzado.
Capítulo III INTERACIONES HIPERFINAS EN MATERIALES MAGNÉTICOS.

3.1. INTRODUCCIÓN.

Las interacciones hiperfinas son la manifestación de los acoplamientos entre los campos creados por los electrones sobre el núcleo y los momentos magnético o cuadrupolar del mismo (interacción hiperfina magnética o cuadrupolar) o la carga nuclear (corrimiento isométrico). Son en general varios órdenes de magnitud menores que los niveles de energía nucleares. Aparecen como mínimas correcciones a estos niveles pero llevan la información del entorno fisicoquímico en el que se encuentra el átomo sonda (Freeman, 1985).

La más importante de las interacciones hiperfinas, cuando un ión o átomo tiene un momento magnético electrónico resultante, es la interacción magnética. En particular, la interacción hiperfina magnética puede pensarse como debida al acoplamiento del momento magnético nuclear con el campo magnético efectivo de electrones atómicos desapareados.

Puede plantearse formalmente el problema (Greenwood, 1971) escribiendo el Hamiltoniano de interacción total para el átomo, que contiene términos que reflejan las diferentes interacciones entre el núcleo y los electrones.

Dicho Hamiltoniano se escribe como

\[\mathcal{H} = \mathcal{H}_0 + E_0 + H_1 + E_2 + \ldots \quad , \] \hspace{1cm} (3.1.1)

donde \(\mathcal{H}_0 \) representa todos los términos en el Hamiltoniano atómico
 correspondientes a un núcleo puntual, excepto las interacciones hiperfinas consideradas aparte; E_0 surge de la corrección a la interacción monopolar eléctrica (coulombiana) entre los electrones y el núcleo debida al tamaño finito de este último; M_1 se debe a la interacción dipolar magnética (entre el campo magnético en el sitio del núcleo y el momento dipolar magnético de éste); E_2 se origina en las interacciones cuadrupolares eléctricas (entre un gradiente de campo eléctrico generado por distribuciones asimétricas de carga y el momento cuadrupolar del núcleo). Los términos de orden superior por lo general son despreciables.

3.2. INTERACCIONES MAGNÉTICAS HIPERFINAS. DESDOBLAMIENTO ZEEMAN.

Estudiaremos aquí el efecto Zeeman debido al acoplamiento del momento magnético nuclear con un campo magnético (Abragam, 1961). Este campo puede ser de origen atómico, también puede ser generado a través de las interacciones de intercambio, o bien constituir un campo magnético aplicado externamente. Consideremos que hay un campo magnético de H gauss y que su dirección define el eje z.

El Hamiltoniano que describe la interacción hiperfina dipolar magnética es:

$$\mathbf{H} = - \mathbf{\mu} \cdot \mathbf{H} = - g \, \mu_N \, I \cdot \mathbf{H}$$ \hspace{1cm} (3.2.1)

donde $\mu_N = (e\hbar/2I_{\text{nuc}}c)$ es el magnetón de Bohr nuclear, μ es el
momento magnético nuclear, \(\hat{I} \) es el spin nuclear, y \(g \) es el factor de Landé \((g = \mu/I\mu_N) \). Los elementos de matriz \(\mathcal{H} \) se evalúan usando el operador de spin \(\hat{I} \) \((\mathcal{H} = -g \mu_N \hat{I} \cdot \hat{H}) \) obteniéndose los autovalores

\[
E_m = -\frac{\mu H m_I}{I} = -g \mu_N H m_I
\]

(3.2.2)

donde \(m_I \) es el número cuántico magnético que representa la componente z de \(\hat{I} \) (esto es: \(m_I = I, I-1, \ldots, -I \)). El campo magnético desdobra los niveles nucleares de spin \(I \) en \((2I + 1) \) subestados equiespaciados no degenerados. Las transiciones dipolares magnéticas permitidas entre los diferentes subniveles nucleares están gobernadas por las reglas de selección de \(\Delta m_I = 0, \pm 1 \). En la fig. 3.2.1 se ilustran, a modo de ejemplo, las transiciones permitidas entre el estado excitado de spin \(I=3/2 \) y el fundamental, \(I=1/2 \) en el \(^{57}\text{Fe} \) \((g_{\text{exc}} = -0.153, \mu_N ; \ g_{\text{fun}} = 0.0903, \mu_N) \).

![Diagrama de niveles nucleares](image)

Fig. 3.2.1: Desdoblamiento Zeeman de los niveles nucleares del \(^{57}\text{Fe}\).
3.3 ORIGENES DEL CAMPO MAGNÉTICO HIPERFINO

En forma general podremos escribir la expresión

$$
\vec{H}_{\text{ef}} = \vec{H}_{\text{ext}} - D \vec{H} + \frac{4}{3} \pi \vec{H} + \vec{H}_{S} + \vec{H}_{L} + \vec{H}_{D}. \tag{3.3.1}
$$

donde, \vec{H}_{ext} es el valor en la posición del núcleo de un campo magnético generado por un imán externo. El término siguiente, $-D\vec{H}$, es el campo desmagnetizante y $\frac{4}{3} \pi \vec{H}$ es el campo de Lorentz (el coeficiente $\frac{4}{3} \pi$ se aplica sólo estrictamente para simetría cónica). Ambos son pequeños ($\sim 10^2$ Oe). La contribución \vec{H}_{S} surge como resultado de la interacción del núcleo con un desbalance en la densidad de spin de electrones s dentro del núcleo, y se puede escribir como:

$$
\vec{H}_{S} = \frac{16}{3} \pi \mu_{B} \sum \delta(r) \tag{3.3.2}
$$

donde δ es la delta de Dirac. La expresión contenida en los corchetes es el valor esperado de la densidad de spin, siendo r_i la coordenada radial del i-ésimo electrón. La contribución \vec{H}_{S} se conoce como término de contacto de Fermi. Esta contribución es del orden de 10^3 Gauss. Su origen puede deberse a un desapareamiento

74
intrínseco de los electrones s, o indirectamente, al resultado de efectos de polarización sobre orbitales s llenos. Esto último puede ocurrir si el átomo tiene electrones no apareados en orbitales d ó f, o si está químicamente ligado a un átomo con estas características orbitales. La interacción de un electrón d no apareado con los electrones s de spin paralelo al suyo será diferente que con los electrones s de spin opuesto. El resultado es un ligero desbalance de la densidad de spin en el núcleo. Esta interacción de intercambio entre los electrones d y los s del carozo produce una repulsión de electrones con spines antiparalelos, que se puede entender de la siguiente manera: El principio de exclusión de Pauli (antisimetrización de las funciones de onda) hace que los electrones con spines paralelos se alejen entre sí en promedio, más que los electrones con spin antiparalelo. La interacción coulombiana será más grande entre electrones de spin antiparalelo (ya que ellos pueden aproximarse más en promedio que electrones de spin paralelo). Esto provoca una repulsión mayor entre los electrones con spines antiparalelos que entre electrones de spin paralelo, o bien una "atracción " efectiva entre electrones de spines paralelos (Freeman, 1985). Así los electrones de capas más internas provocan una contribución negativa a la densidad de spin en el núcleo lo que produce una contribución de campo hiperfino negativa, mientras que lo contrario ocurre para las capas más externas. Entonces, el campo hiperfino neto dependerá de si son los electrones más internos o los más externos los que producen la contribución más importante. La Tabla I-3 muestra los campos hiperfinos producidos por los distintos electrones s, calculados por Watson y Freeman.
Tabla I-3: Polarización de intercambio de los electrones del carozo (Watson, 1961). Los valores están expresados en unidades de kGauss.

<table>
<thead>
<tr>
<th></th>
<th>Mn²⁺(3d⁵)</th>
<th>Fe³⁺(3d⁵)</th>
<th>Fe²⁺(3d⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s⁺</td>
<td>2502840</td>
<td>-30</td>
<td>-50</td>
</tr>
<tr>
<td>1s⁻</td>
<td>-2502870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2s⁺</td>
<td>226270</td>
<td>-1410</td>
<td>-1780</td>
</tr>
<tr>
<td>2s⁻</td>
<td>-228080</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3s⁺</td>
<td>31210</td>
<td>+740</td>
<td>+1215</td>
</tr>
<tr>
<td>3s⁻</td>
<td>-30470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>-700</td>
<td>-630</td>
<td>-550</td>
</tr>
</tbody>
</table>

Como se ve en la tabla, los electrones 2s están más polarizados que los 1s, pues tienen una superposición mayor con los 3d. Por otro lado, los 3s se superponen más aún, pero algunas veces parecen estar "desconcertados", ya que caen parcialmente dentro y parcialmente afuera de los orbitales 3d. El efecto neto es el predominio de los electrones más internos, con lo cual el campo hiperfino resulta ser negativo (Hanna, 1960).

Los dos últimos términos de la ecuación (3.3.1) son: \(\mathbf{H}_L \), que aparece si el momento magnético orbital del átomo es no nulo y está dado por:

\[
\mathbf{H}_L = -2 \mu_B < r^{-3} > \mathbf{L}, \quad (3.3.3)
\]

donde \(< \mathbf{L} > \) es el valor medio del momento angular orbital; y el
término final H_D, que surge de la interacción dipolar magnética del núcleo con el momento de spin del átomo:

$$H_D = -2 \mu_B \langle \hat{s} \cdot \hat{r} \rangle \frac{r^{-3}}{r} \langle \hat{s}^{-3} \rangle$$ (3.3.4)

que en el caso de simetría axial es:

$$H_D = -2 \mu_B \langle \hat{s} \rangle \langle r^{-3} \rangle \langle 3 \cos^2 \theta - 1 \rangle$$ (3.3.5)

donde θ es el ángulo entre la dirección del spin y el eje principal.

Dado que

$$e^2 Q = 2 e^2 Q \langle r^{-3} \rangle \langle 3 \cos^2 \theta - 1 \rangle |\langle \hat{s} \rangle|,$$

donde Q es el momento cuadrupolar nuclear y q es el gradiente de campo eléctrico, resulta que $|H_D| = \mu_B q$. El término H_D es cero en simetría cúbica para elementos de transición, pero puede ser grande en los elementos de tierras raras ya que L no está extinguido.

A la suma $H_L + H_S + H_D$ se le suele llamar campo magnético interno.

En el caso de compuestos iónicos, como el $P_{2}O_{7}NaFe$, en donde el átomo magnético es el Fe, podemos estimar la importancia de cada uno de los términos que contribuyen al campo magnético interno que mediremos con el efecto Mössbauer en el núcleo 57Fe. El más significativo es la interacción de contacto de Fermi. En estos complejos iónicos donde la densidad de spin es producida por efectos de polarización de los electrones 3d sobre las capas internas s, el campo observado a bajas temperaturas es del orden
de 110 kG por cada electrón desapareado 3d. A esto se lo conoce por lo común como la "regla 220 <S_z>" (Vertés, 1979). Para el íón Fe^{3+}(3d^5), que es la configuración electrónica que presenta el Fe en el P_2O_7Na Fe, el término de contacto de Fermi es alrededor de 550 kG y de signo negativo.

Los términos orbital \(\mathbf{H}_L \) y de interacción dipolar con el momento de spin atómico \(\mathbf{H}_D \) son ambos cero para el Fe^{3+} en simetría cúbica, y aún en entornos distorsionados son muy pequeños, de modo que en general se desprecian (Freeman, 1985).

3.4 EL EFECTO MOSSBAUER.

3.4.1. Introducción.

La absorción resonante de la radiación gamma se conoce como efecto Mössbauer (ver apéndice A). Su rasgo distintivo, único, reside en que permite medir una radiación electromagnética casi monocromática con un espectro de banda de energías muy estrecho (del orden del ancho de línea natural de la radiación observada, por ejemplo \(4.67 \times 10^{-6}\text{eV} \) para la transición \(\gamma \) de 14.4 keV del \(^{57}\text{Fe}\), con lo cual se puede obtener información muy precisa sobre interacciones locales que afecten al átomo sonda Mössbauer.

Los estudios Mössbauer en conjunción con experiencias de difracción magnética de neutrones permiten una comprensión detallada de la naturaleza de los estados magnéticos localizados, del rango de las interacciones magnéticas y de la distribución espacial de la densidad de spin (Freeman, 1985).
3.4.2 Medición del campo magnético hiperfino.

En sustancias paramagnéticas, el tiempo de relajación térmica del ion paramagnético es tan corto (\(\tau_r \leq 10^{-13} \) s, en el \(^{57}\)Fe) con relación al tiempo de emisión del rayo gamma, que el valor promedio del momento angular electrónico total en el tiempo de medida \(\tau_m \) es cero. En consecuencia el campo magnético observado es también nulo. Si en cambio se aplica a una muestra paramagnética un campo externo, éste produce la polarización de las distribuciones de spin electrónico, que a su vez producen un campo magnético efectivo sobre el núcleo, que en general será muchos órdenes de magnitud mayor que el campo magnético aplicado. En este caso, el campo magnético externo \(\vec{H}_{\text{ext}} \) inducirá una polarización neta de los iones paramagnéticos a la temperatura \(T \), y el promedio térmico de \(\vec{J} \) (o de \(\vec{S} \) para los iones del grupo del Fe), \(\langle J >_T \) (o \(< S >_T \)), se encuentra haciendo el promedio sobre todos los niveles de energía en el campo \(\vec{H}_{\text{ext}} \) con poblaciones dadas por la función de distribución de Boltzmann.

Entonces, en general, si se aplica un \(\vec{H}_{\text{ext}} \) el campo medido dentro del núcleo será \(\vec{H} \), y estará dado por:

\[
\vec{H} = \vec{H}_{\text{ef}} + \vec{H}_{\text{ext}}
\]

(3.4.1)

Si suponemos que el campo hiperfino debido a la polarización de los momentos electrónicos es proporcional a \(\langle J >_T \), es decir:

\[
\vec{H}_{\text{ef}} = A \langle J >_T
\]

(3.4.2)

y si consideramos una completa extinción del \(\vec{L} \), entonces, siendo \(H_{\text{sat}} \) el valor de saturación de \(H_{\text{ef}} \), se encuentra que (Freeman 1965, Craig, 1962):

79
\[\frac{H_{\text{ef}}}{H_{\text{ext}}} = (S+1) g \mu_B \frac{H_{\text{ext}}}{3kT} \quad (3.4.3) \]

para el comportamiento asintótico de la función de Brillouin.

Si ahora consideramos el ión de Fe, de momento \(\mathbf{S'} \), rígidamente acoplado a su entorno polarizado por el cual el sistema adquiere un momento de spin resultante \(\mathbf{S} \), entonces en un campo externo \(\langle \mathbf{S} \rangle_T \) estará dado por la función de Brillouin para el spin \(S \). Debido al acoplamiento rígido, \(\mathbf{S'} \) es solidario con \(\mathbf{S} \) de modo que el valor de \(\langle \mathbf{S'} \rangle_T \) está dado por:

\[\langle S' \rangle_T / S' = \langle S \rangle_T / S = B_S(x), \quad (3.4.4) \]

en lugar de:

\[\langle S' \rangle_T = S' B_S(x), \quad (3.4.5) \]

que vale sólo para un sistema de spins libres \(S' \).

Suponiendo la misma constante de proporcionalidad que antes, es:

\[H_{\text{ef}} = A \langle S' \rangle_T, \quad (3.4.6) \]

Substituyendo el valor de \(\langle S' \rangle_T \) de la (3.4.4) obtenemos:

\[H_{\text{ef}} = A S' B_S(x), \quad (3.4.7) \]

que para la región de \(x \) pequeño está dado por:

\[H_{\text{ef}} = A S' [(S+1) g \mu_B H_{\text{ext}} / 3kT] \quad (3.4.8) \]
Se ve ahora claramente el significado físico del origen de H_{ef} a través de \mathbf{S} y de A, y la dependencia térmica de H_{ef} con la constante de Curie, ec. (1.3.6) y (1.3.9) (relacionada con el spin total S). El valor de saturación será entonces:

$$H_{sat} = A \mathbf{S}$$ \hspace{1cm} (3.4.8)

y así podemos escribir:

$$H_{ef} / H_{sat} = (S+1) g \mu_B H_{ext} / 3kT$$ \hspace{1cm} (3.4.10)

que es la expresión fenomenológica usada por Craig (Craig, 1962) para ajustar los datos en la región lineal del sistema Fe-Pd.

En la fase ordenada, el campo interno reemplaza a H_{ext} y el H_{ef} tendrá una dependencia térmica (Nagle, 1960), que en el caso del Fe$^{3+}$ en compuestos iónicos se ajusta bastante bien con una función de Brillouin para un spin 5/2, y siendo además H_{ef} proporcional a la magnetización, su medición a través del efecto Mössbauer nos permite determinar la dependencia con la temperatura de las magnetizaciones de subred en compuestos antiferromagnéticos.

Las medidas Mössbauer que se realizan con aplicación de un campo magnético sobre la muestra bajo estudio permiten, además de otros estudios, la determinación del signo del campo interno. Por ejemplo, aplicando un campo magnético externo paralelo o perpendicular a la dirección de emisión γ algunas de las líneas de absorción del espectro pueden intensificarse, disminuirse o directamente suprimirse. Las intensidades teóricas para un sexteto magnético que están en la relación 3:2:1:1:2:3 para un muestra con
orientación aleatoria de dominios, varían desde 3:0:1:1:0:3 cuando la muestra tiene una magnetización paralela a la dirección del rayo gamma, hasta 3:4:1:1:4:3 cuando la magnetización de saturación es perpendicular a la dirección de emisión-detección (fig 3.4.1). Esta particularidad permite el estudio de sustancias de espectros complicados y facilita la comprensión de los sistemas con muchas fases presentes. Asimismo, es de gran utilidad en el estudio de sistemas magnéticamente ordenados. Se torna indispensable cuando se trata de investigar sistemas paramagnéticos.

![Diagrama de transmisión relativa](image)

fig. 3.4.1: Representación del campo magnético hiperfino en una muestra policristalina con: (a) el campo magnético interno distribuido al azar, (b) con un campo magnético aplicado a θ=90°, y (c) con un campo magnético aplicado a θ=0°. Donde θ es el ángulo entre la dirección del rayo γ y el campo magnético aplicado.
3.4.3 Efectos de relajación.

Hemos visto que la principal contribución al campo magnético hiperfino sobre un núcleo de 57Fe en los compuestos de hierro surge como resultado de la interacción de intercambio entre los electrones 3d y los electrones s del carozo, que desbalancea la densidad de electrones con direcciones de spin opuestas dentro del núcleo. A través de la interacción de contacto de Fermi esto establece un campo magnético efectivo H_{ef} paralelo a \vec{S}, el spin neto de la capa 3d, siendo $H_{ef} = 55$ T. La dirección del campo estará relacionada a la del spin electrónico resultante \vec{S} del átomo. Esta dirección no es invariable y puede alterarse después de un cierto tiempo por causa de varios mecanismos. Estos saltos en las direcciones del spin constituyen el fenómeno de relajación.

Debemos recordar que el campo sobre un núcleo dado está sólo determinado por el spin neto de su ión, y no por ejemplo, por la magnetización que es una propiedad macroscópica. De modo que el origen del campo magnético H_{ef} en el núcleo en un material paramagnético es el mismo que en un material que está magnéticamente ordenado. De esta manera, las propiedades específicas del sistema de espines iónicos influyen en el desdoblamiento hiperfino Mössbauer solamente a través de la dependencia temporal del valor promedio del spin iónico \vec{S}.

Si un núcleo sufre la acción de un campo magnético H constante, la condición para que se pueda observar desdoblamiento hiperfino en un espectro Mössbauer es que la separación entre líneas sucesivas sea mayor que el ancho de línea natural $\Gamma = h/\tau_m$, o sea, $g\mu_N H \geq \Gamma \circ \omega_L \cdot \tau_m \geq 1$, donde ω_L es la frecuencia de
precesión nuclear de Larmor en el campo \(\vec{H} \). Para el \(^{57}\text{Fe} \) éste campo \(H \) es del orden de 1 Tesla. La frecuencia de precesión del spin atómico \(S \) hace que el spin nuclear sólo reaccione al valor del número cuántico \(S_z \). Entonces, si el valor de \(S_z \) se mantiene fijo durante un período de tiempo \(\tau_e \) grande comparado con el tiempo \(1/\omega_L \), es decir, \(\omega_L \cdot \tau_e > 1 \), o bien \(\tau_e > \tau_m > \tau_L \), será posible observar un desdoblamiento Zeeman hiperfino. Esta relación no se cumple para iones paramagnéticos excepto en presencia de campos externos aplicados del orden de \(10^{-2} \) a \(10^{-4} \) Tesla (Dekker, 1967).

Los procesos responsables de la variación de la dirección del spin en iones paramagnéticos son las interacciones electrónicas spin-spin con los iones vecinos y las interacciones spin-red. Los procesos spin-spin comprenden transferencia de energía entre sistemas de spins que interactúan por medio de relajación dipolar y de intercambio. El tiempo de relajación promedio spin-spin \(\tau_{ss} \) es generalmente muy corto para sólidos con alta densidad de spins, pero decrece rápidamente con la dilución magnética. La relajación spin-red requiere la transferencia de energía del sistema de spins a modos de vibración (fonones) de la red por medio del acoplamiento spin-orbita. El tiempo \(\tau_{sr} \) de relajación spin-red aumenta cuando disminuye la temperatura, mientras que el spin-spin es independiente de la misma.

Los dos mecanismos propuestos para la relajación spin-red son el de Waller y el Kronig-Van Vleck (Srivastava, 1983). El de Waller, que parece jugar un papel importante en algunos estados \(S \) en sólidos con gran concentración de spins, consiste en que las vibraciones de red modulan la interacción magnética, dipolar o de intercambio, entre dos spins y son así responsables de la
transferencia de energía entre los spinones y la red. En el mecanismo de Kronig-Van Vleck, en cambio, los fonones modulan el campo eléctrico cristalino, y así afectan el movimiento orbital de los electrones del ión. Este a su vez modifica el estado de spin a través del acoplamiento spin-orbita. La interacción spin-phonon se produce entonces indirectamente por medio de las interacciones spin-orbita y órbita-red, ya que el spin del ión no es directamente sensible al campo eléctrico.

Se ha agrupado a los mecanismos de relajación spin-red en tres categorías: directo, Raman y de Orbach. Estos procesos son de importancia fundamentalmente en la relajación paramagnética lenta como resultado de iones desacoplados y no en los fenómenos cooperativos que nos ocupan en este trabajo. Por ello no profundizaremos su estudio. En cambio nos detendremos algo más en analizar el desdoblamiento hiperfino observado por Mössbauer para diferentes tiempos de relajación en procesos de ordenamientos tridimensionales en sistemas de spin S=5/2.

Los espectros de procesos de ordenamientos magnéticos tridimensionales son, en el límite de campo aplicado nulo, idénticos en apariencia a los de relajación lenta. La diferencia reside en que \(H_{\text{ef}} \) en los sitios iónicos individuales corresponde a la magnetización espontánea que se está desarrollando en el volumen de la muestra. Esta última se genera en las interacciones de intercambio entre iones metálicos que comienzan a ser comparables o mayores que los efectos de aleatoriedad térmica de spinones cuando disminuye la temperatura. Contrariamente a la relajación lenta, los procesos que conducen a la aparición del desdoblamiento hiperfino se desarrollan en un pequeño intervalo de
temperaturas, reflejando así la transformación de fase magnética cooperativa, generalmente de segundo orden. El tipo de ordenamiento magnético debe ser determinado por medidas complementarias de susceptibilidad o bien con medidas Mössbauer pero con campo magnético externamente aplicado (en realidad con Mössbauer se puede determinar el diagrama completo de fases magnéticas con la aplicación de campos externos (Reiff, 1984)). La dimensionalidad del ordenamiento magnético debajo de la temperatura de Néel se determina ajustando el exponente crítico que tendrá valores diferentes de acuerdo a que el arreglo sea de 1, 2 o 3 dimensiones.

En la zona paramagnética, la observación de una sola línea o de un sexteto dependerá, a través del tiempo de relajación, del mecanismo particular que sea responsable de la fluctuación de la dirección del spin. El campo cristalino en el que se encuentre el ión de hierro para el spin \(S = 5/2 \), desdobla estados de spin que estarán caracterizados por tres dobletes de Kramers con \(S_z = \pm 1/2, \pm 3/2 \) y \(\pm 5/2 \), y aún cuando estén igualmente poblados a las temperaturas de medida, sus tiempos de correlación de spin son diferentes. De este modo, para distintos tiempos de relajación, se pasará de un nítido espectro resuelto en sus seis componentes Zeeman a uno donde el desdoblamiento ha colapsado en un sola línea central.
Capítulo IV. CARACTERÍSTICAS ESTRUCTURALES Y MEDIDAS EXPERIMENTALES.

4.1 CARACTERÍSTICAS ESTRUCTURALES DEL NaFeP$_2$O$_7$.

4.1.1 Preparación de la muestra.

El compuesto NaFeP$_2$O$_7$ se preparó mezclando cantidades adecuadas de Fe$_2$O$_3$, NH$_4$H$_2$PO$_4$ y CO$_2$HNa de acuerdo a la fórmula estequiométrica:

$$\text{Fe}_2\text{O}_3 + 4 \text{NH}_4\text{H}_2\text{PO}_4 + 2 \text{CO}_2\text{HNa} \rightarrow 2 \text{NaFeP}_2\text{O}_7.$$ (4.1.1)

La mezcla fue calentada hasta 280 °C y luego se molió finamente en mortero de ágata. Este procedimiento se repitió una vez para una temperatura de calentamiento de 700 °C, y cuatro veces más (durante ocho horas a intervalos de dos) para una de 800 °C. A continuación se elevó la temperatura a 1100 °C, realizando el recocido del material durante una hora, al cabo de la cual se enfrió muy lentamente, con una velocidad aproximada de 10 °C/hora, hasta 900 °C. A esa temperatura se sacó la muestra del horno y se la dejó enfriar al aire hasta la temperatura ambiente (quenching). Así se obtuvo una muestra en polvo de color rosa claro, policristalina, correspondiente a la fase de alta temperatura del pirofosfato de sodio y hierro.

Para corroborar que la estructura cristalina de la preparación coincidiese con los datos estructurales conocidos del NaFeP$_2$O$_7$ (Gabelica-Robert, 1982), se realizaron difractogramas de rayos X desde temperatura ambiente hasta 77K (fig. 4.1.1). (Estas
medidas fueron realizadas en el Depto. de Física de la U.F.M.G., Belo Horizonte, Brasil). El indiciado de las reflexiones de Bragg se realizó con ayuda de difractogramas calculados a partir de los datos estructurales (simulados con el programa LAZY-PULVERIX; Yvon, 1977).

4.1.2 Características estructurales.

La fase de alta temperatura del NaFeP₂O₇ cristaliza en el grupo espacial monoclinico P₂₁/c, con \(a = 7.3244_{13} \) Å, \(b = 7.9045_{13} \) Å y \(c = 9.5745_{13} \) Å, \(\beta = 111.858_{13}^\circ \), y \(Z = 4 \) (Gabelica-Robert, 1982).

Esta estructura se describe como de tipo "jaula" con una matriz FeP₂O₇ construida con octaedros FeO₆ y grupos pirofosfato P₂O₇ que comparten los oxígenos de los vértices. Los grupos piro están constituidos por dos grupos fosfato PO₄, algo distorsionados, con un oxígeno en común. Las longitudes de las ligaduras, y los ángulos se muestran en la Tabla I-4. Cada octaedro FeO₆ comparte todos sus vértices con tetraedros PO₄. Los octaedros son sólo aproximadamente regulares ya que, a pesar de que las distancias Fe-O son prácticamente iguales, los ángulos O-Fe-O varían apreciablemente entre 84.4 y 84.3°, indicando una deformación de la simetría octaedrica. Cada octaedro FeO₆ está ligado a otros diez octaedros vecinos a través de tetraedros PO₄, y las distancias entre átomos de Fe varían entre 4.78 y 6.30 Å (Tabla II-4). En las figuras 4.1.2 y 4.1.3 se muestra distintas proyecciones de los arreglos de octaedros FeO₆ y grupos piro P₂O₇ en el NaFeP₂O₇.
fig. 4.1.1a: Difractograma de rayos X del NaFeP2O7 a 300K.

fig. 4.1.1b: Difractograma de rayos X del NaFeP2O7 a 77 K.
TABLA I-4. Distancias y ángulos en el NaFe$_2$O$_7$ (Gabelica-Robert, 1982)

<table>
<thead>
<tr>
<th>DISTANCIAS (Å)</th>
<th>ANGULOS (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)–P(2)</td>
<td>2.590(1)</td>
</tr>
<tr>
<td>P(1)–O(1)</td>
<td>1.605(1)</td>
</tr>
<tr>
<td>P(1)–O(2)</td>
<td>1.511(1)</td>
</tr>
<tr>
<td>P(1)–O(3)</td>
<td>1.520(1)</td>
</tr>
<tr>
<td>P(1)–O(4)</td>
<td>1.500(2)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>P(2)–O(1)</td>
<td>1.614(2)</td>
</tr>
<tr>
<td>P(2)–O(5)</td>
<td>1.508(1)</td>
</tr>
<tr>
<td>P(2)–O(6)</td>
<td>1.514(2)</td>
</tr>
<tr>
<td>P(2)–O(7)</td>
<td>1.528(1)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DISTANCIAS OCTAEDROS FeO$_6$

- Fe–O(2) 1.994(1) Na–O(1) 2.533(2)
- Fe–O(3) 2.014(1) Na–O(2) 2.580(2)
- Fe–O(4) 1.938(2) Na–O(3) 2.408(2)
- Fe–O(5) 1.969(1) Na–O(5) 2.384(2)
- Fe–O(6) 2.044(1) Na–O(6) 2.662(2)
- Fe–O(7) 2.053(2) Na–O(7) 2.457(2)
- Na–O(4) 3.064(2)
- Na–O(7) 2.975(2)

TABLA II-4. Distancias entre el átomo de Fe de coordenadas x=0.2596, y=0.0088, z=0.2494 y sus diez primeros vecinos.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>distancia [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.2596</td>
<td>-0.0088</td>
<td>-0.2494</td>
<td>4.88</td>
</tr>
<tr>
<td>0.7404</td>
<td>-0.0088</td>
<td>0.7506</td>
<td>4.78</td>
</tr>
<tr>
<td>-0.2596</td>
<td>-0.4912</td>
<td>0.2506</td>
<td>5.49</td>
</tr>
<tr>
<td>-0.2596</td>
<td>0.5088</td>
<td>0.2506</td>
<td>5.49</td>
</tr>
<tr>
<td>0.7404</td>
<td>-0.4912</td>
<td>0.2506</td>
<td>5.29</td>
</tr>
<tr>
<td>0.7404</td>
<td>0.5088</td>
<td>0.2506</td>
<td>5.29</td>
</tr>
<tr>
<td>0.2596</td>
<td>-0.5088</td>
<td>-0.2506</td>
<td>6.30</td>
</tr>
<tr>
<td>0.2596</td>
<td>-0.5088</td>
<td>0.7494</td>
<td>6.30</td>
</tr>
<tr>
<td>0.2596</td>
<td>0.4912</td>
<td>-0.2506</td>
<td>6.12</td>
</tr>
<tr>
<td>0.2596</td>
<td>0.4912</td>
<td>0.7494</td>
<td>8.12</td>
</tr>
</tbody>
</table>
fig. 4.1.2: Arreglo relativo de octaedros FeO₆ y grupos P₂O₇ en el NaFeP₂O₇ (Gabelica-Robert, 1982).

fig. 4.1.8: Capas paralelas a (001) construidas a partir de unidades (Fe₆O₁₈) (Gabelica-Robert, 1982).
4.2. MEDIDAS DE SUSCEPTIBILIDAD.

Todas las medidas de magnetización se llevaron a cabo en el Laboratorio de Resonancias Magnéticas del Centro Atómico Bariloche. Fueron realizadas por el método de Faraday con una muestra en polvo de NaFePO₄, y midiendo con un magnetómetro desarrollado por M. Prado y R. Zysler con la dirección de M. Tovar.

Se realizó el estudio de magnetización de la muestra en función de la temperatura para campos magnéticos aplicados entre 200 y 10.000 gauss (Zysler, C.A.B, 1987). Esto último fue posible disminuyendo la temperatura en forma lenta y continua, para cada campo magnético fijo. Una vez alcanzado el punto de temperatura mínima, se aumentó gradualmente de la misma forma. También se midieron algunos valores de magnetización para temperaturas fijas y diferentes campos magnéticos aplicados (estos puntos corresponden a los asteriscos en las figuras 4.2.3, 4.2.4 y 4.2.7).

Los resultados obtenidos para la magnetización en función de la temperatura se muestran en la fig. 4.2.1. Para temperaturas mayores de 40K se observa un comportamiento tipo Curie. Por debajo de esta temperatura hay un cambio importante en la conducta de la magnetización, poniendo de manifiesto una transición de fase. En la fig. 4.2.2 se muestra en forma ampliada la zona de transición. De esta última gráfica se toman los datos de magnetización en función del campo, para cada temperatura, y se ajustan con una regresión lineal obteniéndose la magnetización remanente (ordenada
al origen), fig. 4.2.3, y la susceptibilidad (pendiente), fig. 4.2.4. En la fig. 4.2.5 se muestran los coeficientes de correlación de estas regresiones. En las figuras. 4.2.6a y 4.2.6b se muestran gráficas típicas de M vs. H, donde se observa la linealidad que se conserva hasta el mínimo campo medido (que es el remanente del imán, del orden de 30 Gauss).

La dependencia de la inversa de la susceptibilidad ($1/\chi$) con la temperatura se muestra en la fig. 4.2.7, donde puede apreciarse claramente el comportamiento según la ley de Curie ($1/\chi \sim T$) para temperaturas por encima de la transición. Extrapolando a cero el comportamiento de la región paramagnética, se obtuvo la temperatura de Curie, $\theta = -50.5_4 \text{ K}$, y la constante de Curie, $C = 1.672_{19} \times 10^{-2} \text{ emu/} \text{gr} \text{ K}$. Al obtener una temperatura de Curie negativa tenemos la evidencia de que a temperaturas por debajo de 50.5K el sistema se ordenará antiferromagnéticamente. La aparición de magnetización remanente, fig.4.2.3, y un agudo pico en la variación de χ vs. T, fig.4.2.4, determinan un valor de la temperatura de transición de 28.5_K. Un valor máximo de 0.28 erg/gauss-gr de la magnetización remanente, que equivale a un momento magnético por Fe$^{3+}$ de 0.0124 μ_B, muestran un comportamiento ferromagnético débil por debajo de la temperatura de orden.

Una observación cuidadosa de la fig. 4.2.7 permite ver una pequeña anomalía magnética entre 230K y 280K, que aparece en la forma de un lazo de histéresis como se ve más claramente en la fig. 4.2.8. Si bien no pudo determinarse su origen, se pensó que podría originarse en alguna impureza constituyendo una fase
minoritaria de posible naturaleza amorfa (Long, 1982; Gabelica-Robert, 1982b), presente en el material. Nuevas medidas realizadas con muestras muy cuidadosamente preparadas (a efectos de analizarlas con difracción de neutrones) no revelaron la aparición de este comportamiento magnético anómalo. De estas últimas mediciones, fig.4.2.9, se obtuvieron la temperatura de Curie θ = -53.4 K y la constante de Curie C = 1.744 emu/gr K, con la que se calculó el momento magnético efectivo por átomo de hierro, μ_{ef} = 5.938 magnetones de Bohr.
fig. 4.2.1: Magnetización vs. Temperatura (para distintos campos).

fig. 4.2.2: Magnetización vs. Temperatura (para distintos campos).
fig. 4.2.3: Magnetización remanente vs. Temperatura.

fig. 4.2.4: Susceptibilidad vs. Temperatura.
fig. 4.2.5: Correlación de Susceptibilidades.

fig. 4.2.6a: Magnetización vs. Campo Magnético aplicado ($T = 0.7 \, K$).
fig. 4.2.6: Magnetización vs. Campo Magnético aplicado ($T = 4.2$ K).

fig. 4.2.7: Inversa de la Susceptibilidad vs. Temperatura.
fig. 4.2.8: Inversa de la Susceptibilidad vs. Temperatura, mostrando en forma ampliada la región donde ocurre la anomalía.

H = 2500 gauss

fig. 4.2.8: Inversa de la Susceptibilidad vs. Temperatura.
4.3.-MEDIDAS DE DIFRACCION DE NEUTRONES.

Esta medidas fueron posibles gracias a una colaboración con el prof. G. Long, de la University of Missouri-Rolla, E.E.U.U..

Con una cantidad aproximada de 8 gr de NaFeP₂O₇ en polvo, colocados en un portamuestras de vanadio elegido por su baja dispersión coherente, fueron realizadas medidas de difracción de neutrones a las temperaturas de 8K, 20K, 40K y temperatura ambiente (Reichel, 1987). El enfriamiento se efectuó por medio de un sistema criogénico CTI de ciclo cerrado. Mediante un análisis de Rietveld (ver cap.II) pudieron ajustarse exitosamente la totalidad de los picos que aparecen en los diagramas de difracción, como puede observarse en las figuras 4.3.1 y 4.3.2. Despreciando pequeñas diferencias en las posiciones de algunos picos e intensidades relativas, y considerando la reducción en la dispersión magnética incoherente a causa de la disminución del desorden térmico, se observa -figs. 4.3.3 y 4.3.4- que los diagramas a 40K y temperatura ambiente son idénticos. Los datos de 8K y 20K contienen dos picos intensos a bajos ángulos (2θ ≈ 10K), como se muestra en las figs. 4.3.5 y 4.3.6, que no están presentes ya a 40K, poniendo de relieve el ordenamiento magnético de la muestra a bajas temperaturas.

Comparando los diagramas de neutrones a T_{amb} con los diagramas de rayos X, no considerando aún los momentos magnéticos de los Fe, es decir ajustando (según datos del JSSC) con un factor de forma nuclear, se encuentra un muy buen acuerdo.
fig. 4.3.1: Análisis de Rietveld del difractograma de neutrones del NaFeP₂O₇ a 300K

fig. 4.3.2: Análisis de Rietveld del difractograma de neutrones del NaFeP₂O₇ a 8 K.
fig. 4.3.3: Difractograma de neutrones del NaFeP₂O₇ a 300 K.

fig. 4.3.4: Difractograma de neutrones del NaFeP₂O₇ a 40 K.
fig. 4.3.5: Diffractograma de neutrones del NaFeP$_{27}$O$_{27}$ a 8 K.

fig. 4.3.6: Diffractograma de neutrones del NaFeP$_{27}$O$_{27}$ a 20 K.
Los nuevos picos que ocurren a 8K corresponden a reflexiones de índices de Miller 010 y 10\(\bar{1}\), que están prohibidas para el grupo espacial \(P2_1/c\) de las posiciones atómicas. Decir que la estructura magnética es \(P2_1/c\) significa que, cuando les aplicamos las correspondientes operaciones de simetría, los momentos magnéticos cambian de la misma manera que lo haría un trompo que gira. Por ejemplo, cuando el eje del trompo esté normal a un plano, la reflexión en ese plano no cambiará la dirección del vector de rotación. Cuando el eje del trompo sea paralelo al plano, la imagen especular aparecerá rotada en la dirección opuesta, y por lo tanto la regla de la mano derecha dará un vector de rotación que apuntará en esa dirección. Ya que el grupo monoclinico \(P2_1/c\) tiene un plano espejo normal al eje \(b\), y ya que el plano de deslizamiento (reflexión en el plano espejo y traslación en la dirección \(c\)) no afecta la orientación del trompo, la aplicación de las operaciones de simetría de este grupo espacial obliga a los átomos relacionados por la operación espejo a tener las mismas componentes del momento magnético en el eje \(b\) (normal al espejo) y componentes opuestas en el plano \(a-c\) (paralelo al espejo) (Abrahams, 1963).

Imaginemos un sistema de coordenadas centrado en el trompo de modo que su vector rotación apunte en la dirección +z (fig.4.3.7).
La fig. 4.3.7 -Un trompo girando, con su vector de rotación $\hat{\omega}$ en el eje $-z$, como representación de un momento magnético cuando le aplicamos las operaciones de simetría del grupo espacial P_{2_1}/c. Los átomos del trompo en el eje $+x$ se moverán en la dirección $+y$.
Bajo inversión estos átomos pasarán a estar en el eje $-x$, moviéndose en la dirección $-y$, generando una rotación que también tendrá su vector apuntando en $+z$. En consecuencia, bajo inversión la dirección del momento magnético no cambiará. Teniendo presente este análisis, las operaciones de simetría para los átomos y para los momentos magnéticos deben ser las siguientes:
<table>
<thead>
<tr>
<th>Posición + Traslación</th>
<th>Operador Rotación del Momento Magnético.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>-1 0 0 0</td>
<td>-1 0 0</td>
</tr>
<tr>
<td>0 1 0 1/2</td>
<td>0 1 0</td>
</tr>
<tr>
<td>0 0 -1 1/2</td>
<td>0 0 -1</td>
</tr>
<tr>
<td>-1 0 0 0</td>
<td>1 0 0</td>
</tr>
<tr>
<td>0 -1 0 0</td>
<td>0 1 0</td>
</tr>
<tr>
<td>0 0 -1 0</td>
<td>0 0 1</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>-1 0 0</td>
</tr>
<tr>
<td>0 -1 0 1/2</td>
<td>0 1 0</td>
</tr>
<tr>
<td>0 0 1 1/2</td>
<td>0 0 -1</td>
</tr>
</tbody>
</table>

Intentando algunos otros ajustes con otras matrices de rotación magnética, para los otros tres subgrupos de Shubnicov (ver cap. II) del grupo espacial monoclinico se obtiene un acuerdo muy pobre. En consecuencia, dado que el refinamiento de la estructura da un excelente acuerdo con los datos cuando se ajustan proponiendo las operaciones de simetría del P2₁/c, dando un factor \(R_{nu} = 3.4 \% \), se deduce que la simetría de la estructura magnética también debe corresponder a la del grupo espacial P2₁/c.

El refinamiento de los datos a bajas temperaturas da un momento magnético total por átomo de hierro de 4.5 magnetones de Bohr, cuyas componentes en los ejes cristalinos a, b y c son 1.7, 1.0 y 4.7 magnetones de Bohr respectivamente. Debemos notar que la componente a cancela parcialmente a la c, a causa del ángulo monoclinico \(\beta = 111.8 \) (fig. 4.3.8).
fig. 4.3.9: Componentes del momento magnético del Fe$^{3+}$, $\mu = 4.5 \mu_B$ a 8K, en las direcciones cristalinas de la celda monoclinica del NaFe$_2$O$_7$.

Otros ajustes realizados proponiendo un ordenamiento magnético correspondiente al subgrupo de Shubnikov P2$_1$/c' para las medidas de 40 K dio, igualmente, un buen acuerdo. Se obtuvo un valor del momento magnético de $2.1 \mu_B$ paralelo o antiparalelo a la dirección b, siendo nulas las componentes en a y c. Asimismo, un ajuste con $1.1 \mu_B$ paralelo a b y nulas en a y c, también dio un buen acuerdo. De ser válidas cualesquiera de estas dos hipótesis, ello equivaldría a la presencia de una fase antiferro o ferromagnética a la temperatura medida.
4.4. MEDIDAS MOSSBAUER.

Se usaron aproximadamente 200 mg de NaFeP₂Ο₇ en polvo, para obtener los espectros Mössbauer del compuesto. Se utilizó un espectrómetro convencional en modo de aceleración constante, con una fuente de 50 mCi de ⁵⁷Co en matriz de Rh a temperatura ambiente que fue calibrada con una lámina de α-Fe también a temperatura ambiente. Las temperaturas entre 4.2 y 32 K se obtuvieron por medio de un calefactor colocado dentro de un criostato de helio líquido. La temperatura se midió por medio de una termocupla de Au + 0.3 at.% Fe vs chromel-P, y se controló su estabilidad dentro de ± 0.3 K. Las medidas entre 77 y 300 K se hicieron en un criostato de nitrógeno líquido. Los espectros fueron ajustados utilizando un programa de ajuste por cuadrados mínimos no lineales con vínculos que simula el ensanchamiento de línea con la velocidad, por medio de una constante de proporcionalidad. El fondo y la no linealidad de la velocidad fueron ajustados por curvas de segundo grado.

En algunas medidas cercanas a los 30 K la inestabilidad térmica superó los límites del controlador pero, a causa del alto consumo de He que llevaban, no pudieron repetirse.

Las medidas entre 4.2 y 32 K se efectuaron en el Instituto de Física de la Universidad Federal de Rio Grande do Sul, Porto Alegre, Brasil -figs. 4.4.1 y 4.4.2-, y de 77 a 300 K en el Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata.
fig. 4.4.1: Espectros Mössbauer del NaFeP2O7 entre 4.2 y 20 K.
fig 4.4.2: Espectros Mössbauer del NaFePO$_4$ entre 25 y 32 K.
Los espectros en la región paramagnética muestran una línea no desdoblada, cuyo ancho a mitad de altura también admitiría un ajuste de los mismos suponiendo un pequeño desdoblamiento cuadripolar. Esto es coincidente con el bajo grado de distorsión que presenta el entorno inmediato de oxígenos coordinados con el Fe. El corrimiento isométrico (δ_{t^6}) tiene valores correspondientes a un hierro·(III) paramagnético de alto spin, en un campo cristalino esencialmente octaédrico. A temperatura ambiente es $\delta_{t^6} = 0.44 \text{ mm/s}$, lo que está en excelente acuerdo con otros compuestos que contienen octaedros FeO₆ aislados, con distancias promedio hierro-oxígeno de alrededor de 2.00 Å (Long, 1979; Menil, 1985). Para el NaFePO₄ es $\overline{\text{FeO}} = 1.993 \text{ Å}$.

Suponiendo que la variación en el corrimiento isométrico puede atribuirse casi en su totalidad al efecto Doppler de segundo orden, a partir de la diferenciade $\approx 0.14 \text{ mm/s}$ en los valores medidos a 300 y a 4.2 K, podemos estimar una temperatura de Debye del orden de 300 K para la muestra (suponiendo aproximación armónica para las vibraciones de red).

El espectro por debajo de la temperatura de orden muestra un único desdoblamiento hiperfino magnético dependiente de la temperatura, con una muy pequeña interacción cuadripolar que es nuevamente otro indicio de la escasa distorsión del entorno inmediato al Fe³⁺. El valor único del campo hiperfino magnético denota la equivalencia de las magnetizaciones de subred. Esto muestra la existencia de una sola fase antiferromagnética en el intervalo de temperaturas estudiado, contrariamente a lo que se observó en el FePO₄ (Battle, 1982).
Es de notar que la muestra preparada para este trabajo no mostró el efecto de ninguna impureza (los espectros por debajo de la temperatura de orden mostraron sólo un desdoblamiento Zeeman nuclear puro con un solo valor de campo magnético hiperfino) en contraste con lo mostrado por Moya Pizarro (1984) en el mismo compuesto.

El acuerdo de estos resultados con los de las medidas de magnetización es excelente, asegurando el carácter débilmente ferromagnético denotado por la magnetización remanente observada. La medida directa de las magnetizaciones de subred que se efectúa a través de los espectros Mössbauer, no da diferencia alguna dentro de los errores experimentales.

El valor de casi 2.0 para la relación de las alturas relativas de las líneas 2 y 5 con respecto a las 3 y 4 se corresponde con una orientación de microcristales verdaderamente aleatoria, por lo que se puede afirmar que en este material no se observan los efectos de orientaciones preferenciales, como encontraron Long et al (1979) para el Fe₂(SO₄)₃ anhídrido.

El comportamiento del campo hiperfino magnético muy cerca de la temperatura de transición fue ajustado con la siguiente expresión de exponente crítico (válida si \(\frac{T - T_N}{T_N} \leq 10^{-1} \);
Kadanoff, 1987):

\[
\frac{H(T)}{H(0)} = A \left(1 - \frac{T}{T_N} \right)^\beta
\]

(4.4.1)

donde \(H(0) \) es el valor de saturación del campo hiperfino a \(T = 0K \).
que en el caso del Fe$^{3+}$ es igual a 55 Tesla, A es una constante y β es el exponente crítico. El mejor ajuste -fig. 4.4.3- dio como resultado los siguientes valores:

$$A = 1.37$$

$$T_N = 29.2$$

$$\beta = 0.36$$

El valor de T_N es ligeramente superior al medido por métodos magnéticos ya que el efecto Mösßbauer comienza a ver la transición hacia el estado ordenado a través del entorno inmediato de los iones de Fe$^{3+}$, que precede en orden a la temperatura en que se ordena la muestra completa.

El valor calculado del exponente crítico β confirma un carácter tridimensional para el ordenamiento magnético del sistema.

Las medidas de difracción de neutrones a 40 K podrían sugerir la presencia de una fase ferromagnética o antiferromagnética, con un momento por íon Fe$^{3+}$ igual a 1.1 o 2.1 μ_B respectivamente. Esto se podría explicar parcialmente con la introducción de una operación de antisimetría en el grupo espacial monoclinico, que se corresponde con el subgrupo de Shubnicov $P2_1/c'$. Estas hipótesis, sin embargo, contradicen las medidas Mösßbauer, ya que deberían manifestarse con un desdoblamiento de los subniveles nucleares magnéticos, que no han sido observados a ninguna temperatura por encima de la de orden.
fig. 4.4.8: Comportamiento crítico del campo magnético hiperfino.
Capítulo V. MODELO DE INTERACCIONES MAGNÉTICAS EN EL NaFe₂P₂O₇

5.1. MODELO PROPUESTO Y EVALUACION DE LAS INTEGRALES DE INTERCAMBIO A PARTIR DE LOS DATOS EXPERIMENTALES.

5.1.1. Introducción.

A partir del conocimiento de la estructura cristalina del NaFe₂P₂O₇, en la que las distancias Fe—Fe son considerablemente grandes (del orden de 6 Å en promedio), proponemos un modelo de interacciones de superintercambio entre primeros vecinos. Del análisis de las medidas de susceptibilidad y difracción de neutrones a bajas temperaturas surge que la muestra tiene un ordenamiento antiferromagnético. Para describir este ordenamiento se pensó al sistema como formado por dos subredes interpenetradas, constituidas por iones magnéticos que ocupan sitios equivalentes de la red cristalina. Los sitios no equivalentes desde el punto de vista magnético, que constituyen las dos subredes, están definidos por la diferente orientación que adoptan los momentos de acuerdo a las operaciones de simetría del grupo espacial monoclinico P2₁/c, como fue observado con difracción de neutrones. De acuerdo con esto consideramos dos tipos de interacciones de superintercambio: una, Jₐa, que acoplará los iones magnéticos de una misma subred, y otra, Jₕb, que lo hará con los que pertenezcan a subredes diferentes. Las magnitudes medidas que podemos relacionar de una manera simple con estas interacciones son la temperatura de Curie θ y la temperatura de Neél Tₙ (Smart, 1963), y ello lo haremos a partir de un tratamiento de campo molecular.
5.1.2. Determinación de las integrales de intercambio a partir de medidas realizadas en la región paramagnética.

Para la presente discusión tendremos presente las características estructurales del NaFeP₂O₇, descriptas en el parágrafo 4.1.

Tenemos cuatro iones Fe³⁺ por celda unitaria coordinados octaédricamente (FeO₆) con seis oxígenos compartidos con los complejos pirofosfato (P₂O₇). Estos iones están comunicados entre sí por puentes Fe-O-P-O-Fe formando posibles caminos de superintercambio, todos ellos de longitudes casi iguales. Ocho caminos simples enlanzan iones de subredes diferentes, y dos caminos dobles lo hacen con iones de la misma subred.

Considerando lo desarrollado en el capítulo I (parágrafos 1.4.3, 1.6 y 1.7), planteamos para nuestro modelo las siguientes ecuaciones de campo molecular (considerando dos subredes, a y b, acopladas antiferromagnéticamente)

\[
\begin{align*}
H_a &= \lambda_{aa} M_a - \lambda_{ab} M_b + H_{ext} \\
H_b &= -\lambda_{ab} M_a + \lambda_{bb} M_b - H_{ext}
\end{align*}
\]

(5.1.1)

donde \(H_a\) y \(H_b\) son los campos efectivos que actúan sobre los iones de las subredes a y b, debido a la acción de sus iones vecinos y el campo externo \(H_{ext}\). Las \(\lambda_{aa}\), \(\lambda_{bb}\) y \(\lambda_{ab}\) son las constantes de campo molecular, que serán negativas en el caso de interacciones...
antiferromagnéticas; \(M_\alpha \) y \(M_\beta \) son las magnetizaciones de subred.

En (5.1.1) supondremos una simetría axial determinada por el campo magnético aplicado \(H_{\text{ext}} \), y usaremos la siguiente convención de signos: \(H_\alpha \) y \(M_\alpha \) están en el mismo sentido que \(H_{\text{ext}} \), y \(H_\beta \), \(M_\beta \) en sentido contrario.

De acuerdo a lo visto en el párrafo 1.6, podemos escribir la constante de campo molecular entre las subredes a y b como:

\[
\lambda_{\alpha \beta} = \frac{2zJ_{\alpha \beta}}{N_0 g^2 \mu_B^2}, \tag{5.1.2}
\]

Donde:
- \(g \): factor de Landé
- \(\mu_B \): magnetón de Bohr
- \(z \): número de iones magnéticos de la subred a vecinos a un ión b (o viceversa), teniendo en cuenta la multiplicidad de caminos que los interconectan.
- \(N_0 \): número de iones magnéticos de cada subred \((N_{\text{total}}/2) \) por unidad de volumen.

Entonces, para los ocho caminos simples que conectan un ión magnético de una subred con sus ocho primeros vecinos de la otra subred, tenemos

\[
\lambda_{\alpha \beta} = \frac{16J_{\alpha \beta}}{N_0 g^2 \mu_B^2}, \tag{5.1.3}
\]

Donde \(J_{\alpha \beta} \) es la integral de intercambio promediada para los ocho caminos de superintercambio entre subredes. Con una expresión análoga a la (5.1.2) podemos obtener las constantes de campo molecular \(\lambda_{\alpha \alpha} \) y \(\lambda_{\beta \beta} \), que consideramos iguales dado que en principio las subredes a y b son totalmente equivalentes. Luego,
teniendo en cuenta los dos caminos dobles que conectan iones de la misma subred, obtenemos

\[
\lambda_{aa} = \lambda_{bb} = \frac{8 J_{aa}}{N_0 g_s^2 \mu_S^2} .
\] \quad (5.1.4)

Las interacciones de superintercambio están definidas de modo tal que satisfacen un hamiltoniano de intercambio de Heisenberg isótropo para un par de iones i y j, con spins \(S_i \) y \(S_j \), dado por

\[
H_{ij} = -2 J_{ij} S_i S_j .
\] \quad (5.1.5)

Suponiendo el mismo valor del spin iónico (en nuestro caso \(S = 5/2 \) para el \(\text{Fe}^{3+} \)) y el mismo valor del factor de Landé (\(g = 2 \)) para ambos sitios ocupados por el Fe en las subredes a y b, obtenemos el valor de saturación para las magnetizaciones de subred:

\[
M_{sat} = N_0 g \mu_B S .
\] \quad (5.1.6)

Vimos que la magnetización de un sistema de spins tiene una dependencia de tipo Brillouin con la temperatura, entonces:

\[
M = M_{sat} B_S (\mu H / k T) ,
\] \quad (5.1.7)

donde \(k \) es la constante de Boltzmann y \(\mu \) es el valor máximo para el momento alineado delión magnético, y vale \(g \mu_B S \). Y \(B_S \) es la función de Brillouin de spin solamente, ya que en el \(\text{NaFeP}_2\text{O}_7 \), como en muchos cristales iónicos antiferromagnéticos, hay una completa extinción del impulso angular orbital.

Más adelante podremos calcular las magnetizaciones de subred...
por la resolución autoconsistente del sistema de ecuaciones (5.1.1) con las ecuaciones de Brillouin para cada subred (Culvahouse, 1980):

$$
\begin{align*}
M_a &= M_{sat} B_S (g_\mu B S a / kT) \\
M_b &= M_{sat} B_S (g_\mu B S b / kT)
\end{align*}
$$

La solución de las ec. anteriores para pequeños argumentos de la función de Brillouin nos permite hallar la expresión de la susceptibilidad en la región paramagnética. Dado que

$$B_S(x) \xrightarrow{x \to 0} \frac{(S + 1)}{3S} x$$

es decir, cuando $\mu H \ll kT$ será $B_S(\mu H/kT) = \frac{S + 1}{3S} \frac{\mu H}{kT}$. (5.1.9)

Entonces,

$$M_a = M_{sat} \frac{(S + 1)}{3S} g_\mu B S \frac{H_a}{kT}$$

$$= \frac{M_{sat} g_\mu B (S + 1)}{3 kT} H_a$$

y reemplazando M_{sat} por su valor dado en (5.1.6):

$$M_a = \frac{N_o g^2 \mu_B^2 S(S+1)}{3 kT} H_a$$

$$= \frac{N_o g^2 \mu_B^2 S(S+1)}{3 kT} \cdot (\lambda_{aa} M_a - \lambda_{ab} M_b + H_{ext})$$. (5.1.10)

Procediendo en forma análoga con M_b obtenemos

118
\[
M_b = \frac{N_0 g^2 \mu_B^2 S(S+1)}{3 k T} \cdot (-\lambda_{ab} M_a + \lambda_{bb} M_b - H_{ext}). \quad (5.1.11)
\]

En la región paramagnética la acción de un campo magnético externo \(H_{ext} \) alinearía todos los momentos magnéticos en forma paralela entre sí, en la misma dirección y sentido del campo. Por supuesto esta suposición será válida si \(\lambda_{ab} \cdot M_a \) y \(\lambda_{ab} \cdot M_b \) son pequeños en relación con \(H_{ext} \). Entonces

\[
\begin{align*}
H_a &= \lambda_{aa} M_a + \lambda_{ab} M_b + H_{ext} \\
H_b &= \lambda_{ab} M_a + \lambda_{aa} M_b + H_{ext}
\end{align*}
\] (5.1.12)

Luego, las ec. (5.1.10) y (5.1.11) adoptan la forma

\[
\begin{align*}
M_a &= \frac{C_o}{T} \left(\lambda_{aa} M_a + \lambda_{ab} M_b + H_{ext} \right) \\
M_b &= \frac{C_o}{T} \left(\lambda_{ab} M_a + \lambda_{aa} M_b + H_{ext} \right)
\end{align*}
\] (5.1.13)

donde

\[
C_o = \frac{N_0 g^2 \mu_B^2 S(S+1)}{3 k} \quad (5.1.14)
\]

es la constante de Curie por subred. Entonces, podemos escribir la susceptibilidad volumétrica isotrópica que obedece la ley de Curie-Weiss como:

\[
\chi(T) = \frac{M_a + M_b}{H_{ext}}, \quad (5.1.15)
\]

de donde obtenemos la temperatura de Curie:

119
\[\theta = C_o \left(\lambda_{aa} + \lambda_{ab} \right). \quad (5.1.16) \]

La susceptibilidad \(\chi(T) \) presenta una singularidad cuando la temperatura alcanza el punto de Neél. De modo que a partir de las ec. (5.1.13) podemos calcular el valor de \(T_N \) (considerando ahora que por debajo de esa temperatura las magnetizaciones de subred serán iguales y opuestas: \(M_a = -M_b \)), entonces

\[T_N = C_o \left(\lambda_{aa} - \lambda_{ab} \right) \quad (5.1.17) \]

De las ecuaciones (5.1.16) y (5.1.17) despejamos las constantes de acoplamiento del campo molecular \(\lambda_{aa} \) y \(\lambda_{ab} \):

\[\lambda_{ab} = \frac{\theta - T_N}{2 C_o} \quad (5.1.18) \]

\[\lambda_{aa} = \frac{\theta + T_N}{2 C_o} \quad (5.1.19) \]

Para calcular el valor de \(C_o \) consideramos el número, \(N_o \), de iones magnéticos por subred y por unidad de volumen (volumen de la celda unitaria cristalina del NaFeP\textsubscript{2}O\textsubscript{7}). Entonces

\[\text{Vol}_{cu} = 554.32 \ \text{Å}^3 \Rightarrow N_o = \frac{Z (\text{Fe}^{3+})}{2 \text{Vol}_{cu}} = \frac{2}{554.32 \ \text{Å}^3} = \]

\[= 3.608 \times 10^{21} \ \text{cm}^{-3} \]

Con el valor de \(N_o \) podemos calcular la constante de Curie de subred, \(C_o \), y el valor de saturación de la magnetización de subred, \(M_{sat} \), obteniendo:

120
\[C_0 = 0.262 \text{ [joul}\cdot\text{K}\cdot\text{cm}^{-3}\cdot\text{Tesla}^{-2}] \]

\[M_{\text{sat}} = M_a(T=0\text{K}) = M_b(T=0\text{K}) = 0.187 \text{[joul}\cdot\text{cm}^{-3}\cdot\text{Tesla}^{-1}] \]

Con el valor de \(C_0 \) resolvemos (5.1.18) y (5.1.19), encontrando así los valores de \(\lambda_{ab} \) y \(\lambda_{aa} \):

\[\lambda_{ab} = -156.3 \text{ cm}^3\cdot\text{Tesla}^2\cdot\text{joule}^{-1} \]
\[\lambda_{aa} = -47.5 \text{ cm}^3\cdot\text{Tesla}^2\cdot\text{joule}^{-1} \]

Con estos valores de las constantes y las ecuaciones (5.1.3) y (5.1.4) podemos calcular las integrales de superintercambio promedio \(J_{ab} \) y \(J_{aa} \), obteniendo los valores:

\[J_{ab} = -1.21 \times 10^{-23} \text{joule} = -0.61 \text{ cm}^{-1} \]
\[J_{aa} = -0.73 \times 10^{-23} \text{joule} = -0.37 \text{ cm}^{-1} \]

En esta evaluación de las \(J_{ij} \) no consideramos efectos de anisotropía, ya que partimos de la suposición que las mismas satisfacen el hamiltoniano isotrópico dado en (5.1.5). Más adelante analizaremos con cuidado la validez de esta aproximación sobre la base de ver la influencia que podrían estar teniendo estas fuerzas anisotrópicas en ciertos parámetros observados en el ordenamiento magnético del sistema. Trataremos de entender de qué tipo son estas fuerzas, y estimar su orden de magnitud en relación a las de intercambio isotrópicas.
5.2. INTERPRETACION DE LOS RESULTADOS Y DISCUSION DEL MODELO.

5.2.1 Análisis de las J_{ij} calculadas con la aproximación de alta temperatura (región paramagnética).

Para poder verificar la validez del modelo usado en el cálculo de las integrales de superintercambio resolvimos autoconsistentemente el sistema de ecuaciones acopladas (5.1.1), sin campo magnético aplicado ($H_{\text{ext}} = 0$) en el rango de temperaturas de 4.2 a 29.0 K. Para ello consideramos los valores medidos con efecto Mössbauer del campo magnético hiperfino en el sitio del Fe$^{3+}$, que de acuerdo con la teoría del campo molecular son, a cada temperatura, proporcionales a la magnetización de subred: $H_{M} \propto M$. Las soluciones autoconsistentes nos dan las magnetizaciones de subred a cada temperatura en la que medimos el campo magnético hiperfino (Tabla I-5).

Representando los valores de M/M_{sat} en función de la temperatura y comparándolos con una gráfica de la función de Brillouin para $S = 5/2$ y $T_{N} = 29.2$ K, podremos observar un acuerdo muy bueno (fig. 5.2.1). Este acuerdo justifica en gran medida la aproximación realizada al considerar sólo un hamiltoniano isotrópico, y pone de manifiesto la validez del modelo de acoplamiento magnético propuesto. Con un grado de acuerdo tal como el obtenido, podemos afirmar también que los efectos de anisotropía presentes en el sistema deben ser, cuantitativamente, varios órdenes de magnitud más pequeños que el efecto neto de las interacciones isotrópicas.
fig. 5.2.1: Variación de la magnetización reducida de subred con la temperatura (cuadrados en el gráfico). Notamos el buen acuerdo alcanzado al comparar estos puntos con una curva de Brillouin para un spin $5/2$ y una temperatura de Néel de 29.2 K.
Tabla I-5. Valores de los campos magnéticos hiperfínos* y magnetizaciones de subred#, para diferentes temperaturas entre 4.2 y 29 K.

<table>
<thead>
<tr>
<th>T [Kelvin]</th>
<th>H [Tesla]</th>
<th>M / Msat</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>55.0 ± 0.3</td>
<td>0.989</td>
</tr>
<tr>
<td>5.0</td>
<td>54.9 ± 0.3</td>
<td>0.987</td>
</tr>
<tr>
<td>10.0</td>
<td>53.4 ± 0.2</td>
<td>0.958</td>
</tr>
<tr>
<td>15.0</td>
<td>51.4 ± 0.4</td>
<td>0.875</td>
</tr>
<tr>
<td>20.0</td>
<td>44.6 ± 0.3</td>
<td>0.740</td>
</tr>
<tr>
<td>25.0</td>
<td>37.1 ± 0.2</td>
<td>0.509</td>
</tr>
<tr>
<td>28.5</td>
<td>31.8 ± 0.2</td>
<td>0.400</td>
</tr>
<tr>
<td>28.5</td>
<td>19.2 ± 0.4</td>
<td>0.215</td>
</tr>
<tr>
<td>29.0</td>
<td>11.8 ± 1.0</td>
<td>0.160</td>
</tr>
</tbody>
</table>

* Medidos con efecto Mössbauer.
Obtenidas del cálculo autoconsistente.

5.2.2 Interpretación de los resultados y discusión.

Los iones Fe³⁺ del NaFe₂O₇ están coordinados octaédricamente con seis oxígenos con una simetría algo deformada con respecto al octaedro regular (ver parágrafo 4.1 del cap.IV). El efecto que produce el campo cristalino creado por estos oxígenos sobre el Fe³⁺ es, probablemente la fuente de anisotropía más importante. Una indicación de la anisotropía presente en el sistema es la ocurrencia de un comportamiento ferromagnético débil, como se detectó al medir una pequeña magnetización remanente en el estado ordenado (por debajo de 28.5 K). La aparición de este ferromagnetismo débil es consistente con el tipo de estructura magnética cuya celda unitaria tiene el mismo
tamaño que la celda química y las operaciones de simetría son tales que las direcciones de los spines serán iguales para todos los puntos de la red de Bravais y para todos aquellos spines que estén relacionados por un centro de inversión, de acuerdo al criterio de Turov (Turov, 1961). La ocurrencia de un solo sitio cristalográfico para el Fe descarta la posibilidad de un comportamiento ferrimagnético tipo-L (Néel, 1948), como fue observado en otros sistemas con Fe en entornos octaédricos (Battle, 1966; Long, 1983, 1979).

![Diagrama](image)

fig. 5.2.2 Proyección sobre el plano b-c de la unidad de celda monoclinica del NaFePO$_4$, donde podemos observar las posiciones de los Fe y las direcciones de las componentes b y c de sus momentos magnéticos.

La gran similitud entre las longitudes y los ángulos de todos los caminos de superintercambio que comunican a los átomos de Fe (fig 5.2.3), induce a pensar que todas las interacciones Fe—...—Fe
son intrínsecamente antiferromagnéticas, como por otra parte indican los resultados del cálculo de las \(J_{ij} \), mostrando que tanto \(J_{ab} \) como \(J_{aa} \) son negativas. Una representación esquemática de los momentos magnéticos en la celda cristalina, teniendo en cuenta la simetría del \(P2_1/c \), nos muestra que los momentos están orientados formando planos ferromagnéticos (fig 5.2.2). Pero, de acuerdo con el análisis de los caminos de superintercambio, en los planos ordenados ferromagnéticamente hay arreglos de cadenas que conectan primeros vecinos, y dado que, en magnitud, las \(J_{ab} \) y \(J_{aa} \) son muy similares, se podría pensar en algún comportamiento monodimensional (Dingle, 1969; Linares, 1988) en el ordenamiento magnético del sistema. Este tipo de comportamiento ha sido observado, por ejemplo, en el \(\text{Rb}_2\text{FeCl}_5\cdot\text{H}_2\text{O} \) (Puértolas, 1985; Bartolome, 1983) y depende esencialmente de las magnitudes relativas de las interacciones de intercambio. Sin embargo el análisis del comportamiento crítico que tiene el campo magnético hiperfino a temperaturas próximas a \(T_N \) arrojó un valor del exponente crítico \(\beta = 0.36 \pm 0.01 \), lo que se corresponde con un comportamiento tridimensional del ordenamiento magnético, como es de esperar en un modelo de Heisenberg 3-D (De Jonhgs, 1974). Pensamos que el arreglo de los momentos resulta del mayor número de caminos de superintercambio (ocho en total) entre subredes diferentes (ver fig. 5.2.3) que hacen posible que el acoplamiento antiferromagnético entre ellas se imponga sobre la orientación de los momentos en cada subred, determinando el antiferromagnetismo tridimensional.
fig. 5.2.3: Distancias y ángulos de los caminos de superintercambio Fe-O-P-O-Fe. Las distancias están en Å y los ángulos en grados.

Fe (subred a)

P

Fe (subred b)
Capítulo VI. CONCLUSIONES.

En el curso de esta investigación hemos logrado establecer algunos hechos significativos en relación a las interacciones responsables de las propiedades magnéticas del NaFeP₂O₇.

La estructura magnética de la fase ordenada del pirofosfato de sodio y hierro corresponde al grupo espacial monoclinico P2₁/c, con una unidad de celda magnética de iguales dimensiones que la celda unitaria cristalina del NaFeP₂O₇. Los iones magnéticos Fe³⁺ ocupan un sólo sitio en la estructura cristalina, y la orientación de sus momentos magnéticos definen dos subredes de acuerdo con las operaciones de simetría magnéticas del P2₁/c.

Las medidas de magnetización y susceptibilidad volumétricas en función de la temperatura muestran que por encima de 28.5 K el sistema tiene un comportamiento paramagnético. De la extrapolación a cero de la susceptibilidad inversa se obtienen los valores de la constante y la temperatura de Curie: \(C = 1.744 \text{ emu/cm}^3 \text{K} \) y \(\Theta = -53.4 \text{ K} \), con lo cual el momento magnético efectivo por ión de Fe³⁺ es \(\mu_e = 5.838 \mu_B \).

Por debajo de 28.5 K comienzan a predominar las interacciones de intercambio que producen un ordenamiento espontáneo del sistema en dos subredes, a y b, acopladas mediante integrales de superintercambio negativas, cuyos valores promedio para todos los posibles caminos de superintercambio comprendidos son: \(J_{ab} = -0.61 \text{ cm}^{-1} \) y \(J_{aa} = -0.37 \text{ cm}^{-1} \).

El sistema presenta un ordenamiento antiferromagnético tridimensional, al parecer determinado por el mayor número de

128
caminos de superintercambio que comunican iones magnéticos de subredes que pertenecen a planos de la estructura cristalina con ordenamientos opuestos de sus momentos magnéticos.

Quedan aún muchos aspectos que deben ser investigados en profundidad. En particular nos interesa comprender el rol desempeñado por los caminos a través de los que se manifiestan las interacciones de superintercambio, en su mutua competencia con las fuerzas anisotrópicas presentes en el sistema. Estimaciones teóricas más rigurosas podrían conducir a una serie de correcciones a este modelo simple, con lo que se lograría una información cuantitativa de mayor precisión tanto de las interacciones isotropas como de las anisotropías. Estas últimas, aunque pequeñas, no pueden ser totalmente ignoradas en relación al papel que les cabe en el establecimiento del orden magnético en el sistema.

En relación a la investigación experimental sería necesario completar la aplicación de la espectroscopía Mössbauer al estudio del NaFeP$_2$O$_7$, realizando medidas en función de la temperatura con la aplicación simultánea de un campo magnético externo. De esta manera se dispondría de una imagen completa del diagrama de fases magnéticas que presenta la muestra, así como también del conocimiento del tipo y magnitud de las anisotropías y de una caracterización de los estados electrónicos que participan en los acoplamientos.

Los caminos de superintercambio entre iones de una misma subred podrían sugerir la existencia de un acoplamiento ferromagnético monodimensional, a la manera de cadenas con sus
eslabones constituidos por caminos dobles Fe=O=P=O=Fe. De existir esta monodimensionalidad debería evidenciarse en la variación con la temperatura del calor específico y la susceptibilidad (Puértolas, 1985; Reiff, 1984; McElearn, 1973, 1977). A tal fin se planean nuevas medidas de susceptibilidad y calor específico en un entorno de temperaturas próximas a la transición.

El acuerdo entre las medidas experimentales y los cálculos basados en un modelo de campo molecular, con integrales de superintercambio definidas de modo tal que satisficiesen un hamiltoniano de Heisenberg totalmente isotrópo, indica que el orden de magnitud de las anisotropías es sensiblemente menor que el de las interacciones de superintercambio. El ferromagnetismo débil observado se atribuye a la anisotropía del campo cristalino creado sobre el Fe$^{3+}$ por los seis oxígenos que se coordinan con él, con una simetría octaédrica ligeramente distorsionada.

Con el fin de lograr una mayor comprensión del sistema se han planeado nuevos experimentos entre los que se cuentan la sustitución parcial del Fe por un ión no magnético, diluyendo así la concentración de iones magnéticos, y también la del Na por otros cationes, para verificar cuáles son las posibles influencias que estos últimos pudiesen tener sobre los caminos de superintercambio Fe-O-P-O-Fe.
DETALLES EXPERIMENTALES DE LA ESPECTROSCOPIA MOSSBAUER.

Obtención de absorción resonante gamma. Forma de línea.

Por el principio de incertidumbre, los niveles nucleares en vez de dibujarse nítidamente, deberían representarse como una banda de ancho ΔE inversamente proporcional a su vida media τ, cumpliéndose que:

$$\Delta E \cdot \tau \geq \hbar$$ \hspace{1cm} (A.1)

puesto que la vida media del nivel puede ser considerada como el intervalo de tiempo disponible para medir la energía. En general, para cualquier sistema cuántico, cada fotón emitido cumple exactamente la relación (Weisskopf, 1930):

$$\Gamma \cdot \tau = \hbar$$ \hspace{1cm} (A.2)

donde Γ es el ancho medio a mitad de altura de la línea espectral de emisión, llamado ancho de línea. Así resulta que estados excitados de vidas medias muy largas tendrán rayos γ correspondientes de anchos de línea muy estrechos y viceversa.

La dependencia con la energía de la intensidad emitida $I(E)$ es una curva lorentziana (fig. A.1) o de Breit-Wigner (Breit, 1936), cuya expresión es de la forma:

$$I = I_o \frac{(\Gamma/2)^2}{(E - E_o)^2 + (\Gamma/2)^2}$$ \hspace{1cm} (A.3)

donde I_o es la intensidad más probable E_o. De aquí se deduce que,
en el mejor de los casos, observaremos una curva lorentziana de ancho \(\Gamma \).

Para observar la absorción resonante, para la que se requiere exactamente la misma diferencia de energía entre los estados excitados y fundamental en el emisor y en el absorbente, se utiliza un dispositivo experimental como el de la figura A.2:

![Diagrama del dispositivo experimental para la observación del efecto Mössbauer.](image)

fig. A.2: Dispositivo experimental para la observación del efecto Mössbauer.

Si en el absorbente de la fig. A.2 existen nucleidos en entornos cristalinos exactamente iguales a los de la fuente, cuando ocurra una emisión resonante (libre de retroceso, es decir donde el rayo \(\gamma \) se lleva toda la energía disponible: \(E_\gamma = E_e - E_f \)) con una probabilidad \(f_\gamma \), fig. A.3,

![Diagrama de la emisión resonante gamma.](image)

fig. A.3: Emisión resonante gamma, \(E_\gamma = E_e - E_f \)

aquellos nucleidos que absorban resonantemente con una probabilidad \(f_\gamma \), (y reemitan un instante posterior) restarán rayos \(\gamma \), con probabilidad \(f_\gamma \times f_\gamma \), al haz que está incidiendo en el detector, ya que dicho haz se recibe dentro de un estrecho ángulo
sólido d\(\Omega\) y la reemisión se realiza isotrópicamente en \(4\pi\) (fig. A.4).

![Diagrama de radiación resonante](image)

Fig. A.4: Detención de radiación resonante.

De modo que cuando haya absorción resonante encontraremos una disminución en el conteo de nuestro detector. Si bien no existe ningún detector que pueda resolver la diferencia de energías correspondiente a un ancho de línea es posible, sin embargo, alterar la energía de la radiación emitida en cantidades tan pequeñas como se desee merced al efecto Doppler. Efectivamente, en primer orden (aproximación no relativista), si la fuente está en movimiento respecto al sistema de laboratorio con una velocidad \(v\), se observará una variación de su energía dada por

\[
\delta E = \frac{v}{c} E_{\gamma}
\] \hspace{1cm} (A.4)

donde \(c\) es la velocidad de la luz en el vacío y \(E_{\gamma}\) la energía del fotón \(\gamma\) con fuente en reposo.

Unos pocos mm/s son suficientes para observar un aumento del conteo, lo que implica la pérdida de la resonancia. Acercando o alejando el emisor al absorbente a distintas velocidades \(v\) podremos entonces variar levemente la energía del fotón emitido y barrer todo el perfil de la curva \(I(E)\). Como en el absorbente también hay una distribución lorentziana de ancho de línea \(\Gamma_a\) para las energías de los rayos \(\gamma\) absorbidos, encontramos para una
experiencia de transmisión como la de la figura A.4, donde se mueve la fuente con respecto al absorbente a diferentes velocidades, una línea de absorción de ancho medio \(\Gamma = \Gamma_f + \Gamma_a \), debido a que la suma de dos lorentzianas es también una lorentziana de ancho igual a la suma de los anchos de las componentes -fig. A.5- (Margulies, 1961).

![Diagrama](image)

fig. A.4: Forma de línea Mössbauer.

Un espectro Mössbauer se puede obtener entonces con una disposición experimental como la de la fig. A.4, y consiste en registrar la transmisión relativa de rayos \(\gamma \) a través del absorbente para distintas velocidades a las que se mueve la fuente. El rango de velocidades se elige de tal manera que se observen los perfiles de todas las líneas desdobladas por la interacción hiperfina de la muestra bajo estudio, que en la gran generalidad de los casos ocupará el lugar del absorbente.

Información que brinda la espectroscopía Mössbauer.

Veamos, suscintamente, cuáles son los parámetros que se obtienen de una experiencia Mössbauer y qué información se
consigue de ellos sobre la muestra bajo estudio.

a) Corrimiento isomérico.

Está dado por

$$\delta = (2/3) \pi Z e^2 \left(|\Psi_a(0)|^2 - |\Psi_f(0)|^2 \right) |\langle r_e^2 \rangle - |\langle r_f^2 \rangle|$$ (A.5)

donde Z es la carga del núcleo, $\langle r_e^2 \rangle$ y $\langle r_f^2 \rangle$ son los valores medios cuadráticos del radio nuclear en los estados excitado y fundamental, y $|\Psi_a(0)|^2$ y $|\Psi_f(0)|^2$ son las densidades electrónicas en la posición del núcleo en el absorbente y la fuente respectivamente. El corrimiento isomérico mide la diferencia de densidades electrónicas δ (y un porcentaje $< 0.1\%$ de $p_{1/2}$) dentro del volumen nuclear, entre la fuente y el absorbente. A través del apantallamiento de los electrones producido por las capas electrónicas con $l \neq 0$, es también sensible al estado de oxidación del átomo Mössbauer. Una variación de los electrones δ en la banda de valencia también influirá sobre el corrimiento isomérico (Gütlich, 1978) por la influencia directa que tiene sobre $|\Psi(0)|^2$. El corrimiento isomérico también resulta sensible a las ligaduras químicas (Goldanskii, 1968), a la valencia, al número de ligandos, a la electronegatividad y a la presión a la que se encuentre la muestra (Pound, 1961).

b) Desdoblamiento cuádrupolar.

El desdoblamiento cuádrupolar aparece cuando actúa sobre el núcleo un gradiente de campo eléctrico no nulo. Para transiciones entre estados nucleares de spin $I = 3/2$ a $I = 1/2$ (por ejemplo el 57Fe y el 119Sn) por ser el momento cuádrupolar nuclear Q nulo
para \(I \leq 1/2 \) sólo se desdobra el nivel \(I = 3/2 \), dando lugar a dos estados de energías \(E_\pm = \pm (1/4) e Q V_{zz} (1 + \eta^2/3)^{1/2} \).

El espectro muestra entonces un doblete correspondiente a las transiciones \(|3/2, \pm 3/2\rangle \rightarrow |1/2, \pm 1/2\rangle \) y \(|3/2, \pm 1/2\rangle \rightarrow |1/2, \pm 1/2\rangle \). El desdoblamiento cuadrupolar junto con las intensidades relativas de las líneas, brindan información acerca de la simetría del sitio donde está el átomo resonante.

c) Interacción hiperfina magnética.

Cuando un campo magnético \(H \) actúa sobre un núcleo de \(^{57}\)Fe, como la radiación \(\gamma \) tiene una multipolaridad \(M_1 \) y las transiciones permitidas siguen las reglas de selección para transiciones dipolares magnéticas \(\Delta m = 0, \pm 1, \Delta I = 1 \), se generarán seis posibles transiciones permitidas. Las intensidades relativas para orientación isótropa del campo magnético con respecto a la dirección de propagación de la radiación \(\gamma \) (dominio orientados al azar) se determinan a partir de los cuadrados de los coeficientes de Clebsch-Gordan y son \(3:2:1:1:1:2:3 \).

De esta manera, a través del desdoblamiento magnético hiperfino, podemos determinar el campo magnético efectivo que actúa sobre el núcleo.

d) Corrimiento Doppler de segundo orden.

El corrimiento Doppler, considerado en segundo orden de aproximación, tiene un término proporcional a la velocidad cuadrática media del átomo alrededor de su posición de equilibrio \(\langle v^2 \rangle \). Este aparece como superpuesto al corrimiento isométrico.
(Pound, 1960; Josephson, 1960). Su determinación brinda información sobre el espectro de fonones de la red en la que se encuentra el átomo sonda Mössbauer.
REFERENCIAS

Néel L., 1932, Ann. de Phys., 17, 64.

Néel L., 1948, Ann. de Phys., s.12, 3, 10.

Weiss P., 1907, J. Phys., 6, 667.

Yvon K., Jeitschko W. y Parthe E., 1977, "LAZY PULVERIX, a program to calculate theoretical X-ray and neutron diffraction powder patterns", Universidad de Ginebra.
Zysler R., 1987, Trabajo Especial de Licenciatura, Centro Atómico Bariloche.