CAPITULO V

EL MODELO "2+4"

1 INTRODUCCION

En años recientes, modelos Hamiltonianos con interacciones multiespín han sido objeto de muchas investigaciones debido a sus posibles aplicaciones a, entre otros sistemas, la estructura magnética del 3He [1], NiS$_2$ y CeEu [2] y más recientemente al estudio de bicapas de lípidos [3].

Además de las interacciones de n cuerpos (multiespín), en la mayoría de los sistemas físicos suelen aparecer interacciones de a pares. El modelo con interacciones de dos y cuatro cuerpos, llamado modelo "2+4", fue introducido por Penson [4], debido a la evidente importancia de las interacciones de muchos cuerpos. La inclusión de estas fuerzas hace pensar en una más adecuada descripción de ciertos sistemas con respecto a los modelos que sólo incluyen interacciones de a pares. Cuando aparece competencia entre las interacciones, o sea para ciertos valores de las constantes de acoplamiento, el sistema puede presentar riesgos interesantes como fases diferentes, incluyendo la posibilidad de fases moduladas, puntos de Lifshitz, estados fundamentales infinitamente degenerados, etc..
Una gran cantidad de información está contenida en el diagrama de fases, donde uno de los ejes es el cociente entre la interacción de 4 cuerpos y la de 2 cuerpos en una misma dirección y el otro es \(k_B T / J_0 \), donde \(k_B \) es la constante de Boltzmann, \(T \) la temperatura y \(J_0 \) la constante de acoplamiento a primeros vecinos en el plano perpendicular a la dirección antes mencionada. Varias aproximaciones y técnicas de cálculo se han utilizado para estudiar el modelo. Entre otras, Penson [4] y Kolbe y Penson [5] utilizaron la técnica de "finite-size scaling" aplicada a una representación cuántica 1D del modelo de Ising convencional 2D. El diagrama de fases por ellos encontrado es similar al del modelo ANNNI, excepto que no contiene zonas de fases incommensuradas. Más recientemente Grynberg y Ceva [6] obtuvieron el diagrama de fases del modelo "2+4" usando teoría de perturbaciones, desarrollo de bajas y altas temperaturas y ondas de espines. A través de estas técnicas dichos autores llegan a la conclusión de que el sistema presenta transiciones de fase de primer orden, y que si existieran fases moduladas estables, éstas deberían ser incommensuradas. Sin embargo ellos no encuentran una evidencia clara de la existencia de estas fases.

Como lo hemos hecho a lo largo de este trabajo, intentaremos utilizar la aproximación de campo medio para obtener el diagrama de fases del modelo "2+4". Sin embargo, para obtener la expresión de la energía libre, debido a la interacción multiespín, es necesario hacer una aproximación que va más allá de la de campo medio, e implica despreciar las correlaciones entre dos o más cuerpos. Esto nos permitirá llegar a conclusiones importantes que serán desarrolladas a través del presente capítulo [7].

En este trabajo se consideran redes cúbicas simples, donde la interacción multiespín está a lo largo de la dirección \(z \). En el plano \(xy \) los espines sólo interactúan con sus primeros vecinos, con constante de acoplamiento \(J_0 \). Si consideramos \(J_0 > 0 \), y debido a que no hay competencia en el plano, todos los espines del
plano \(xy \) estarán en promedio en el mismo estado (en este caso ferromagnético FM).

\[
H = - \sum_i [2J_0 S_i^2 + J_2 S_i S_{i+1} + J_4 S_i S_{i+1} S_{i+2} S_{i+3}],
\]

(5.1)
donde \(i \) denota al plano \(xy \). \(S_i \) es el espín asociado con el sitio \(i \)-ésimo y puede tomar los valores \(\pm 1 \). Por simplicidad asumiremos \(J_2 = J_0 \).

Comenzamos investigando las configuraciones de mínima energía a \(T = 0 \) K, debido a que usualmente son las más estables para temperaturas suficientemente bajas, y son más fáciles de encontrar que aquéllas a \(T \neq 0 \) K. Más aún, es interesante identificar las regiones donde la competencia entre \(J_2 \) y \(J_4 \) se hace importante. Como suponemos que en los planos \(xy \) el orden es FM (\(J_0 > 0 \)), sólo es necesario considerar la dirección axial.

Con anterioridad sólo se han mencionado las configuraciones de energía magnética a \(T = 0 \) K [4]. Allí se ha encontrado que el estado fundamental está formado por dos fases: una fase FM para \(\kappa \equiv -J_4/J_2 \leq 0.5 \) y una llamada \(< 3 \, 1 \, > \) (\(+++-\)) para \(\kappa \geq 0.5 \). La línea \(\kappa = 0.5 \) es altamente degenerada. Sin embargo, hasta ahora nadie ha hablado del tipo de degeneración que presenta esta línea, algo que discutiremos con detalle a continuación.

El estado fundamental en el plano \(J_2, J_4 \) es mostrado en la figura V.1. Para \(J_4 > 0 \) no hay competencia y el orden es FM para \(J_2 > 0 \) y antiferromagnético (AFM) para \(J_2 < 0 \). Para \(J_4 < 0 \) la interacción de 4 espines prefiere una configuración del tipo \(< 3 \, 1 \, > \) (en lo que sigue denotaremos las fases con \(n_1 \) espines para arriba, \(n_2 \) para abajo, como \(< n_1 \, n_2 \, \ldots \, > \)), mientras que la interacción a primer vecino prefiere un estado FM o AFM. El estado \(< 3 \, 1 \, > \) domina la región \(|J_4/J_2| > 1/2 \), de manera que habrá tres fases para \(J_4 < 0 \).
FIGURA V.1 Configuraciones de energía magnética mínima a $T = 0$ K.

Vale la pena observar con un poco de detenimiento las líneas $J_4/J_2 = \pm 1/2$, en las cuales coexisten infinitos estados con la misma energía. Sobre la línea $J_4/J_2 = 1/2$ estos estados son, además del AFM y el $<31>$, el $<21>$ y todos aquellos de la forma $<\ldots n_1\ldots n_2\ldots>$ donde los n_i son iguales a 2 ó 3 y los puntos indican que entre ellos existen uno o más "1" (por ejemplo $<11312111>$).

Por otro lado la línea $J_4/J_2 = -1/2$ aparece como mucho más complicada y sólo podemos decir lo siguiente. Primero, todos los estados del tipo $<n_1n_2>$, con $n_2 \neq 2$, están presentes. El caso de fases de cuatro o más grupos es complicado y no se ha podido encontrar un criterio general para establecer cuáles configuraciones están presentes y cuáles no. Nosotros hemos encontrado que fases del tipo $<n_1n_2n_3n_4>$ con $n_2,n_3 = 1$ ó 2 no están presentes (por ejemplo
(3113 > 6 < 3214 >). Además configuraciones < n₁ n₂ n₃ n₄ > con n₁ > 2, n₂ = 1, n₃ > 2, n₄ = 1 o aquéllas con n₁, n₂, n₃, n₄ > 2 están presentes (por ejemplo < 3141 > 6 < 3343 > respectivamente). Uno podría seguir especulando con la aparición o no de fases con la misma energía sobre la línea \(\kappa = -1/2 \). Sin embargo, no creemos que sea posible establecer un criterio general para saber cuáles están presentes y cuáles no.

Otra razón por la cual es importante conocer el diagrama a \(T = 0 \) K se halla en el hecho de que si uno buscara fases moduladas a bajas temperaturas y cerca de \(\kappa = 0.5 \), es de esperar que encuentre, como más estables, a aquéllas con longitudes de onda que aparecen como fase moduladas coexistiendo en el punto \(T = 0 \) K y \(\kappa = 0.5 \). Esto será tenido en cuenta en la sección 3.

Hasta aquí hemos discutido las configuraciones de energía magnética mínima a \(T = 0 \) K. De aquí en más nos ocuparemos de los cálculos para \(T \neq 0 \) K que en definitiva es lo que nos permite establecer el diagrama de fases completo.

2 EL MODELO

Como fue explicitado en el capítulo II, las transiciones orden-desorden orientacional son estudiadas introduciendo un conjunto de funciones \(n_i \), cada una de las cuales da la probabilidad de que el espín de la \(i \)-ésima subred esté hacia arriba. Vale recordar que se supone una cierta periodicidad en la red, y que el índice \(i \) corre sobre las \(N \) subredes de la celda unidad.

Cuando uno quiere obtener la energía magnética del sistema en la MFA, se encuentra con el valor medio del producto de cuatro variables (interacción de cuatro cuerpos). Cuando el modelo sólo presenta interacciones de dos cuerpos, el
valor medio del producto de las variables en el término de energía no es más que el producto de los valores medios de dichas variables. En el caso de cuatro cuerpos esto deja de ser cierto, y es necesario utilizar expresiones como la del cumulante para dar cuenta del valor medio del producto de los cuatro espines. Pero si uno quiere expresar la energía libre en términos de la función de distribución de una partícula (como lo hemos hecho en capítulos anteriores), es necesario hacer una aproximación más fuerte, despreciando las correlaciones entre espines, de manera de poder escribir

\[< S_i S_{i+1} S_{i+2} S_{i+3} > \sim < S_i >< S_{i+1} >< S_{i+2} >< S_{i+3} > \quad (5.2) \]

Más adelante se verá que esta aproximación nos permitirá obtener resultados interesantes de una manera muy simple.

Ahora la energía magnética por espín toma la forma

\[H = -\frac{1}{N} \sum_i [2J_0 < S_i >^2 + J_2 < S_i >< S_{i+1} > + J_4 < S_i >< S_{i+1} >< S_{i+2} >< S_{i+3} >] \quad (5.3) \]

Por otro lado, luego de la aproximación 5.2, el término de entropía del sistema por espín puede ser escrito

\[S = -(k_B/N) \sum_i n_i \ln n_i + (1 - n_i) \ln(1 - n_i) \quad (5.4) \]

En lugar de los \(n_i \) introduzcamos la magnetización media de la capa \(i \)-ésima \(M_i = < S_i > \), que se relaciona con \(n_i \) de acuerdo con \(M_i = 2n_i - 1 \)

Finalmente podemos obtener una expresión para la energía libre por espín en términos de las \(M_i \), para un sistema con interacciones de dos y cuatro cuerpos despreciando las correlaciones, como sigue:

\[F = -\frac{1}{N} \sum_i [(2J_0 M_i^2 + J_2 M_i M_{i+1} + J_4 M_i M_{i+1} M_{i+2} M_{i+3}) \right.

\[\left. + \frac{k_B T}{2} [M_i \ln\left\{\frac{1 + M_i}{1 - M_i}\right\} + \ln\left\{\frac{1 - M_i^2}{2}\right\}\right]. \quad (5.5) \]
Como ya hemos dicho, la fase más estable será la que tenga menor energía libre. Para poder calcular dicha energía, para las distintas fases, es necesario conocer los valores de las distintas M_i. Para cada temperatura estos valores pueden obtenerse de las N ecuaciones que satisfacen la relación $\partial F/\partial M_i = 0$. Esto lleva a un sistema de ecuaciones acopladas de la forma

$$
M_i = \tanh\{\beta J_0[4M_i + M_{i-1} + M_{i+1} - \kappa(M_{i+1}M_{i+2}M_{i+3} + M_{i-1}M_{i-2}M_{i-3} + M_{i+1}M_{i-1}M_{i-2} + M_{i-1}M_{i+1}M_{i+2})]\} \quad (i = 1,2,...N), \quad (5.6)
$$

(donde $\beta = 1/k_BT J_0$, y hemos supuesto $J_2 = J_0$), el cual debe ser resuelto numéricamente.

En general para un dado conjunto de valores de T, J_0, J_2 y J_4 pueden existir varias soluciones (por ejemplo aquéllas correspondientes a la fase FM, la $<31>$ o fases moduladas). La comparación de la energía libre por espín de las distintas fases nos permitirá confeccionar el diagrama de fases, donde sólo se encuentran las más estables.

Antes de pasar a la resolución numérica del problema vale la pena analizar algunos resultados analíticos que surgen de hacer ciertas aproximaciones a la ecuación 5.6.

i) La solución trivial ($M_i = 0 \forall i$) existe para cualquier valor de κ y β.

ii) En la región del plano $\kappa, k_BT/J_0$, donde la transición al desorden es de segundo orden, todos los M_i justo debajo de la línea crítica son < 1 de manera que el término que contiene a κ en 5.6 puede ser despreciado (debido a que es de orden M^3). En esta aproximación tenemos entonces que, si la transición es de segundo orden,

a) la configuración ordenada, debajo de la línea crítica, debe ser FM, como en un modelo de Ising simple,

b) la transición de la fase FM a la PM es independiente de la interacción de
cuatro cuerpos y

c) la temperatura crítica puede ser obtenida desarrollando en serie la tangente
hiperbólica, y quedándose sólo con el primer término. Esto nos conduce a un valor
de $k_B T_c = 4J_0 + 2J_2$, que si $J_0 = J_2$ será $k_B T_c = 6J_0$.

La propiedad (b) también ha sido encontrada utilizando teoría de perturba-
ciones a primer orden [8].

iii) Es sencillo evaluar el exponente crítico β de la magnetización. Sabemos
que $M \propto (T_c - T)^\beta$. Para determinar β desarrollamos la ecuación (recordemos
que todos los $M_i \to 0$)

$$M = \tanh \left\{ \frac{1}{k_B T} \left[(4J_0 + 2J_2)M + 4J_4 M^3 \right] \right\}$$

quedándonos con los términos de primer y segundo orden. En este límite la
magnetización tiende a

$$M \to \sqrt{-\frac{k_B}{4J_4 - \frac{4J_0 + 2J_2}{3}}} (T_c - T)^{1/2},$$

es decir el exponente crítico β es igual a 1/2 independientemente de J_2 y J_4.

iv) Por resultados que mostraremos más adelante, muy cerca del punto $\kappa = 2$
existe un punto tricrítico (donde coexisten las fases FM, $< 3 \ 1 >$ y PM), de
manera que a la izquierda de dicho punto la transición es de segundo orden y a
la derecha de primer orden. Para obtener con precisión este punto, procedemos
de la siguiente manera. Resolvemos el sistema 5.6 usando la condición de que la
energía libre de la fase $< 3 \ 1 >$ debe ser igual a la de la fase PM, es decir que

$$F_{<31>} = -k_B T \ln 2.$$

Además debemos imponer que, para la transición en ese punto, la temperatura
debe ser $k_B T/J_0 = 6$, como fue dicho en el punto ii. Ahora quedan como
incógnitas los valores de las magnetizaciones $M_1, M_2, M_4, (M_3 = M_1)$ y el de κ.
Los resultados de este cálculo son
\[M_1 = M_3 = 0.936388, \ M_2 = 0.963684, \ M_4 = -0.887389 \ \text{y} \ \kappa = 2.006042. \]

v) En la región en que \(\kappa \gg 2 \) (donde la transición es de primer orden) todos los \(|M_i| \cong 1 \). El término de energía magnética en 5.5 es muy fuerte y el de entropía puede ser despreciado frente al anterior. Ahora, si la energía libre justo debajo de la línea de transición tiene sólo un término correspondiente a la energía magnética, es decir si

\[F/J_0 = -2 - \kappa, \tag{5.10} \]

y justo por encima de la misma línea (en la región PM) todos los \(M_i = 0 \), de manera que la energía libre tiene sólo como contribución el término de entropía

\[F = -k_B T \ln 2, \tag{5.11} \]

es posible igualando 5.10 y 5.11 obtener que, para \(\kappa \gg 2 \),

\[k_B T_c/J_0 = \frac{2}{\ln 2} + \frac{1}{\ln 2} \kappa. \tag{5.12} \]

Es decir, la temperatura crítica es asintóticamente lineal en \(\kappa \), con pendiente \(1/\ln 2 \).

3 EL DIAGRAMA DE FASES

En la figura V.2 se muestra el diagrama de fases en el plano \(\kappa, k_B T/J_0 \). Notemos que la región de interés es aquélla donde existe competencia \((J_2 > 0, J_4 < 0) \).
FIGURA V.2 Diagrama de fases para el modelo "2+4" [7].

Como ya fue anticipado, en este plano existen al menos tres fases: FM, < 31 > y PM. Estas fases coexisten en un punto triple localizado en $\kappa \approx 2$, $k_B T / J_0 = 6$. A la izquierda de este punto la transición de la fase FM a la PM es de segundo orden, mientras a la derecha la transición de la fase < 31 > a la PM es de primer orden. Para κ creciente, la línea crítica tiende a una recta con pendiente $1 / \ln 2$.

En la sección 2 de este capítulo ya dijimos que la transición FM-PM es de segundo orden e independiente de la interacción de cuatro cuerpos (es decir de κ). Para la región < 3 1 > el sistema 5.6 tiene, por encima de una cierta temperatura (que depende de κ), dos soluciones no triviales. La que tiene menor energía libre es la que tiene mayores valores de $|M_i|$, que decrecen cuando se incrementa la temperatura. La otra solución tiene $|M_i|$ que crecen cuando se incrementa la temperatura. Esta última aparece como solución del sistema 5.6 por encima de
cierta temperatura que puede ser obtenida de la siguiente manera. En 5.6 fijamos $M_4 = 0$, $M_1 = M_3$ y determinamos, para cada valor de κ, los valores de M_1, M_2 y T. El gráfico V.3 muestra la menor temperatura a la cual existe la solución del tipo $<3\ 1>$ menos estable como función de κ.

![Gráfico V.3 Temperatura para la cual aparece la fase $<3\ 1>$ menos estable, como función de κ](image)

Es importante remarcar que las dos soluciones convergen una a otra, pero que se igualan para temperaturas mayores que la crítica. La razón matemática de este comportamiento es debida a la interacción de cuatro cuerpos, como será discutido en la próxima sección.

En nuestro estudio del modelo "2+4" hemos también investigado la posible existencia de fases moduladas (aquí llamamos "fase modulada" a cualquier fase distinta de la FM o de la $<3\ 1>$). La búsqueda fue hecha cerca de dos valores de κ: $\kappa \simeq 0.5$ y $\kappa \simeq 2$. Estos valores fueron elegidos considerando que el punto $\kappa = 0.5$, $T = 0$ K es un punto multifase, y que el punto $\kappa = 2$, $k_B T / J_0 = 6$ es
un punto donde coexisten las fases FM, PM y <3 1>: ambas situaciones pueden pensarse como menos desfavorables para la aparición de una fase modulada.

Para \(\kappa \simeq 0.5 \) (recordemos que para \(\kappa = 0.5 \) el estado fundamental es infinitamente degenerado) las fases que uno esperaría que aparecieran como más favorables son las del tipo \(<n 1>\) con \(n = 4, 5, 6,...\) (que difieren poco de la fase FM para \(n \) grande y de la \(<3 1>\) para \(n \) pequeño), y además \(<3 1 4 1>, <3 1 3 1 4 1>, ...\) (que difiere poco de la \(<3 1>\)). Nosotros verificamos que estas configuraciones son soluciones del sistema 5.6. Sin embargo, siempre tienen energía libre mayor que la fase \(<3 1>\). También tuvimos en cuenta fases como la \(<2 2>\) y la \(<3 3>\), que son dos de las más estables en el modelo ANNNI. La primera ni siquiera aparece como una de las más estables a \(T = 0 \) K y \(\kappa = 0.5 \), y tampoco aparece como muy estable a temperaturas superiores. La segunda, que tiene una importante contribución del término de entropía, no se ve favorecida para nada por su energía magnética, por lo que tampoco gana a ninguna temperatura.

Algo similar ocurre para \(\kappa \simeq 2 \). Aquí, además, cualquier fase desaparece antes que la \(<3 1>\), es decir, la última sobrevive para temperaturas mayores. En conclusión, de nuestros cálculos surge que para toda \(T \neq 0 \) K ninguna fase modulada es más estable que las que aparecen en el diagrama de la figura V.2. Es de notar que la ausencia de fases moduladas ocurre debido a que su término de entropía no es lo suficientemente grande como para compensar la pérdida de energía magnética con respecto a la configuración \(<3 1>\).

Es interesante, a esta altura, contar con un poco más de detalle algunos resultados obtenidos utilizando otros métodos, en principio más exactos que los de campo medio, de manera de poder contrastarlos con nuestros resultados. A través de la utilización de la versión del Hamiltoniano cuántico unidimensional, para una red bidimensional, y el uso de la técnica de finite-size scaling (FSS),

125
Penson [4] obtuvo un diagrama de fases como el que muestra la figura V.4.

FIGURA V.4 Campos críticos \(h/J_2 \) como función de \(\kappa = J_4/J_2 \), obtenidos para distintos tamaños de bloque \(L \), utilizando FSS.

Allí se observa que para \(|J_4/J_2| \) pequeño la transición es del tipo usual de Ising, mientras que para \(|J_4/J_2| \) grande la transición es de primer orden (en coincidencia con nuestros resultados). También allí aparece un comportamiento asintótico para \(h/J_2 \). Aquí \(h \) representa una función de la temperatura, en general llamada temperatura reducida, y que no puede ser comparada con \(k_B T \) pues \(h \) aparece en el límite de fuerte acoplamiento vertical y débil horizontal, o sea \(J_2 \rightarrow 0 \) y \(J_0 \rightarrow \infty \). Este tipo de comportamiento asintótico es lineal en \(\kappa \), al igual que el obtenido en este trabajo, pero con pendiente 1 (recordamos que en nuestro caso la pendiente es \(1/\ln2 \)). Sin embargo, existe un punto de discrepancia, y es el comportamiento de la línea de transición FM a PM para \(\kappa < 0.5 \). En este caso
es monótona decreciente desde el valor \(h = 1 \) a 0, mientras que en campo medio sin correlaciones es constante \((k_B T/J_0 = 6) \). En resumen, las características más importantes obtenidas con el método de FSS son:

a) Para \(\kappa = 0 \) \(h/J_2 = 1 \).

b) \(h/J_2 \rightarrow \kappa \) para \(\kappa \rightarrow \infty \).

c) \(h(\kappa = 0.5)/J_2 = 0 \).

Sin embargo, para este método existe una región \((0.5 \leq \kappa \leq 0.6) \) en la cual, debido a la fuerte degeneración del punto \(\kappa = 0.5 \), no es posible dar una respuesta definitiva, ya que aparecen fuertes problemas de convergencia. Esto es típico de problemas con estados fundamentales fuertemente degenerados como por ejemplo el modelo antiferromagnético de Potts. Tampoco el uso del FSS permite predecir la existencia de fases incommensuradas en el modelo "2+4".

Más recientemente el modelo "2+4" bidimensional ha sido estudiado por Grynberg y Ceva [6] utilizando algunos métodos de aproximación analítica como el de Müller-Hartmann y Zittartz (MHZ) donde el cálculo de la energía de interfaz en la región FM es reducido al correspondiente a una partícula simple. El modelo además es considerado en el límite Hamiltoniano (fuerte acoplamiento vertical y débil horizontal) donde una transformación linealizada de Holstein-Primakoff es usada para reemplazar la interacción entre espines por un conjunto independiente de interacciones de Bose. Sus resultados les permitieron corroborar la existencia de una transición de primer orden para \(|J_4/J_2| > 1/2 \). Asimismo, cálculos de los mismos autores [8] utilizando teoría de perturbaciones de bajas y altas temperaturas dan cuenta de la transición de primer orden. La figura V.5a muestra el comportamiento del modelo para \(\kappa < 1/2 \) utilizando la aproximación de MHZ. La figura V.5b muestra el diagrama de fases obtenido usando la aproximación de bosones libres, y es comparado con datos numéricos. Por último, en la figura V.5c se muestra nuevamente el diagrama de fases, esta vez obtenido con desarrollo de
FIGURA V.5a. Técnica de MHZ (···), FSS (---).

FIGURA V.5b. Aproximación de bosones libres (···), datos numéricos (---).

FIGURA V.5c. Desarrollo de altas y bajas temperaturas y datos de FSS.
bajas y altas temperaturas, y es comparado con los resultados encontrados usando FSS (en b y c τ es esencialmente lo mismo que \(h/J_2 \) para \([4]\)). Con respecto a la posible aparición de fases moduladas, sus resultados no necesariamente implican la existencia de las mismas, pero si ése fuera el caso, las que aparecieran deberían ser incommensuradas.

4 INTERACCION MULTIESPIN PURA (\(J_2 = 0 \))

Tratando de entender la existencia de dos soluciones y la discontinuidad en la magnetización en la región de transición \(< 3 1 >\) a PM, y buscando el rol de la interacción de cuatro espines en el modelo "2+4", analizamos el caso \(J_0 = J_4 = 0 \). Hicimos esto considerando el caso general de la interacción de \(n \) espines. Para simplificar la discusión, supusimos la constante de acoplamiento \(J_n \) positiva, de manera que la configuración más estable es FM a bajas temperaturas.

De acuerdo a esto la ecuación trascendente 5.6 toma la forma

\[
M = \tanh \left[\frac{nM^{n-1}}{\tau} \right]
\]

(5.13)

donde \(\tau = k_B T/J_n \). Es inmediato que la 5.14 admite la solución trivial (\(M = 0 \)). Lo que nos interesa son las soluciones no triviales, y de éstas hablaremos de aquí en adelante.

A continuación discutimos la solución gráfica de la ecuación 5.14, usando la transformación

\[
y = \frac{nM^{n-1}}{\tau},
\]

(5.14)
lo que nos lleva a una ecuación del tipo

\[Ay^{\frac{1}{n-1}} = \tanh y \quad (5.15) \]

donde \(A = (\tau/n)^{\frac{1}{n-1}} \). En la figura V.6 se han graficado ambas curvas.

![Gráfico](image)

FIGURA V.6. Solución gráfica de la ecuación 5.15.

Para \(n = 2 \) el primer miembro de 5.16 es una recta con pendiente \(A = k_B T/2 J_2 \), que intersecta a la tangente hiperbólica en un punto o en ninguno, dependiendo de que \(k_B T/2 J_2 < 1 \) o \(k_B T/2 J_2 > 1 \) respectivamente. Para \(n > 2 \) el primer miembro de 5.16 tiene pendiente infinita en el origen y tiende a infinito para \(y \to \infty \), de manera que puede ser como la línea de rayas o como la de puntos de la figura V.6, dependiendo del valor de \(n \) y \(\tau \) (es decir de la temperatura). A bajas temperaturas la curva es como la de rayas. A medida que la temperatura aumenta, las dos soluciones se aproximan una a otra hasta coincidir a cierta \(T \),

130
por encima de la cual desaparecen. Ahora el punto donde ocurre esta coincidencia ya no puede coincidir con el origen. Esto da cuenta de una discontinuidad en la magnetización. Entre las dos soluciones, aquella con mayor valor de $|M|$, que decrece a medida que la temperatura crece, tiene menor energía libre. La transición de esta fase a la PM ($y = 0$) ocurre cuando la energía libre de la última se hace igual a la de la primera, es decir cuando

$$-\tau \ln 2 = -M^n + \frac{\tau}{2} \left[M \ln \left(\frac{1 + M}{1 - M} \right) + \ln \left(\frac{1 - M^2}{4} \right) \right]. \tag{5.16}$$

Ahora, igualando 5.14 y 5.17 se forma un sistema de dos ecuaciones trascendentes con dos incógnitas (M y τ) el cual se resuelve numéricamente. Los resultados están presentados en la tabla que sigue:

<table>
<thead>
<tr>
<th>n</th>
<th>$< M >$</th>
<th>$k_B T/J_n$</th>
<th>F/J_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.948059</td>
<td>1.487908</td>
<td>-1.031339</td>
</tr>
<tr>
<td>4</td>
<td>0.990611</td>
<td>1.451797</td>
<td>-1.006309</td>
</tr>
<tr>
<td>5</td>
<td>0.997912</td>
<td>1.444810</td>
<td>-1.001457</td>
</tr>
<tr>
<td>6</td>
<td>0.999500</td>
<td>1.443210</td>
<td>-1.000357</td>
</tr>
<tr>
<td>7</td>
<td>0.999877</td>
<td>1.442823</td>
<td>-1.000088</td>
</tr>
<tr>
<td>8</td>
<td>0.999969</td>
<td>1.442727</td>
<td>-1.000022</td>
</tr>
<tr>
<td>9</td>
<td>0.999992</td>
<td>1.442703</td>
<td>-1.000006</td>
</tr>
<tr>
<td>10</td>
<td>0.999998</td>
<td>1.442697</td>
<td>-1.000001</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>1.000000</td>
<td>$1/\ln 2$</td>
<td>-1.000000</td>
</tr>
</tbody>
</table>

TABLA 1. Valores de $< M >$ y $k_B T/J_n$ para la interacción de n espines, correspondientes al punto de transición de la fase ordenada a la desordenada.

Compararemos estas temperaturas con aquéllas por encima de las cuales solo hay solución trivial. Estas últimas son encontradas imponiendo que la ecuación 5.14 y aquélla obtenida de igualar las derivadas de ambos miembros de dicha ecuación, esto es

131
\[\cosh \left[\frac{nM^{(n-1)}}{\tau} \right] = \sqrt{\frac{n(n - 1)}{\tau}} M^{\frac{3}{2} - 1} \]

se cumplan simultáneamente. La tabla 2 muestra estos resultados.

<table>
<thead>
<tr>
<th>n</th>
<th>(< M >)</th>
<th>(k_B T / J_n)</th>
<th>(F / J_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.79639</td>
<td>1.74755</td>
<td>-1.080164</td>
</tr>
<tr>
<td>4</td>
<td>0.88944</td>
<td>1.98315</td>
<td>-1.049798</td>
</tr>
<tr>
<td>5</td>
<td>0.92633</td>
<td>2.25602</td>
<td>-1.037961</td>
</tr>
<tr>
<td>6</td>
<td>0.94567</td>
<td>2.81690</td>
<td>-1.031610</td>
</tr>
<tr>
<td>7</td>
<td>0.95740</td>
<td>3.09552</td>
<td>-1.027616</td>
</tr>
<tr>
<td>8</td>
<td>0.96522</td>
<td>3.37147</td>
<td>-1.024850</td>
</tr>
<tr>
<td>9</td>
<td>0.97075</td>
<td>3.64457</td>
<td>-1.022809</td>
</tr>
<tr>
<td>10</td>
<td>0.97486</td>
<td>3.91485</td>
<td>-1.021233</td>
</tr>
<tr>
<td>(\infty)</td>
<td>(1.00000)</td>
<td>(\infty)</td>
<td>-1.00000</td>
</tr>
</tbody>
</table>

TABLA 2. Valores de \(< M >\) y \(k_B T / J_n\) para la interacción de \(n\) espines, correspondientes al punto en que las dos soluciones no triviales de 5.16 coinciden.

Una comparación con la tabla 1 permite observar que para cualquier \(n\) y \(J_n\) las temperaturas de la tabla 2 son mayores que las de la tabla 1. Por lo tanto, la transición a la fase PM debe ocurrir cuando aún hay dos soluciones.

La discontinuidad aquí observada es esencialmente la misma que la observada en el modelo "2+4" para la fase \(< 3 1 >\) (nótese que para \(J_4 < 0\) esta fase con todos los \(|M_i|\) iguales entre ellos es equivalente a la fase FM para \(J_4 > 0\)). Esto muestra que tal comportamiento es debido a la interacción multiespín.

De esta manera hemos podido demostrar de una forma extremadamente sencilla que, en la aproximación de campo promedio sin correlaciones, la magnetización tiene una discontinuidad cuando el sistema pasa de una fase ordenada a una desordenada, para \(n > 2\). Si bien las aproximaciones del método son
fuertes, hemos podido llegar a conclusiones analíticas importantes, que hasta el momento no se habían obtenido. Varios fueron los autores que trabajaron en el tema, utilizando en general formalismos más complejos y mejores aproximaciones que las nuestras, y no lograron llegar a resultados tan concluyentes como los que hemos dado aquí. Entre otros, Penson et al. [9] dicen "la teoría de campo medio indica que para $n > n_c$ la transición puede ser de primer orden. Finite-size scaling sugiere para n_c el valor 4 en una dimensión". Debierre y Turban [10] consideraron un modelo con interacciones entre n espines en una dirección y entre dos en otra. Ellos encontraron que para $n = 3$ una teoría de campo medio generalizada da una transición de primer orden y que para $n = 4$ la transición es probablemente de primer orden. Mouritsen et al. [11] usando el método de Monte Carlo encontraron una transición de primer orden para una interacción de cuatro espines, en una red cúbica, al igual que Blöte et al. [12] en sistemas bidimensionales.

5 CONCLUSIONES

En este capítulo hemos empleado el formalismo utilizado hasta aquí para el estudio de un sistema con interacciones de dos y cuatro cuerpos, con especial atención en el caso en que dichas interacciones compiten entre sí. El diagrama de fases resulta similar al obtenido en el capítulo anterior para el modelo ANNNI, salvo que ahora no contiene fases moduladas, y en lugar de la fase $< 2 >$ aparece una con tres espines "arriba" y uno "abajo" ($\text{fase} < 3 1 >$).

En nuestra aproximación la transición $FM \leftrightarrow PM$ es de segundo orden y ocurre a una temperatura independiente de las constantes de acoplamiento, mien-
tras que la transición $< 3 1 > \leftrightarrow PM$ es de primer orden, y su T_c depende de $|J_4/J_2|$.

Hemos mostrado que el carácter discontinuo de la transición $< 3 1 > \leftrightarrow PM$ se debe a la interacción de n cuerpos, y debe esperarse que exista no sólo para $n = 4$ sino para todo $n > 3$.
BIBLIOGRAFIA

7- C.R.Mirasso and V.Massidda, aceptado para su publicación en Phys. Rev. B.
8- M.D.Grynberg and H.Ceva, comunicación privada.