
Identifying Cognitive Aspects to Improve Business Process Reengineering

Adriana Martín and Alejandra Cechich♦
Departamento de Ciencias de la Computación, Universidad Nacional del Comahue,

 Buenos Aires 1400, Neuquén, Argentina
Tel. (+54) 299 4490 312 – Fax: (+54) 299 4490 313

Email: {martinae@infovia.com.ar}; {acechich}@uncoma.edu.ar}

Abstract.

Knowledge-intensive processes are widely used to recover from errors, handle exceptional cases and
complaints, and to improve or adapt a process itself. In this context, evolved Business-Process Reengineering
(BPR) techniques are changing to give some answers to this reality. In this paper, we identify some cognitive
aspects used by traditional and recent reengineering models. We provide a framework highlighting how
cognitive aspects might improve reengineering through knowledge and perception modelling.

Keywords. Business Process Reengineering, Knowledge-Intensive Processes, Cognitive Science

1 Introduction

The concept of reengineering traces its origins back to management theories developed as early

as the nineteenth century [13][15]. The term reengineering started to sound noisily in 1993, when
Hammer and Champy presented the book “Reengineering the Corporation: A Manifesto for
Business Revolution” [2]. But this book is not the only approach for reengineering. Table 1
transcripts some definitions on reengineering, highlighting their main focus, year of publication and
references.

From Table 1, it becomes clear that in the first half of the nineties, reengineering was proposed as
a radical approach to redesign business processes. Currently, reengineering methods and tools are
usually applied in an incremental way as just one aspect in more extensive organizational change
projects [6]. For example, at the beginning software reengineering was proposed as a radical
transformation process with solid conceptual foundations [1][7]; then the advantages of object-
oriented and information technology were incorporated to improve BPR [3]; and finally BPR
methods and tools were applied in an incremental style considering other design aspects, such as
software architectures [4] or pattern-based approaches [15].

 But software systems have been in continuous evolution, truly deep in the last few years, were
complex and knowledge-intensive processes have been commonly required in software systems.
Knowledge-intensive processes are those in which knowledge is used to make decisions or create an
output, like new product development or legal support and risk assessment. In general any process
involves knowledge-intensiveness to some extent for recovering from errors, handling exceptional
cases and complaints, and for improving or adapting the process itself [6].

In this paper, our main goal is to identify how knowledge and cognitive aspects are used by
reengineering approaches. In section 2, we describe four conventional reengineering approaches.
Then, in Section 3 we present two reengineering approaches which include concepts from cognitive
science. In Section 4, we propose a framework for identifying cognitive aspects in conventional
reengineering approaches and provide some discussion. Conclusions and future work are addressed
in the final section of this paper.

♦ GIISCo (Grupo de Investigación en Ingeniería de Software del Comahue), UNComa.

Year Main Focus Reference

1990
Software reengineering (also known as both renovation and reclamation), suggests the
examination and change of a software system to be rebuilt in a new software form, and
the subsequent implementation of that form.

[7]

1992

The goal of software reengineering is to take an existing system and generate from it a
new system, called the target system, which has the same properties as a system created
by modern software development methods. These desired software properties include:
maintainability, portability, reliability, reusability, usability, testability, and quality of
documentation.

[1]

1991 - 1995

This reengineering approach is defined as the process of creating an abstract model of
the system to be reengineered, reasoning about the changes in that abstract model, and
then re-designing the system. The approach is known as a business process
reengineering with object-technology.

[8] [3]

1993

Process Innovation is the major reduction in process cost or time, or major
improvements in quality, flexibility, service levels or other business objectives.

[9]

1993

Reengineering is the fundamental rethinking and radical redesign of business processes
to achieve dramatic improvements in critical, contemporary measures of performance,
such as cost, quality, service and speed.

[2]

2000

Reengineering is the fundamental rethinking and radical redesign of business processes
by leveraging proven models of processes, organization, and technology.
Reengineering aims at improving changes and reducing time to achieve measurable
business results.

[10]

2002

The goal of reengineering is to reduce the complexity of a legacy system in such a way
that it can be used and adapted at an acceptable cost. Reengineering Patterns codify
and record knowledge about modifying legacy software: they help in diagnosing
problems and identifying weaknesses which may binder further development of the
system, and they aid in finding solutions which are more appropriate to the new
requirements.

[15]

2002

A software architecture perspective on reengineering states that transformations should
be done especially at the architectural level: architecture is recovered, reengineered
and instantiated to become a desirable new architecture.

[4]

2003

Business process reengineering is the restructuring of tasks of an organization in such
a way that information technology is optimally exploited. A BPR method should be
decision-driven and performance-determined: the process is analyzed with the aim of
deciding whether a particular design principle is applicable, and to assess
consequences of alternatives on performance indicators.

[6]

Table 1: Main Focus and Definitions for Reengineering over the years

2 Conventional reengineering approaches

To illustrate conventional reengineering approaches, following we briefly introduce four of them,
which are representative of a reengineering period as well as currently relevant.

Byrne’s Model: In 1992, Erich Byrne presented a conceptual foundation for software re-engineering
and established a general model of software re-engineering based on these foundations [1]. This
conceptual foundation consists of a collection of Properties (Table 2), Principles (Table 3) and
Assumptions (Table 4) that are often either loosely stated or implied when discussing re-engineering
methods and problems.

1. Separation of Concerns: For each level of abstraction there exists a system representation that explicitly describes system’s
characteristics. Each level of abstraction defines a different set of characteristics.

2. Information Inclusion: (a) Information contained within a level of abstraction influences information contained at lower
abstraction levels.
(b) Information contained within a level of abstraction has no influences on information contained at
higher abstraction levels.

3. Information Volume: As the level of abstraction decreases, the amount of information describing a system increases.

4. Creation of Characteristics: Each characteristic of a system is created al a particular abstraction level, and the influence of
each characteristic propagates downwards to lower abstraction levels.

Table 2: Properties of Byrne’s Conceptual Foundation

1. Refinement: The gradual decrease in the abstraction level of a system representation is caused by the successive
replacement of existing system information with more detailed information.

2. Abstraction: The gradual increase in the abstraction level of the system representation is created by the successive
replacement of existing detailed information with information that is more abstract. Abstraction produces a representation
that emphasizes certain system characteristics by suppressing information about others.

3. Alteration: Alteration is making of one or more changes to a system representation without changing the degree of
abstraction. Alteration includes the addition, deletion, and modification of information.

Table 3: Principles of Byrne’s Conceptual Foundation

1. Reengineering a software system produces a new form of the system that is better, in some way, than the
original.

2. Software reengineering begins with an existing system representation expressed at some level of abstraction.

3. To alter a system characteristic, reengineering should be done at the level of abstraction in which information
is explicitly expressed.

4. A system characteristic can be altered by working within a level of abstraction below the level at which
information is explicitly expressed. However, the best re-engineering result might not be achieved.

5. A system characteristic cannot be altered by working within a level of abstraction above the level at which
information is introduced.

6. For any existing software system, the only accurate and up-to-day system representation is source code. Any
existing requirement or design documentation cannot be trusted to describe the current system accurately.

7. If a system representation at a particular abstraction level is missed or not up-to-date, it is possible to rebuild
that representation, at least partially.

8. A system representation at a particular level of abstraction can be rebuilt, at least partially, from an existing
representation expressed at a lower level of abstraction by using the principle of abstraction.

Table 4: Assumptions of Byrne’s Conceptual Foundation

 Figure 1 shows Byrne’s Model where we can identify three steps: Reverse Engineering, Re-

Structuring and Forward Engineering, respectively deliverables of an Abstraction, an Alteration and
a Refinement process.

This model can be interpreted using the conceptual foundations summarised in Tables 2-- 4. For
example: Property 1 and Property 2 establish the abstraction levels and their ordering; and the
triangular shapes derive from Property 3 - see Table 2. Assumptions 7 and 8 justify the use of the
Principle of Abstraction, which is the basis for Reverse Engineering; Assumption 3 and the
Principle of Alteration show the level of abstraction at which certain types of change can be made;
and the Principle of refinement is the basis for Forward Engineering, which creates a target system
implementation - see Table 3 and Table 4.

Figure 1: General Model for Software Re-engineering (from [1])

Jacobson’s Method: This method [3] shows reengineering work being performed within the
framework of business development, and it emphasizes that reengineering consists of mainly two
steps: Reverse Engineering of the existing business and Forward Engineering of the new business.
Intuitively and a little naively, Jacobson said that:

Business Reengineering = Reverse Business Engineering + Forward Business Engineering

(1) (2)

(1) Understanding the existing company is a reverse-engineering activity; it implies that we make

an abstract model of the business and the processes we wish to improve.
(2) Designing the new company is a forward-engineering activity.

Figure 2 shows the main activities of a reengineering project, and is also a simplified model of

how reengineering work is carried out. The arrows primarily show how the different activities
convey information to one another and to the environment. The project starts in response to a
reengineering directive, which explains why something must be done and specifies what the project
should achieve. The reengineering directive triggers an activity called envisioning, which visualizes
the new business enterprise or the new processes in the business, and the result of this activity is an
objective specification – a vision of the future business. Thus, envisioning triggers the reversing of
the existing business activity, which produces a model of the existing business. Engineering the
new business implies creating one or more new processes, designing them, developing a supporting
information system, perhaps simulating or prototyping them, and so on, to produce a model of the
redesigned business. A reengineering project will normally include another main activity: installing
the redesigned business in the real organization [3]. Finally, the project finishes with the
reengineered corporation.

Summing up, this method presents an interesting technique for modelling business looking at
company’s usability, identifying customers as users of the business, and suggesting that the
business model should be designed to offer a “usable” company. The reengineering technique is
based on use cases.

Figure 2: An overview of the main activities in a Reengineering project
according to Jacobson’s method (from [3])

REENGINEERING

DIRECTIVE

THE
REENGINEERED
CORPORATION

ENVISIONING

REVERSING THE
EXISTING BUSINESS

INSTALLING THE
NEW BUSINESS

ENGINEERING THE
NEW BUSINESS

Figure 3: The format of a typical Demeyer-Ducasse-Nierstrasz’s Pattern (from 15)

If it Ain’t Broke, Don’t Fix it

Intent: Safe your reengineering effort for the parts
of the system that will make a difference.
Problem
Which part of a legacy system should you reengineer?
This problem is difficult because:
 Legacy software systems can be large and complex.
 Rewriting is expensive and risky.

Yet, solving this problem is feasible because:
 Reengineering is always driven by some concrete goals.

The name is usually an action phrase

The intent should capture the essence of the pattern.

The problem is phrased as a simple question.
Sometimes the context is explicitly described.

Next we discuss the forces! They tell us why the problem
is difficult and interesting. We also pinpoint the key to
solving the problem.

Solution
Only fix the parts that are “broken” - than
cannot longer be adapted to planned changes.
Tradeoffs
Pros: …

The solution sometimes includes a recipe of steps to apply the pattern.

Demeyer-Ducasse-Nierstrasz’s Patterns: In [15] Patterns, as a way of communicating best
practices, are particularly well-suited to presenting and discussing standard techniques that have
emerged from reengineering processes. Reengineering patterns codify and record knowledge about
modifying legacy software: they help in diagnosing problems and identifying weaknesses, which
may hinder further development of the system. Patterns also aid in finding solutions which are more
appropriate to the new requirements.

Whereas a design pattern presents a solution for a recurring design problem, a reengineering

pattern presents a solution for a recurring reengineering problem. The artefacts produced by
reengineering patterns are not necessarily designs. They may be as concrete as re-factored code, or
in the case of reverse engineering patterns, they may be abstract as well as insights into how the
system functions. The mark of a good reengineering pattern is (a) the clarity with which it exposes
the advantages, the cost and the consequences of the target artefacts with respect to the existing
system state, and (b) the description of the reengineering process - how to move from one state of
the system into another [15]. Figure 3, shows part of a simple reengineering pattern that illustrates
the format proposed by Demeyer, Ducasse and Nierstrasz. This format may vary slightly from
pattern to pattern, since they deal with different kinds of issues.

The SEI Horseshoe Model: The SEI’s Model is similar to Byrne’s Model, and takes a Software
Architecture perspective on reengineering [4]. This conceptual model distinguishes different levels

of reengineering analysis and provides a foundation for transformations at each level, especially at
the architectural level.

As Figure 4 illustrates, there are three basic reengineering processes: Analysis of an existing
system, Logical Transformation and Development of a new system. In the purest and most complete
form of the model (represented by the large outlined arrows), the first process recovers the
architecture by extracting artefacts from source code. The second process is architectural
transformation; in which the “as-built” architecture is recovered and then reengineered to become
the desirable new architecture. It is re-evaluated against the system’s quality goals and subjected to
other organizational and economic constraints. The third process uses architectural-based
development to instantiate the desired architecture. In this process, packaging issues are decided
and interconnection strategies are chosen. Code-level artefacts from the legacy system are often
wrapped or rewritten in order to fit into this new architecture [4].

The purpose of the visual metaphor of the “horseshoe” is used to integrate the code-level and the
architectural reengineering views of the world, explicitly showing the different levels in which
reengineering analysis and transformations occur, but especially highlighting the architectural level
as the main level to initiate and propagate transformations.

3 Non-Conventional reengineering approaches: a Cognitive perspective

It is a fact, that BPR activities implies not only using good reengineering practices, but also

gathering and manipulating process knowledge from machines and human minds. Within this
vision, re-engineering business processes can be seen as a special case of knowledge management
and a work domain in which human cognition plays a critical role [6]. Many software development
tools and environments are considered useful because they beneficially reengineer developer
cognition [5].

Consequently, we can say that in a cognitive work domain like software re-engineering, an
approach can be considered useful if it improves cognitive reengineering potential and issues.
Cognitive models and theories can contribute for a successful reengineering process, assisting
reengineers in an intelligent use of large quantities of explicit and tacit knowledge. Research on this
area is just starting. As examples, following, we briefly introduce two frameworks, which include
concepts from cognitive science to improve reengineering analysis and reengineering of
knowledge-intensive processes, respectively.

Figure 4: The SEI Horseshoe Model
(from [4])

Walenstein’s Framework: In 2002, Andrew Walenstein proposed a Lightweight Framework for
Cognitive Reengineering Analysis called HASTI [5] [12]. The intent of HASTI is to support “quick
and dirty” cognitive reengineering analysis during the early stages of design. This work argues that
designers indirectly reengineer cognition by engineering technological environments, so the main
purpose of a cognitive model in this context is to say what should be re-engineer and how.

HASTI is a cognitive decomposition-and-integration framework that identifies five different
“dimensions” or “aspects” of cognition. “HASTI” is an acronym created from the names of the
model’s structures associated with the five dimensions or aspects: (1) a Hardware model, (2) an
Agent model, (3) a Specialization layering, (4) a Task or problem partitioning, and (5) an
Interaction abstraction hierarchy [5].

The five modelling methods are summarized in Table 5. Aspects or dimensions are further
described by using additional methods and techniques. For example, the model technique at agent
level (A) is borrowed from related work on the blackboard and agent modelling literature, such as
the Craig’s Agent-Based Architecture [16]; the decomposition at specialization level (S), is inspired
on Rasmussen’s “SRK” taxonomy [17] that proposes three behavioural categories for human
cognition – called “skill-based”, “rule-based” and “knowledge-based”; and so forth. We refer the
reader to [5] [12] for further details on the way each aspect is described.

 Cognition Aspect / Dimension Decomposition Model Technique
H invariant capabilities / constraints memory, processors hardware model

A goal-related behaviour agents, resources agent model

S specialization (adaptation) SRK taxonomy layering

T task / problem 4-fold taxonomy partitioning

I interaction virtual architectures layering

Table 5: Walenstein’s five Dimensions or Aspects of Cognition and the way they are modelled
(from [5] [12])

HASTI is proposed as a lightweight modelling framework that highlights possibilities for

reengineering cognition. Since HASTI is a computational model, cognitive reengineering
corresponds precisely to computational reengineering. It might be defined as the reorganization of
the structure of a computational system without changing its essential functionality. Thus the ways
of improving cognition can be identified with different computational reengineerings of HASTI [5].

van Leijen-Baets’s Framework: In 2002, Hans van Leijen and Walter Baets developed a
cognitive framework for improving knowledge-intensive aspects of administrative processes and
gave some implication of this model for analyzing, designing, and implementing phases of
reengineering knowledge-intensive processes efforts [6].

The authors’ view on executing a case in a business process corresponds to solving a problem,
and analyzing this problem-solving behaviour in a set of generic phases. Choosing a cognitive
model means speaking in terms of the mental processes and states of an agent. In the service
organization, a goal is always an action that serves or protects the interest of a stakeholder, such as a
customer, an employee or the principal agent of the organization. The agent is usually a human
individual, but an information-processing machine can also be considered a cognitive agent [6].

This framework takes a cognitive perspective on business processes, in order to design the
proper coordination, maintenance and use of operational knowledge in service organizations. The
framework also presents a model of the knowledge and learning of agents in business processes
inspired by related works in artificial intelligence.

The framework’s features allow the interpretation of organizations as goal-directed planners and

the analysis of processes as a Cognitive Cycle composed of five phases: recognition, decomposition,
planning, action, and evaluation. Figure 5 illustrates this cognitive cycle that can be recursively
refined in all its five phases; that is, executing one phase may result in executing all five on a lower
level of abstraction.

The process of recollection and construction of a casual model, is the first phase in solving a
problem called recognition or script selection. During the second phase, named decomposition, an
agent tries to construct a more accurate picture of the problem by collecting extra information; then
recognition and decomposition alternate until the agent is sufficiently confident that the problem
matches the model constructed. The next phase – planning – tries to find an adequate path of
interventions by searching for previous intervention paths associated with similar situations.
Remaining steps are action register and evaluate register, where the agent executes the plan and
recursively finds sub-problems to solve. After executing the plan, the agent stores the new scenario
along with its representation. An agent will usually not carry out the process sequentially but will
interleave phases to increase efficiency.

This work declared that when defining and discussing cognitive process reengineering, it is
necessary to account for a number of aspects: (1) cognitive process reengineering is the
manipulation of scripts in cognitive agents; (2) reengineering serves the interest of stakeholders;
and (3) reengineering always targets some performance criteria. So, the model proposed to add to a
systematically search for opportunities to create new knowledge or exploit existing knowledge
better.

4 A Framework for Identifying Cognitive Aspects in Reengineering Approaches

We have already said that software re-engineering is a work domain in which gathering and

manipulating process knowledge from machines and human minds is a main issue and therefore,
human cognition plays an essential role.

Stimuli

existing EPISODES
and

CASUAL MODELS
(SCRIPTS)

in
AGENT’S MEMORY

RECOGNITION

EVALUATE
REGISTERDECOMPOSITION

PLANNING
ACTION

REGISTER

Episode: succession of states of the
world in the past; a Story describing
behavior of part of the world, the
agent’s interventions in that part, and
the effects of those interventions.

Casual Model: contingent
sequence of cause an effect
situations, abstracted from

sets of episodes that
resemble each other; a

Script on the basis of which
plans can be constructed for

execution.

Figure 5: An illustration of Leijen-Baets’s Cognitive Cycle

Motivated by the concepts in this area, Table 6 describes a framework for identifying cognitive
aspects in reengineering approaches. Then, the framework is applied to the conventional
reengineering approaches presented above.

Framework Elements Description
Goal, Focus

&
Basis/Background

What are the goal, focus and underlying basis/background
of the approach?

Reengineer,
Other stakeholders

&
Reusability of existing knowledge

How helps the approach to the reengineer effort?
Are other stakeholders involved?
Is some kind of knowledge reusability considered by the
approach?

Cognitive
 Aspects

Table 6: Framework Elements for Identifying Cognitive Aspects in Reengineering Approaches

Byrne’s Model
Goal, Focus & Basis/Background
Description: This approach provides a general model with its underlying foundation useful for
examining reengineering issues such as the reengineering process and the reengineering strategies.
A conceptual foundation composed of properties and principles that underlie reengineering method
and assumptions about reengineering is used for: understanding re-engineering, proposing solutions
to re-engineering problems and to explain the general model for software re-engineering. Byrne’s
Model brings the individual foundation components together into a coherent form during a
reengineering process.
Cognitive Aspects: From these elements it is possible to identify that knowledge recovery of useful
ideas and insights that emerge from research and experience in software re-engineering have been
taking into account to model a framework for understanding re-engineering.
Reengineer, Other stakeholders & Reusability of existing knowledge
Description: The conceptual foundation of the approach enables to clearly define, discuss, compare,
and evaluate reengineering problems and methods. In this context, an experienced reengineer is
required. In contrast, the involvement of many stakeholders is not specifically required, but it is
important to say that the approach offers a good framework to all people involved.
Cognitive Aspects: The approach’s conceptual foundation guarantees that the stakeholders engaged
in the reengineering process have a common discourse domain. It is evident that knowledge is a
critical factor to take advantage of this framework, which can be used as an understanding platform
for exploring reengineering concerns.

Jacobson’s Method
Goal, Focus & Basis/Background
Description: This approach provides a method to integrate the work of business reengineering, its
processes and its information system. Background’s approach is from the 1993-1994 literature,
when several important books on BPR were published, like [2] [9] [18], and from the OOSE
Methodology with their Objectory Tool both describe in [19]. Jacobson’s reengineering approach
obtains the Object Advantage in reengineering a business, by linking Object technology to the BPR
model.
Cognitive Aspects: Evidences of a solid knowledge about business and its processes are inherent to
the technique proposed by the approach. This work, with its logical framework and practical
recommendation, details and gathers experiences on how to realize adaptive business enterprise.
Reengineer, Other stakeholders & Reusability of existing knowledge

Description: Jacobson’s method provides reengineers a good and straightforward method with a
useful object-oriented tool to develop a detailed and comprehensive model of the business. It also
establishes that any stakeholder should have its own model of the company, which could be a
segment or a simplified description of it: a view of the complete model according to the stakeholder
category. A Reuse Coordinator involved in the re-engineering project and responsible for
encouraging the reuse of already modelled infrastructure, is prescribed to evaluate the extent to
which the project is undertaking reuse, as well as to investigate the potential reuse of the models.
Cognitive Aspects: Concepts taken into account by the approach focus the discussion on the
company’s adaptation from the stakeholders’ business comprehension. Applicability is linked to
customers’ perception and, the model of the business should be designed to offer users the “usable”
company. The approach forces reengineer to gain a complete understanding of the business under
two visions: the “outside view” and the “inside view” developed by the Use-Case Model and the
Object Model respectively. A reuse coordinator role is required because of his knowledge for
applying reuse to the reengineering process.

Demeyer-Ducasse-Nierstrasz’s Patterns
Goal, Focus & Basis/Background
Description: This approach provides a catalogue of patterns for reverse engineering and
reengineering legacy systems. Main basis’s approach is from traditional pattern literature, like
Gamma Design Patterns [20], and from the European Industrial Research called FAMOOS
(ESPRIT Project 21975 - Framework-based Approach for Mastering Object-Oriented Software
Evolution) [21].
Cognitive Aspects: Pattern approaches founded their effectiveness in codifying and recording all
available knowledge about historical experiences in developing software and, reengineering
patterns are not the exception to this rule.
Reengineer, Other stakeholders & Reusability of existing knowledge
Description: Reengineering patterns help reengineers in diagnosing problems and identifying
weakness which may hinder further development of the system, and aids in finding solutions which
are more appropriate to the new requirements. Stakeholders’ participation is required, for example,
maintainers are involved in reverse engineering and users are involved in reengineering migration
strategies. Reusability is a key concern in reverse engineering and reengineering legacy systems.
Cognitive Aspects: Reengineer cognition is improved by using recycled experiences in modifying
legacy software. The catalogue pattern gives stakeholders valuable knowledge recovered from
recurrent problems, optimal solutions to that problems and, experts’ training and understanding in
the reengineering field.

The SEI Horseshoe Model
Goal, Focus & Basis/Background
Description: This approach takes into account a software architecture perspective on reengineering,
providing a foundation for transformations at different levels of reengineering analysis, especially
for transformations at the architectural level. Byrne’s Model [1] and, recent SEI’s works in the field
of Architectural Reconstruction and Architecture-Based Development (ABD) [4], compose the
model’s background.
Cognitive Aspects: The application of this conceptual model split human knowledge schema into
three distinct levels: (1) the code level, (2) the function level and, (3) the conceptual level. The
awareness is focused at this last concept level, which is proposed for initiating and propagating
transformations during a system reengineering process.
Reengineer, Other stakeholders & Reusability of existing knowledge

Description: Because of their characteristics, the approach is basically oriented to reengineers. The
SEI’s model allows reengineers to distinguish different levels of reengineering analysis and
describes the rich set of technical choices that reengineers make. Grounded in the technical
underpinnings of the “horseshoe” model, a method called Option Analysis for Reengineering
(OAR) [4] is also proposed for reengineering decision assistance.
Cognitive Aspects: It is easy to appreciate that the “horseshoe” model improves reengineer
cognition by reasoning at different level of analysis, highlighting the architectural one. With this
conceptual model as a starting point, the OAR method assists reengineers decisions during the
reengineering work, as a structure and accessible vehicle for making knowledgeable choices in a
variety of real world situations.

4.1 Discussion

Our purpose here is to establish a discussion on the inclusion of cognitive theories and models in

re-engineering approaches based on the statement that human cognition has been always a decisive
attribute when re-engineering work has to be done.

In first place, we propose to look at HASTI framework and their possible contributions to
conventional reengineering approaches. Since HASTI can be used to support cognitive
reengineering analysis, it is possible the application of this sort of analysis during BPR early stages
of design. For example, using Byrne’s model a reengineer can apply HASTI to assist their
restructuring decisions at conceptual, requirement and design abstraction levels. He can also explore
reengineering possibilities and, if it is necessary communicate these possibilities to other
stakeholders involved, using the conceptual foundation common discourse domain.

Other example becomes clear form the SEI’s “horseshoe” model, that is basically Byrne’s model
with a software architecture perspective. Because of this technical focus, the model does not assist
reengineer in deciding on complex options regarding the future of their legacy systems, so the OAR
method is provided. The model structure provided by HASTI can support this cognitive aspect too,
assisting reengineers in inspecting and visualizing the results of potential cognitive arrangements,
especially at the architectural level.

Now, let’s make some considerations of what kind of support van Leijen-Baets’s Framework can
provide to BPR approaches. The work’s purpose is, to use knowledge about how people think and
act to design business processes support, which enhances the way people think and act. The
framework defines a causal model, called “script”, which describes the content of human
experiential knowledge.

For example, in Jacobson’s method, a reengineer is forced to develop a users’ view of the
business as a key concern for company’s adaptation. Then, with the van Leijen-Baets’s cognitive
cycle might be possible to take a cognitive perspective on business processes turning knowledge
from users’ perception about the company into scripts for reengineering the business’s usability. As
another example, by using Demeyer-Ducasse-Nierstrasz’s Patterns a reengineer is provided by
recycled human experiences in modifying legacy software. Again, by storing this valuable
catalogue of patterns into scripts, the cognitive cycle can be use as an instrument to manipulate all
knowledge.

5 Conclusions and future work

In this paper, we have described traditional as well as cognitive-based approaches to business

reengineering. We have also presented and applied a framework for identifying cognitive aspects in
traditional BPR approaches. This application has resulted in a discussion about how cognitive
science can support BPR approaches.

Our interest in studying and investigating cognitive models and their relation with BPR
approaches, became from a recent work we have developed to carry out reengineering projects for
personalizing existing web applications [11]. One of the current challenges in cognitive field is how
to transform cognitive issues into a dynamical knowledge instrument for process improvement. As
current Web based systems are a good example of software with knowledge-intensive process
needs, our future work will apply cognitive aspects to improve web re-engineering processes.

References

1. Byrne, E. “A Conceptual Foundation for Software Re-engineering” In Proceedings of the International

Conference on Software Maintenance, 1992
2. Hammer, M. and Champy, J. “Reengineering the Corporation: A Manifesto for Business Revolution” NY:

HarperCollins, 1993
3. Jacobson, I. ; Ericsson, M. and Jacobson, A. “The Object Advantage: Business Process Reengineering with Object

Technology” Addison-Wesley, 1994
4. SEI Technical Work Page, “The SEI Horseshoe Model” Carnegie Mellon University, Software Engineering

Institute (SEI), 2003 <available at http://www.sei.cmu.edu/reengineering/horseshoe_model.html>
5. Walenstein, A. “HASTI: A Lightweight Framework for Cognitive Reengineering Analysis” In Proceedings of the

14th Psychology of Programmers Workshop, Brunel University, 2002
6. van Leijen, H. and Baets, W. “A Cognitive Framework for Reengineering Knowledge-Intensive Processes” In

Proceedings of the 36th Hawaii International Conference on System Sciences, 2003
7. Chikofsky, E. and Cross II, J. “Reverse Engineering and Design Recovery: A Taxonomy” IEEE Software, Vol. 7,

Nº1, pp. 13-17, 1990
8. Jacobson, I. and Lindströn, F. “Reengineering of Old Systems to an Object-Oriented Architecture” In Proceedings

of OOPSLA’91, Phoenix, pp. 240-50, 1991
9. Davenport, T. “Process Innovation, Reengineering Work through Information Technology” Boston, MA: Harvard

Business School Press, 1993
10. Business Architects Page “What is Reengineering?”, 2000 <available at

http://www.businessarch.com/reengineering.htm>
11. Martín, A. “Personalization of Web Applications: A Reengineering Approach” Master Thesis directed by Dr.

Gustavo Rossi, Master in Software Engineering Post Grade, UNLP, La Plata, Argentina, June 2003 <available at
http://journal.info.unlp.edu.ar/postgrado/magister/ingsoft/Tesis.html/Martin.zip>

12. Walenstein, A. “Cognitive Support in Software Engineering Tools: A Distributed Cognition Framework” Thesis
for the Degree of Doctor of Philosophy in School of Computing Science, Simon Fraser University, May 2002.

13. Weicher, M. ; Chu, W. ; Ching Lin, W. ; Le, V. and Yu, D. “Business Process Reengineering: Analysis and
Recommendations” Group of MBA and MS students at Baruch College, City University of New York, 1995
<available at http://www.netlib.com/bpr1.htm>

14. SEI Technical Work Page, “Reengineering” Carnegie Mellon University, Software Engineering Institute (SEI),
2003 <available at http://www.sei.cmu.edu/reengineering/index.html>

15. Demeyer, S. ; Ducasse, S. and Nierstrasz, O. “Object-Oriented Reengineering Patterns” (OORP), Editorial
Morgan Kaufmann & Dpunkt, 2002

16. Craig, I. ; “From Blackboards To Agents” In Online Proceeding of the VIM Project Spring Workshop on
Collaboration Between Human and Artificial Societies, 1997

17. Rassmussen, J.; “Skills, Rules, Knowledge: Signals, Signs, and Symbols and other distinctions in Human
Performance Models” IEEE Transactions on Systems, man, and Cybernetics, 13(3):257-267, 1983

18. Martin, J.; “Enterprise Engineering -The Key o f Corporate Survival” Vol I-V, UK: Savant Institute, 1994
19. Jacobson, I.; Christerson, P.; Jonsson, P. and Övergaard, G. “Object-Oriented Software Engineering - A Use Case

Driven Approach” MA: Addison-Wesley; New York: ACM Press, 1992
20. Gamma, E.; Helm, R.; Jonson, R. and Vlissides, J. “Design Patterns: Elements of Reusable Object-Oriented

Software´ Editorial Addison-Wesley, 1995
21. FAMOOS European Industrial Research Project, 1996-2000 < available at iamwww.unibe.ch/~famoos >

