APÉNDICE C
LA APROXIMACIÓN DE FASES AL AZAR PARA CUASIPARTÍCULAS (QRPA) Y LA INTERACCIÓN RESIDUAL PROTON-NEUTRON:

Es conveniente expresar el Hamiltoniano total en la forma

$$H = H_p + H_n + H_{pn}, \quad (C.1)$$

donde H_p y H_n describen los Hamiltonianos efectivos en los espacios de protón y de neutrón, respectivamente, mientras que H_{pn} representa la interacción efectiva entre protones y neutrones. En el formalismo de segunda cuantificación las cantidades H_p y H_n están dadas por

$$H_t = \sum_t \left(e_t - \lambda_t \right) c_t^+ c_t + \frac{1}{4} \sum_{t's} \langle t's | V_{i'j'} | t'' t \rangle c_{t'}^+ c_{t''} c_{t'} c_{t''}, \quad (C.2)$$

donde los subíndices $t(t)$ representan a $p(p)$ o $n(n)$, dependiendo de si se está considerando H_p o H_n. Aquí $t=t^p m^p$, con $t=(n^p l^p j^p)$ y $m^p=m^j$, y toda la otra notación tiene el sentido usual: e_t es la energía de partícula independiente (s.p.e.), λ_t el potencial químico, $c_t^+(c_t)$ son los operadores de creación (aniquilación) de partícula independiente, el índice i señala elementos de matriz respecto de estados antisimétricos, etc. El Hamiltoniano (C.2) es diagonalizado a través de las transformaciones de cuasipartículas [Row70, So176, Rin80]:

$$a_t^+ = \sum_{t'} e_{t'-t} c_{t'}^+ c_{t'}, \quad c_{t^+} = (-)^{t'} c_{t,-t'} \quad (C.3)$$
y queda

$$H_t = \sum_t \varepsilon_t a_t^+ a_t, \quad (C.4)$$

donde ε_t son las energías de cuasipartícula:

$$\varepsilon_t = (e_t - \lambda_t)(u_t^2 - v_t^2) + 2\Delta u_t v_t = \Delta_t / 2u_t v_t \quad (C.5)$$

103
con \(\lambda_t \) y \(\Lambda_t \) los potenciales químicos y las energías de separación ("gaps") respectivamente. El estado fundamental BCS es representado como:

\[
|0^+\rangle = |0_p\rangle |0_n\rangle ; \quad |0_t\rangle = \prod_t (u_t^+ + v_t a_t^+ a_t^-) |\rangle,
\]

siendo \(|\rangle\) el vacío de partículas.

La forma de \(H_{pn} \) en segunda cuantificación es

\[
H_{pn} = \sum_{pp'} \langle p' n' | V | p n \rangle \phi^R_{p' n', p n} \phi^L_{p' n'} \phi_{p n},
\]

donde el símbolo : : denota producto normal de operadores fermiônicos. Después de realizar la transformación (C.3) a cuasipartículas, la interacción residual proton-neutrón puede escribirse

\[
H_{pn} = H_{zz} + H_{04} + H_{40},
\]

con

\[
H_{zz} = \sum_{pp'} \left[\langle p' n' | V | p n \rangle \phi^R_{p' n', p n} \phi^L_{p' n'} \phi_{p n} \right] - \langle p' n' | V | p n \rangle \phi^L_{p' n'} \phi_{p n} \phi_{p' n'}.
\]

\[
H_{04} = H_{40} = \sum_{pp'} \langle p' n' | V | p n \rangle \phi^R_{p' n', p n} \phi^L_{p' n'} \phi_{p n} \phi_{p' n'}.
\]

Para resolver las ecuaciones de la QRPA [Row75]

\[
\hat{I}^{-1} \langle 0 | [I^+(\alpha I), H, I^+(\beta I)]^0 | 0 \rangle = \omega_{\alpha \beta} \phi_{\alpha \beta} \}
\]

\[
\hat{I}_{\text{sym}} = (2I+1)^{1/2},
\]

los operadores de excitación \(I^+(\alpha I) \) son aproximados por la expansión

\[
I^+(\alpha I) = \sum_{pn} (X(pnI;\alpha)A^+(pnI) - Y(pnI;\alpha)a(pnI))
\]

en un subconjunto finito de la base de operadores.
\[A^+(p\bar{n}) = \begin{bmatrix} a^+ & a \\ p_n & n \end{bmatrix} \]

(C.13)

y los correspondientes operadores adjuntos \(A(p\bar{n}) \). La ecuación de movimiento (C.11) provee entonces los coeficientes de expansión \(X e Y \) como soluciones de la ecuación matricial

\[
\begin{pmatrix} A & B \\ B & A \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega \begin{pmatrix} X \\ -Y \end{pmatrix},
\]

(C.14)

con submatrices

\[
A(p_n, p_n'; I) = \hat{I}^{-1} <0| [A(p_n\bar{I}), H, A^+(p_n'; I)] |0> = (\delta_{p_n, p_n'} + (u \nu u \nu + v \nu u \nu) F(p_n, p_n'; I) + (u \nu u \nu + v \nu v \nu) G(p_n, p_n'; I),
\]

(C.15)

\[
B(p_n, p_n'; I) = -\hat{I}^{-1} <0| [A(p_n\bar{I}), H, A(p_n'; I)] |0> = (u \nu u \nu + v \nu u \nu) F(p_n, p_n'; I) - (u \nu v \nu + v \nu u \nu) G(p_n, p_n'; I),
\]

donde \(F \) y \(G \) son, respectivamente, los elementos de matriz de partícula-agujero (PH) y de partícula-partícula (PP) tal como están definidos en el apéndice B. Con esta notación los parámetros de separación (gap) quedan:

\[
A_t = -\frac{1}{2} \sum_{t'} \hat{\nu}_t \hat{\nu}_{t'}^* G_{\mathrm{pair}}^{\nu}(tt, tt'; 0).
\]

(C.16)

Las energías de excitación \(E_{\nu \alpha}^{\text{IA}} \) en los núcleos impar-impar \((A, I+1) \) y \((A, I-1) \), medidas respecto de la energía del estado fundamental del núcleo padre, se relacionan con las energías \(\omega_{\nu \alpha} \) de la QRPA según:

105
\[E_{\alpha I} = \begin{cases} \omega_{\alpha I} + \lambda P - \lambda N ; & (A, Z+1) \\ \omega_{\alpha I} - \lambda P + \lambda N ; & (A, Z-1) \end{cases} \] (C.17)

Puede demostrarse [Boh69] que para núcleos cercanos al valle de estabilidad \(\beta \) se cumple que \(\lambda P N = \Delta_{p n} \), donde \(\Delta_{p n} = 0.872 \text{MeV} \) es la diferencia de masa neutrón-proton.

Por conveniencia se expresan los operadores de un cuerpo con intercambio de carga en dos formas alternativas:

\[\Theta_{\pm}(I) = \sum_{i=1}^{A} \langle t_{1} | O(I) t_{2} | t_{1} \rangle^{\pm} = \sum_{i=1}^{A} \langle O(I; i) t_{1}(i) \rangle, \] (C.18)

donde \(O(I=0) = \delta \) para las transiciones \(F \) y \(BT \), respectivamente, y \(\langle n | t_{p} | p \rangle = 1 \). Al expresarlos por medio de los operadores de excitación no perturbados y perturbados éstos toman la siguiente forma:

\[\Theta_{\pm}(I) = \sum_{p, n} \left[\Lambda_{\pm}^{0}(p n I) A^{+}(p n I) + \Lambda_{\pm}^{0}(p n I) A(p n \bar{I}) \right], \] (C.19)

\[= \sum_{\alpha} \left[\Lambda_{\pm}(\alpha I) \Gamma^{+}(\alpha I) + \Lambda_{\pm}(\alpha \bar{I}) \Gamma^{+}(\alpha \bar{I}) \right], \]

donde

\[\Lambda_{\pm}^{0}(p n I) = \hat{I}^{-1} u_{n} v_{p} \langle p O(I) n \rangle, \] (C.20)

\[\Lambda_{\pm}^{0}(p n I) = -\hat{I}^{-1} u_{n} v_{p} \langle p O(I) n \rangle, \]

\[\Lambda_{\pm}(\alpha I) = \hat{I}^{-1} \sum_{p, n} \langle p O(I) n \rangle \left[v_{p} v_{n} X(p n I; \alpha) + u_{p} v_{n} Y(p n I; \alpha) \right], \] (C.21)

\[\Lambda_{\pm}(\alpha \bar{I}) = \hat{I}^{-1} \sum_{p, n} \langle p O(I) n \rangle \left[v_{p} v_{n} X(p n I; \alpha) + u_{p} v_{n} Y(p n I; \alpha) \right]. \]

Las amplitudes de transición están expresadas como:

\[\langle \alpha I | O_{\pm}(I) | 0 \rangle = \langle 0 | \Gamma^{+}(\alpha \bar{I}), O_{\pm}(I) \rangle = -\hat{I} \Lambda_{\pm}(\alpha I), \] (C.22)

y las intensidades de transición totales se definen
\[S_\pm(I) = \sum_\alpha s_\pm(\alpha I) \equiv \sum_\alpha A_\pm^2(\alpha I), \quad \text{(C.23)} \]

y satisfacen la regla de suma

\[S_+(I) - S_-(I) = 2T_0 \quad \text{(C.24)} \]

donde \(T_0 = (N-Z)/2 \) es el isospín del estado fundamental.