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Abstrat

Inomplete information is a problem in many aspets of atual environments. Further-

more, in many senarios the knowledge is not represented in a risp way. It is ommon

to �nd fuzzy onepts or problems with some level of unertainty. This work extends the

semantis and implementation of fuzzy prolog presented in [VGM02, GMV04℄ in order

to inlude Default Knowledge apability. The new semanti allows non-uniform default

assumptions and has Closed World Assumption (CWA) and Open World Assumption

(OWA) as partiular ases.

1 Introdution

In [VGM02, GMV04℄ we presented a de�nition of a Fuzzy Prolog Language that models

B([0; 1℄)-valued Fuzzy Logi, and subsumes former approahes beause it uses a truth value

representation based on a union of sub-intervals on [0,1℄ and it is de�ned using general oper-

ators that an model di�erent logis. We also presented the implementation of an interpreter

for this oneived language using Constraint Logi Programming over Real numbers CLP(R)).

It was straightforward to extend the implementation in order to inlude Default Knowledge.

In this paper we adapt the formal semantis given inluding Default Knowledge.

An assumption de�nes default knowledge to be used to omplete the available knowledge

provided by the fats and rules of a program. For example, the Closed World Assumption

(CWA) asserts that any atom whose truth-value annot be inferred from the fats and rules

is supposed to be false, on the other hand, the Open World Assumption (OWA) asserts that

every suh atom is supposed to be unknown or unde�ned.

2 Language

The following de�nitions desribe the language presented in [VGM02℄. Membership funtions

assign to eah element of the universal set one element of the Borel Algebra over the interval



[0; 1℄. These sets are de�ned by funtions of the form A : X ! B([0; 1℄), where an element in

B([0; 1℄) is a ountable union of sub-intervals of [0; 1℄.

The truth value of a goal will depend on the truth value of the subgoals whih are in the body

of the lauses of its de�nition. We use aggregation operators [ET99℄ in order to propagate the

truth value by means of the fuzzy rules. Fuzzy sets aggregation is done using the appliation of a

numeri operator of the form f : [0; 1℄

n

! [0; 1℄. If it veri�es f(0; : : : ; 0) = 0 and f(1; : : : ; 1) = 1,

and in addition it is monotoni and ontinuous, then it is alled aggregation operator. If we

deal with the de�nition of fuzzy sets as intervals it is neessary to generalize from aggregation

operators of numbers to aggregation operators of intervals. Following the theorem proven by

Nguyen and Walker in [NW00℄ to extend T-norms and T-onorms [KMP℄ to intervals.

De�nition 2.1 (interval-aggregation) Given an aggregation f : [0; 1℄

n

! [0; 1℄, an interval-

aggregation F : E([0; 1℄)

n

! E([0; 1℄) is de�ned as follows:
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Atually, we work with union of intervals and propose the de�nition:

De�nition 2.2 (union-aggregation) Given an interval-aggregation F : E([0; 1℄)

n

! E([0; 1℄)

de�ned over intervals, a union-aggregation F : B([0; 1℄)

n

! B([0; 1℄) is de�ned over union of

intervals as follows:

F(B

1

; : : : ; B

n
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i
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A onstraint is a �-formula where � is a signature that ontains the real numbers, the binary

funtion symbols + and �, and the binary prediate symbols =, < and �. If the onstraint

 has solution in the domain of real numbers in the interval [0; 1℄ then  is onsistent, and is

denoted as solvable().

The alphabet of our language onsists of the following kinds of symbols: variables, onstants,

funtion symbols and prediate symbols. A term is de�ned indutively as follows:

1. A variable is a term.

2. A onstant is a term.

3. if f is an n-ary funtion symbol and t

1

; : : : ; t

n

are terms, then f(t

1

; : : : ; t

n

) is a term.

If p is an n-ary prediate symbol, and t

1

; : : : ; t

n

are terms, then p(t

1

; : : : ; t

n

) is an atomi

formula or, more simply an atom.

A fuzzy program is a �nite set of fuzzy fats, and fuzzy lauses and we obtain information

from the program through fuzzy queries. They are de�ned below:

De�nition 2.3 (fuzzy fat) If A is an atom,

A v

is a fuzzy fat, where v, a truth value, is an element in B([0; 1℄) expressed as onstraints over

the domain [0; 1℄.



De�nition 2.4 (fuzzy lause) Let A;B

1

; : : : ; B

n

be atoms,

A 

F

B

1

; : : : ; B

n

is a fuzzy lause where F is an interval-aggregation operator, whih indues a union-aggregation,

as by de�nition 2.2, F of truth values in B([0; 1℄) represented as onstraints over the domain

[0; 1℄.

De�nition 2.5 (fuzzy query) A fuzzy query is a tuple

v  A ?

where A is an atom, and v is a variable (possibly instantiated) that represents a truth value in

B([0; 1℄).

3 Semantis

3.1 Least Model Semantis

The Herbrand Universe U is the set of all ground terms, whih an be made up with the

onstants and funtion symbols of a program, and the Herbrand Base B is the set of all ground

atoms whih an be formed by using the prediate symbols of the program with ground terms

(of the Herbrand Universe) as arguments.

De�nition 3.1 (default value) We assume there is a funtion default whih implement the

Default Knowledge Assumptions. It assigns an element of B([0; 1℄) to eah element of the

Herbrand Base. If the Closed World Assumption is used, then default(A) = [0; 0℄ for all A in

Herbrand Base. If Open World Assumption is used instead, default(A) = [0; 1℄ for all A in

Herbrand Base.

De�nition 3.2 (interpretation) An interpretation I onsists of the following:

1. a subset B

I

of the Herbrand Base,

2. a mapping V

I

, to assign

(a) a truth value, in B([0; 1℄), to eah element of B

I

, or

(b) default(A), if A does not belong to B

I

.

The Borel Algebra B([0; 1℄) is a omplete lattie under �

BI

, that denotes Borel inlusion,

and the Herbrand Base is a omplete lattie under �, that denotes set inlusion, therefore a

set of all interpretations forms a omplete lattie under the relation v de�ned as follows.

De�nition 3.3 (interval inlusion �

II

) Given two intervals I

1

= [a; b℄, I

2

= [; d℄ in E([0; 1℄),

I

1

�

II

I

2

if and only if  � a and b � d.



De�nition 3.4 (Borel inlusion �
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where

jk 2 1::M .

De�nition 3.5 (interpretation inlusion v) I v I

0

if and only if B

I

� B

I

0

and for all

B 2 B

I

, V

I

(B) �

BI

V

I

0

(B), where I = hB

I

; V

I

i, I

0

= hB

I

0

; V

I

0

i are interpretations.

De�nition 3.6 (valuation) A valuation � of an atom A is an assignment of elements of U

to variables of A. So �(A) 2 B is a ground atom.

De�nition 3.7 (model) Given an interpretation I = hB

I

; V

I

i

� I is a model for a fuzzy fat A  v, if for all valuation �, �(A) 2 B

I

and v �

BI

V

I

(�(A)).

� I is a model for a lause A  

F
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when the following holds: for all valuation
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V

I
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n

))) and F is the

union aggregation obtained from F .

� I is a model of a fuzzy program, if it is a model for the fats and lauses of the program.

Every program has a least model whih is usually regarded as the intended interpretation of

the program sine it is the most onservative model. Let \ be the meet operator on the lattie

of interpretations (I;v), then we an prove the following result.

Theorema 3.1 (model intersetion property) Let I

1

= hB

I

1

; V

I

1

i,I

2

= hB

I

1

; V

I

1

i be mod-

els of a fuzzy program P . Then I

1
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2

is a model of P .

Proof. Let M = hB

M

; V

M

i = I

1

\ I

2

. Sine I

1

and I

2

are models of P , they are models for

eah fat and lause of P . Then for all valuation � we have

� for all fat A v in P ,
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I

1
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I
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and M is model of P .

Remark 3.1 (Least model semanti) If we let M be the set of all models of a program P ,

the intersetion of all of this models,

T

M, is a model and it is the least model of P . We denote

the least model of a program P by lm(P ).

Example 3.1 Let's see an example. Suppose we have the following program P :

tall(peter) [0:6; 0:7℄ _ 0:8

tall(john) 0:7

swift(john) [0:6; 0:8℄

good player(X) 

luka

tall(X); swift(X)

Here, we have two fats, tall(john) and swift(john) whose truth values are the unitary in-

terval [0:7; 0:7℄ and the interval [0:6; 0:8℄, respetively, and a lause for the good player prediate

whose aggregation operator is the Lukasiewiz T-norm.

The following interpretation I = hB; V i is a model for P , where

B = ftall(john); tall(peter); swift(john);

good player(john); good player(peter)g and

V (tall(john)) = [0:7; 1℄

V (swift(john)) = [0:5; 0:8℄

V (tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄

V (good player(john)) = [0:2; 0:9℄

V (good player(peter)) = [0:5; 0:9℄

note that for instane if V (good player(john)) = [0:2; 0:5℄ I = hB; V i annot be a model of P ,

the reason is that v = luka([0:7; 1℄; [0:5; 0:8℄) = [0:7+0:5�1; 1+0:8�1℄ = [0:2; 0:8℄ 6�

II

[0:2; 0:5℄.

The least model of P is the intersetion of all models of P whih is M = hB

M

; V

M

i where

B

M

= ftall(john); tall(peter); swift(john);

good player(john)g and

V

M

(tall(john)) = [0:7; 0:7℄

V

M

(swift(john)) = [0:6; 0:8℄

V

M

(tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄

V

M

(good player(john)) = [0:3; 0:5℄

Now, suppose we add to P that default(swift(peter)) = [0:5; 1℄. In this ase V (swift(peter)) =

[0:5; 1℄ and I is not a model for P beause v = luka([0:6; 0:7℄ _ [0:8; 0:8℄; [0:5; 1℄) = [0:6 + 0:5�

1; 0:7 + 1� 1℄ _ [0:8 + 0:5� 1; 0:8 + 1� 1℄ = [0:1; 0:7℄ _ [0:3; 0:8℄ 6�

II

[0:5; 0:9℄.

If we add to P that default(swift(peter)) = [0:5; 1℄ then the least model of P is

M = hB

M

; V

M

i where

B

M

= ftall(john); tall(peter); swift(john);



good player(john); good player(peter)g and

V

M

(tall(john)) = [0:7; 0:7℄

V

M

(swift(john)) = [0:6; 0:8℄

V

M

(tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄

V

M

(good player(john)) = [0:3; 0:5℄

V

M

(good player(peter)) = [0:1; 0:7℄ _ [0:3; 0:8℄

3.2 Fixed-Point Semantis

The �xed-point semantis we present is based on a one-step onsequene operator T

P

. The

least �xed-point lfp(T

P

) = I (i.e. T

P

(I) = I) is the delarative meaning of the program P , so

is equal to lm(P ).

Let P be a fuzzy program and B

P

the Herbrand base of P ; then the mapping T

P

over

interpretations is de�ned as follows:

Let I = hB

I

; V

I

i be a fuzzy interpretation, then T

P

(I) = I

0

, I

0

= hB

I

0

; V

I

0

i

B

I

0

= fA 2 B

P

j Condg

V

I

0

(A) =

[

fv 2 B([0; 1℄) j Condg

where Cond = (A v is a ground instane of a fat in P and solvable(v)) or

(A 

F

A

1

; : : : ; A

n

is a ground instane of a lause in P; and solvable(v); v = F(V

I

(A

1

); : : : ; V

I

(A

n

))):

Note that sine I

0

must be an interpretation, V

I

0

(A) = default(A) for all A =2 B

I

0

.

The set of interpretations forms a omplete lattie so that, T

P

it is ontinuous. Reall the

de�nition of the ordinal powers of a funtion G over a omplete lattie X:

G " � =

8

>

>

<

>

>

:

S

fG " �

0

j �

0

< �g

if � is a limit ordinal,

G(G " (�� 1))

if � is a suessor ordinal,

and dually,

G # � =

8

>

>

<

>

>

:

T

fG # �

0

j �

0

< �g

if � is a limit ordinal,

G(G # (�� 1))

if � is a suessor ordinal,

Sine the �rst limit ordinal is 0, it follows that in partiular, G " 0 = ?

X

(the bottom

element of the lattie X) and G # 0 = >

X

(the top element). From Kleene's �xed point

theorem we know that the least �xed-point of any ontinuous operator is reahed at the �rst

in�nite ordinal !. Hene lfp(T

P

) = T

P

" !.

Example 3.2 Consider the same program P of the example 3.1, with default(swift(peter)) =

[0:5; 1℄, the ordinal powers of T

P

are

T

P

" 0 = fg

T

P

" 1 = ftall(john); swift(john);

tall(peter)g and

V (tall(john)) = [0:7; 0:7℄

V (swift(john)) = [0:6; 0:8℄

V (tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄



Sine swift(peter) does not belong to B

T

P

"1

,

V

T

P

"1

(swift(peter) = default(swift(peter) = [0:5; 1℄ then

T

P

" 2 = ftall(john); swift(john); tall(peter);

good player(john); good player(peter)g and

V (tall(john)) = [0:7; 0:7℄

V (swift(john)) = [0:6; 0:8℄

V (tall(peter)) = [0:6; 0:7℄ _ [0:8; 0:8℄

V (good player(john)) = [0:3; 0:5℄

V

M

(good player(peter)) = [0:1; 0:7℄ _ [0:3; 0:8℄

T

P

" 3 = T

P

" 2.

Lemma 3.1 Let P a fuzzy program, M is a model of P if and only if M is a pre�xpoint of

T

P

, that is T

P

(M) vM .

Proof. Let M = hB

M

; V

M

i and T

P

(M) = hB

T

P

; V

T

P

i.

We �rst prove the \if" diretion. Let A be an element of Herbrand Base, if A 2 B

T

P

, then

by de�nition of T

P

there exists a ground instane of a fat of P , A v, or a ground instane of

a lause of P , A  

F

A

1

; : : : ; A

n

where fA

1

; : : : ; A

n

g � B

M

and v = F(V

M

(A

1

); : : : ; V

M

(A

n

)).

Sine M is a model of P , A 2 B

M

, and eah v �

BI

V

M

(A), then V

T

P

(A) �

BI

V

M

(A) and then

T

P

(M) vM . �. If A =2 B

T

P

then V

T

P

(A) = default(A) �

BI

V

M

(A).

Analogously, for the \only if" diretion, for eah ground instane v = F(V

M

(A

1

); : : : ; V

M

(A

n

)),

A 2 B

T

P

and v �

BI

V

T

P

(A), but as T

P

(M) � M , B

T

P

� B

M

and V

T

P

(A) �

BI

V

M

(A). Then

A 2 B

M

and v �

BI

V

M

(A) therefore M is a model of P . �

Given this relationship, it is straightforward to prove that the least model of a program P

is also the least �xed-point of T

P

.

Theorema 3.2 Let P be a fuzzy program, lm(P ) = lfp(T

P

).

Proof.

lm(P ) =

T

fM jM is a model of Pg

=

T

fM jM is a pre-�xpoint of Pg from lemma 3.1

= lfp(T

P

) by the Knaster-Tarski Fixpoint Theorem [Tar55℄�

3.3 Operational Semantis

The proedural semantis is interpreted as a sequene of transitions between di�erent states of

a system. We represent the state of a transition system in a omputation as a tuple hA; �; Si

where A is the goal, � is a substitution representing the instantiation of variables needed to get



to this state from the initial one and S is a onstraint that represents the truth value of the

goal at this state.

When omputation starts, A is the initial goal, � = ; and S is true (if there are neither

previous instantiations nor initial onstraints). When we get to a state where the �rst argument

is empty then we have �nished the omputation and the other two arguments represent the

answer.

A transition in the transition system is de�ned as:

1. hA [ a; �; Si ! hA�; � � �; S ^ �

a

= vi

if h  v is a fat of the program P , � is the mgu of a and h, �

a

is the truth value for a

and solvable(S ^ �

a

= v).

2. hA [ a; �; Si ! h(A [B)�; � � �; S ^ i

if h  

F

B is a rule of the program P , � is the mgu of a and h,  is the onstraint that

represents the truth value obtained applying the union-aggregation F to the truth values

of B, and solvable(S ^ ).

3. hA [ a; �; Si ! hA; �; S ^ �

a

= vi

if none of the above are appliable and solvable(S ^ �

a

= v) where �

a

= default(a).

The suess set SS(P ) ollets the answers to simple goals p(bx). It is de�ned as follows:

SS(P ) = hB; V i

where B = fp(bx)�jhp(bx); ;; truei !

�

h;; �; Sig is the set of elements of the Herbrand

Base that are instantiated and that have sueeded; and V (p(bx)) = [fvjhp(bx); ;; truei !

�

h;; �; Si; and v is the solution of Sg is the set of truth values of the elements of B that is the

union (got by baktraking) of truth values that are obtained from the set of onstraints pro-

vided by the program P while query p(bx) is omputed.

Example 3.3 Let P be the program of example 3.1. Consider the fuzzy goal

� good player(X) ?

the �rst transition in the omputation is

hf(good player(X)g; �; truei !

hftall(X); swift(X)g; �;

� = max(0; �

tall

+ �

swift

� 1)i

unifying the goal with the lause and adding the onstraint orresponding to Lukasiewiz T-

norm. The next transition leads to the state:

hfswift(X)g; fX = johng; � = max(0; �

tall

+ �

swift

� 1) ^ �

tall

= 0:7i



after unifying tall(X) with tall(john) and adding the onstraint regarding the truth value of the

fat. The omputation ends with:

hfg; fX = johng; � = max(0; �

tall

+ �

swift

� 1) ^ �

tall

= 0:7 ^ 0:6 � �

swift

^ �

swift

� 0:8i

As � = max(0; �

tall

+�

swift

�1)^�

tall

= 0:7^0:6 � �

swift

^�

swift

� 0:8 entails � 2 [0:3; 0:5℄,

the answer to the query good player(X) is X = john with truth value the interval [0:3; 0:5℄.

Other sequenes of transitions are:

1. hf(good player(X)g; �; truei !

hftall(X); swift(X)g; �;

� = max(0; �

tall

+ �

swift

� 1)i !

hfswift(X)g; fX = peterg;

� = max(0; �

tall

+ �

swift

� 1) ^ 0:6 � �

tall

^ �

tall

� 0:7i !

hfswift(X)g; fX = peterg; � = max(0; �

tall

+ �

swift

� 1)^

0:6 � �

tall

^ �

tall

� 0:7 ^ 0:5 � �

swift

^ �

swift

� 1i

As � = max(0; �

tall

+ �

swift

� 1) ^ 0:6 � �

tall

^ �

tall

� 0:8 ^ 0:5 � �

swift

^ �

swift

� 1

entails � 2 [0:1; 0:7℄, the answer to the query good player(X) is X = peter with truth

value the interval [0:1; 0:7℄.

2. hf(good player(X)g; �; truei !

hftall(X); swift(X)g; �;

� = max(0; �

tall

+ �

swift

� 1)i !

hfswift(X)g; fX = peterg;

� = max(0; �

tall

+ �

swift

� 1) ^ �

tall

= 0:8i !

hfswift(X)g; fX = peterg; � = max(0; �

tall

+ �

swift

� 1)^

�

tall

= 0:8^ 0:5 � �

swift

^ �

swift

� 1i

As � = max(0; �

tall

+ �

swift

� 1) ^ �

tall

= 0:8 ^ 0:5 � �

swift

^ �

swift

� 1 entails � 2

[0:3; 0:8℄, the answer to the query good player(X) is X = peter with truth value the

interval [0:3; 0:8℄.

In order to prove the equivalene between operational semanti and �xed-point semanti,

it is useful to introdue a type of anonial top-down evaluation strategy. In this strategy all

literals are redued at eah step in a derivation. For obvious reasons, suh a derivation is alled

breadth-�rst.

De�nition 3.8 (Breadth-�rst transition) Given the following set of valid transitions:

hffA

1

; : : : ; A

n

g; �; Si ! hffA

2

; : : : ; A

n

g [B

1

; � � �

1

; S ^ 

1

i

hffA

1

; : : : ; A

n

g; �; Si ! hffA

1

; A

3

: : : ; A

n

g [ B

2

; � � �

2

; S ^ 

2

i

.

.

.

hffA

1

; : : : ; A

n

g; �; Si ! hffA

1

; : : : ; A

n�1

g [ B

n

; � � �

n

; S ^ 

n

i



a breadth-�rst transition is de�ned as

hfA

1

; : : : ; A

n

g; �; Si !

BF

hB

1

[ : : : [B

n

; � � �

1

� : : : � �

n

; S ^ 

1

^ : : : ^ 

n

i

in whih all literals are redued at one step.

Theorema 3.3 Given a ordinal number n and T

P

" n = hB

T

P

n

; V

T

P

n

i. there is a suessful

breadth-�rst derivation of lengh less or equal to n+1 for a program P , hfA

1

; : : : ; A

k

g; �; S

1

i !

�

BF

h;; �; S

2

i i� A

i

� 2 B

T

P

n

and solvable(S ^ �

A

i

= v

i

) and v

i

�

BI

V

T

P

n

(A

i

�).

Proof. The proof is by indution on n. For the base ase, all the literals are redued using the

�rst type of transitions or the last one, that is, for eah literal A

i

, it exits a fat h

i

 v

i

suh

that �

i

is the mgu of A

i

and h

i

, and �

A

i

is the truth variable for A

i

, and solvable(S

1

^�

A

i

= v

i

)

or �

A

i

= default(A

i

). By de�nition of T

P

, eah v

i

�

BI

V

T

P

1

(A

i

�) where hB

T

P

1

; V

T

P

1

i = T

P

" 1.

For the general ase, onsider the suessful derivation,

hfA

1

; : : : ; A

k

g; �

1

; S

1

i !

BF

hB; �

2

; S

2

i !

BF

: : :!

BF

h;; �

n

; S

n

i

the transition hfA

1

; : : : ; A

k

g; �

1

; S

1

i !

BF

hB; �

2

; S

2

i

When a literal A

i

is redued using a fat or there is not rule for A

i

the result is the same

as in the base ase, otherwise there is a lause h

i

 

F

B

1

i

; : : : ; B

m

i

in P suh that �

i

is the

mgu of A

i

and h

i

2 B�

2

and B

j

i

�

i

2 B�

2

, by the indution hypothesis B�

2

� B

T

P

n�1

and

solvable(S

2

^ �

B

j

i

= v

j

i

) and v

j

i

�

BI

V

T

P

n�1

(B

j

i

�

2

) then B

j

i

�

i

� B

T

P

n�1

and by de�nition of

T

P

, A

i

�

i

2 B

T

P

n

and solvable(S

1

^ �

A

i

= v

i

) and v

i

=�

BI

V

T

P

n

(A

i

�

1

). �

Theorema 3.4 For a program P there is a suessful derivation

hp(bx); ;; truei !

�

h;; �; Si

i� p(bx)� 2 B and v is the solution of S and v �

BI

V (p(bx)�) where lfp(T

P

) = hB; V i

Proof. It follows from the fat that lfp(T

P

) = T

P

" ! and from the Theorem 3.3. �

Theorema 3.5 For a fuzzy program P the three semantis are equivalent, i.e.

SS(P ) = lfp(TP ) = lm(P )

Proof. the �rst equivalene follows from Theorem 3.4 and the seond from Theorem 3.2. �

4 Implementation and Syntax

4.1 CLP(R)

Constraint Logi Programming [JL87℄ began as a natural merging of two delarative paradigms:

onstraint solving and logi programming. This ombination helps make CLP programs both

expressive and exible, and in some ases, more eÆient than other kinds of logi programs.

CLP(R) [JMSY92℄ has linear arithmeti onstraints and omputes over the real numbers.

Fuzzy Prolog was implemented in [GMV04℄ as a syntati extension of a CLP(R) system.

CLP(R) was inorporated as a library [CH00℄ in the Ciao Prolog system [HBC

+

99℄.

The fuzzy library (or pakage in the Ciao Prolog terminology) whih implements the inter-

preter of our fuzzy Prolog language has been modi�ed to handle default reasoning.



4.2 Syntax

Eah fuzzy Prolog lause has an additional argument in the head whih represents its truth

value in terms of the truth values of the subgoals of the body of the lause. A fat A  v

is represented by a Fuzzy Prolog fat that desribes the range of values of v with a union of

intervals (that an be only an interval or even a real number in partiular ases). The following

examples illustrate the onrete syntax of programs:

youth(45) youth(45) :

�

[0:2; 0:5℄

S

[0:8; 1℄ [0.2,0.5℄ v [0.8,1℄.

tall(john) 0:7 tall(john) :

�

0.7.

swift(john) tall(john) :

�

[0:6; 0:8℄ [0.6,0.8℄.

good player(X) 

min

good player(X) :

�

min

tall(X); tall(X),

swift(X) swift(X).

These lauses are expanded at ompilation time to onstrained lauses that are managed by

CLP(R) at run-time. Prediates : = :=2, : < :=2, : <= :=2, : > :=2 and : >= :=2 are the Ciao

CLP(R) operators for representing onstraint inequalities. For example the �rst fuzzy fat is

expanded to these Prolog lauses with onstraints

youth(45,V):- V .>=. 0.2,

V .<=. 0.5.

youth(45,V):- V .>=. 0.8,

V .<. 1.

And the fuzzy lause

:- default(good layer/1,[0.5,0.7℄).

good player(X) :

�

min tall(X),swift(X).

is expanded to

good_player(X,Vp) :-

tall(X,Vq),

swift(X,Vr),

minim([Vq,Vr℄,Vp),

Vp .>=. 0, Vp .=<. 1.

good_player(X,Vp) :-

Vp .>=. 0.5, Vp .=<.0.7.

The prediate minim/2 is inluded as run-time ode by the library. Its funtion is adding

onstraints to the truth value variables in order to implement the T-norm min. We have

implemented several aggregation operators as prod, max, luka, et. and in a similar way any

other operator an be added to the system without any e�ort. The system is extensible by the

user simply adding the ode for new aggregation operators to the library.



5 Conlusion

We have presented di�erent semantis of our fuzzy language, and it is proved the equivalene

between them. These semantis support non-uniform default assumptions extending the for-

malization given in [GMV04℄. The Ciao system inluding our Fuzzy Prolog implementation

an be downloaded from http://www.lip.dia.�.upm.es/Software/Ciao.
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