
Video Analysis Platform
Pablo Flores1, Federico Lecumberry1, Pablo Arias1, Alvaro Pardo1,2

1IIE, Facultad de Ingeniería

Universidad de la República

2DIE, Fac. de Ingeniería y Tecnología

Univ. Católica del Uruguay

gmm@fing.edu.uy, http://iie.fing.edu.uy/vap

1. Abstract
In this article we present the Video Analysis Platform (VAP) which is an open source software
framework for video analysis, processing and description. The main goals of VAP are: to provide a
multiplatform system which allows the easy implementation of video algorithms, provide structures
and algorithms for the segmentation of video data in its different levels of abstraction: shots,
frames, objects, regions, etc, permit the generation and comparison of MPEG7-like descriptors, and
develop testing applications for shot detection, shot matching, object segmentation and tracking,
etc.

2. Introduction
In recent years the amount multimedia data (text, sound, image, and video) has grown remarkably.
In this context, several problems arise regarding analysis, compression, transmission, manipulation,
search and organization of such media. The main goal of VAP project is to study and develop
useful tools for the analysis, compression, transmission and search of video sequences. With this
goal in mind, we worked on the design and development of data structures suitable for describing
video sequences and their contents.
Due to its enormous amount of data, video analysis imposes important requirements in memory and
computational resources; therefore it is mandatory to be very conservative in their use. This
restriction applies also to the overhead that is introduced in the processing due to repetitive data
structure construction and software procedures invocation.
Another important issue when working with video data is the fact that video is usually compressed.
That means that we need to decode it every time we want to process it. Unfortunately, there are a lot
of different codecs. Although the process of decoding may seem a simple task, it is a time-
consuming one when you do not have the proper tools at hand. One of the aims of VAP was to
make the process of video decoding transparent to the end user and to the algorithms programmed.
In this way, if the system supports the video codec, you just need to connect to the proper Video
Reader to access the video information.
Finally, inspired in the MPEG7 standard [6], VAP includes a description module that handles XML
to provide content description capabilities.
In summary the main goals for VAP design were to:

� Develop a multiplatform framework for easy and efficient implementation of video
algorithms.

� Allow the segmentation of video data in its different levels of abstraction: shots, frames,
objects, regions, etc.

� Generate and compare MPEG7-like descriptors.
� Develop testing applications for shot detection, shot matching, object segmentation and

tracking, etc.
In the next section some concepts and constrains of video processing are introduced. In section 4,
the approach to video processing applied to the development of VAP is presented. Section 5
presents the Architecture overview of VAP; this section contains many examples to show the use of
VAP. Finally in section 6 we present the conclusions and the lines of future work.

865

3. Video processing
Video is processed to extract information from it. For instance, shot detection (the partition of a
video into continuous scenes) may be done by analyzing the similarity of subsequent frames pairs.
This is an example of event detection, which could be accompanied with some outputs, like
sounding a beep or annotating the frame number in a file. In other cases, like in noise reduction, the
objective is to obtain a modified version of the input video. A general video processing method
schema is shown in Figure 1. The process can be categorized in five stages: Acquisition, Extraction,
Analysis, Representation and finally Recognition.

First of all, video has to be acquired by a camera or artificially created. Regardless the technologies
used for acquisition or generation, audio and image get digital. In the next step coding algorithms
are applied to compress the data; most times modifying once more the original contents. Coded
information can then be stored, for further use or for immediate transmission.
The opposite process consists in decoding the video to extract frames and audio information. Once
decoded, the frames are the main working unit for video analysis.
The analysis process consists in executing different algorithms to the video image and audio
information.
Some algorithms results may be used by other ones forming an algorithm pipeline. Each algorithm
could represent different abstraction level needed for event detection and video description. In the
case of shot detection algorithms, they may calculate individual frames histograms and then use
them to obtain accumulative histograms useful for segment description. Both results may be used
to guess whether shot has changed or not having two different views of the scene, one of them
instantaneous and the other one accumulative.
It is important to distinguish between progressively accessing the video from a file or accessing it
from a streaming source. First of all, not all the algorithms access video information sequentially.
For example, some shot detection algorithms look ahead in video windows consisting of sets of
frames, for example to detect fade-in and fade-out effects [7]. Within a file, algorithms can go all

Encoding

Preprocessing

Acquisition

Frame

extraction

Audio

extraction

Analysis

Recognition

RepresentationKnowledge base

Decoding

Figure 1: Video processing

866

around the video looking for the requested information, but the only way for going back and forth
when receiving a streaming is having a buffer and waiting until the requested frame comes into it.
Therefore, working with small windows of frames is mandatory for effective live analysis of
streamed video. In addition, algorithms have to be computationally lightweight enough in order to
be run without having to leave frames out.
The results of every algorithm can be stored in temporal memory structures, or can be persisted for
further uses. This process is called representation.
The MPEG7 standard [6] is conceived for long-term persistence of analysis results and can be
applied to all kinds of multimedia material. It establishes extensible rules for XML-based
representations of metadata and defines a binary format to be attached to multimedia elements.
Unfortunately, MPEG7 is not widely used, and there is not much literature about practical
implementations and applications. In addition to textual descriptors, other types of persistence may
be needed, like modified video, for instance highlighting tracked objects or applying filters, or
selected frames and sound sequences.
In the recognition process, stored or streamed video is taken as input and an algorithm tries to detect
sets of properties in the sequences which are interpreted as events. This is the case of many
challenges in video analysis, for instance detecting the presence of an actor in a film, a goal in a
soccer game or an intruder in a security camera transmission.
Persistent information extracted from analysis processes can be used for recognition algorithms in
which features described from an initial video have to be detected in other videos. Particular cases
of this are signature finding algorithms, like the commercials detection ones. In these cases, an
information set – the signature – is extracted from a video fragment, and then it can get matched
within other videos, using some distance measure. These algorithms usually use MPEG7
descriptors for the signature applied to a pre-established video fragment and feature set.

4. VAP’s approach for video processing
VAP is a software framework developed with the goal of making the development of video
processing software easy. With this purpose, it has to make some trade-offs between execution
speed, memory usage efficiency and ease of programming.
It is not a library; developers who want to use VAP have to learn its architecture and how to work
upon it. This approach permits VAP to automate many common tasks of video processing, having
the drawback that its learning curve may be somehow steper.
As a starting point, VAP provides a Video Reader, which allows the access to coded video files and
connects it with different toolkits for image processing, mathematical and statistical operations etc.
To accomplish the objective of efficiently handling the large amounts of video data keeping
computation and memory requirements under control we decided the implementation of
Descriptors. Descriptors are lightweight data structures to hold analysis results of a given video
unit. For example, we can have Frame Descriptors, Shot Descriptors, Region Descriptors, etc.
As it was discussed above, in several video processing and analysis applications we need to access
its descriptors several times. For instance, when computing the interframe histogram difference,
dh(frame_a, frame_b), we may need the histogram of a given frame several times. Furthermore, if
we are running several algorithms at the same time, it may happen that more than one algorithm
uses the same description. This could lead to the same descriptor being computed and stored several
times. To solve this problem, we included a descriptor cache to hold the last computed descriptors.
Then, once a descriptor’s cache is created, analysis results will be reused, saving computation time.
To provide tools for making MPEG7 and other kinds of persistent descriptions, VAP integrated
XML generation and parsing tools in a subset we called MP7. This subset provides the tools for

867

making a duality between memory-stored descriptors and XML descriptors that can be saved and
restored.
VAP is conceptually divided into three subsystems; two of which have been explained above:
Descriptors subsystem, MP7 subsystem and Analyzers subsystem. The last one provides the tools
for automating video analysis with specific objectives, like shot detection and signature detection.

5. Architecture overview
VAP is completely developed using C++ language. Since it was conceived as an open-source
system, we used some pieces of open source libraries. The decoding and coding of video data is
performed with the library ffmpeg [3] using a customized version of the C++ wrapper fobs [4].
Ffmpeg is able to decode a wide range of codecs and for this reason was used. In some cases we use
the fobs wrapper while in others, such as for color conversion and reading in YUV format we use
ffmpeg functions directly. All the video input/output methods are encapsulated in two classes,
VideoReader and VideoWriter.
In order to give VAP good image processing capabilities we decided to provide a interconnection
module with ITK (Insight Toolkit of Kitware) [1,2]. ITK is a well known and extend image
processing library, mainly focused in medical images treatment, that provides a comprehensive
tools set for image analysis.
VAP has four decoupable software units, which are represented in figure 2: vapCore which contains
the central elements of the system. vapMP7 contains MPEG7-like functionalities and descriptors;
vapITK provides an interface to integrate ITK image processing functionalities; and finally
vapAlgorithms implements algorithms for video processing based on previous units.

vapCore
Figure 3 overviews vapCore’s design. vapCore provides access to video data through ffmpeg
library. The class VideoReader encapsulates this logic allowing easy access to video data. This class
uses the singleton design pattern; therefore there is only one input video in the system which is
easily accessed. Through the VideoReader it is possible to access the raw data corresponding to
frames, identifying each one by its FrameNumber, an integer value.

Figure 2. VAP software units and interactions

868

In Source 1 we show how to use the video reader to obtain a pointer to the decoded video frame.
First, in line 1, we declare the input file. In line 2 we declare the Frame Number. In line 3 we get
the VideoReader instance and assign it to myVideoReader pointer. Finally, we use GetRGB() to
obtain the raw RGB values of the first frame (f=0) in the video file. As we can see accessing the
video data is very easy.

 1- vap::VideoReader::SetVideoFileName("filename.a vi");
 2- vap::FrameNumber f = 0;
 3- vap::VideoReader* myVideoReader = VideoReader: :GetInstance();
 4- unsigned char* data = myVideoReader->GetRGB(f) ;

Source 1: VideoReader example.

The main concepts introduced by vapCore correspond to the Descriptors and their corresponding
caches. Descriptors run algorithms over a part of the video to get the desired information and store
it. The procedure for analyzing a video consists on creating one FrameDescriptor for each frame, or
a ShotDescriptor for continuous sequences of frames. For that end, two interfaces are defined. Each
descriptor has to inherit from its corresponding interface class, FrameDescriptor or ShotDescriptor
(see Figure 3). Figure 4 shows an example on how different FameDescriptors hold information
obtained from video frames. It is important to notice that each frame has a corresponding
FrameDescriptor object for each type of FrameDescriptor (in the example,
FrameDescriptorHistogram and FrameDescriptorMeanColor). The example also shows how
different ShotDescriptors can refer to different framesets depending on the shot detection algorithm
that was used.

Figure 4: Use of FrameDescriptors.

75 7674 7977 78# Frame

FrameDescriptor
Histogram

FrameDescriptor
MeanColor

ShotDescriptor
MeanHistogram

1

ShotDescriptor
MeanHistogram

2

C0F331 C8333D D1323E 91313E A0453F A55140

Figure 4. Descriptors usage.

Figure 3: Main elements of vapCore.

869

The FrameDescriptor interface only defines one method to be implemented, ComputeFrame, which
receives a FrameNumber. When it is called, implementations can access raw video data or other
descriptors. This information can later be accessed by suitable “getter” methods implemented. An
example is the ItkImageFrameDescriptor (see Figure 3) together with the FrameReader. For each
frame that it is computed, FrameReader accesses the raw video data through the VideoReader to
generate an itkImage (an image stored in the format handled by the ITK library). FrameReader
inherits from ItkImageFrameDescriptor (and therefore also from FrameDescriptor). Then,
FrameReader is a special case of FrameDescritor. Other descriptors may run algorithms taking
advantage of the new functionalities available, calling its GetImage() method to obtain a pointer to a
ITK image.
In Source 2 we present an example of the use of FrameReader to connect VideoReader with ITK. In
line 3 we declare the ITK image type. Once we defined the ITK image type we define, based on it,
the FrameReader type in line 4. When defining the FrameReader type we also declare the type of
output, in this case RGB. Then, in line 5, we define and create a cache of frame FrameReaders
(remember that FrameReader is a Descriptor). For details on caches see below. Finally, in line 6,
we read the first ten frames from the video file and store the result in itkImage. Once we have the
itkImage we can proceed to use all ITK functionalities.

 1- vap::VideoReader::SetVideoFileName("filename.a vi");
 2- vap::FrameNumber f;

 // Define ITK image type. In this case a 2-dimensio nal RGB image.
 // Each color channel is stored as a unsigned char .
 3- typedef itk::Image<itk::RGBPixel<unsigned char >,2> TColorImage;

 // Define FrameReader type. It will use a TColorIm age as defined above.
 // The output of the VideoReader will be stored in RGB format.
 4- typedef vap::FrameReader<TColorImage,RGB> TCol orFrame;

 // Pointer to a FrameDescriptorCache of FrameReade r’s.
 5- FrameDescriptorCache< TColorFrame >* videoFram e;
 _videoFrame = FrameDescriptorCache< TColorFram e >::Instance();

 for(f=0;f<10;f++) {
 6- TColorImage::Pointer itkImage = videoFrame->G etData(f)->Getimage();
 ...

}

Source 2: Example on how to use FrameReader to obtain an ITK image.

ShotDescriptors apply to different kinds of frames sequences. To be strict, they do not necessarily
have to describe shots, as the only requirement the system imposes is to hold information relative to
a set of frames identified by two particular ones, usually the first and the last one. How does the
implementation know which frames to process? For this purpose, a ComputeFrame method is
defined in the interface, just like it happens in FrameDescriptor. In addition to this, ShotDescriptors
have to implement a ComputeShot method, which receives as parameters the two aforementioned
FrameNumbers. With this information and the information already obtained during consecutive
calls to ComputeFrame method, ComputeShot can obtain a summary description of the analyzed
group of frames. We are going to present an example of this together with the description of the
MPEG7 subsystem.
To reduce computational costs, descriptors can be used as flyweight objects, having as intrinsic data
the ones obtained after running algorithms and as extrinsic data the FrameNumber and, in

870

consequence, other associated information. Then, descriptor objects can be reused, for instance
when the information obtained from a past frame is no longer needed. As it will be detailed later,
this concept is widely used by caches. Finally, as descriptors define a family of interchangeable
algorithms, they follow the strategy design pattern.
To optimize the implementation of several algorithms over the same frames a Cache was created.
The class FrameDescriptorCache allows to temporally save last computed FrameDescriptors. In
this way it is possible to have universal access to already extracted information that can be re-used
by other algorithms. Figure 4 shows this need clearly. For FrameDescriptorMeanColor it may be
cheaper to obtain its value looking at the histograms, which are also used by
ShotDescriptorMeanHistogram.
FrameDescriptorCache was designed with the following requirements: a) have different caches for
different FrameDescriptors; b) keep temporally the last descriptors calculated (most algorithms
analyze frames within small windows of frames); c) be able to create and access descriptors in
random order; d) be as lightweight as possible. This led us to two main design decisions: 1) Make a
templetized singleton class FrameDescriptorCache; it means there can be only one instance of the
cache for each type of FrameDescriptor and 2) keep FrameDescriptors in a fixed-length circular
array.
Now we explain how FrameDescriptorCaches works. Each one is templetized on the specific
FrameDescriptor it will cache, having a singleton access method Instance(). For example, a pointer
to a cache of FrameDescriptorHistogram can be obtained from anywhere in the system calling
FrameDescriptor<FrameDescriptorHistogram>::Instance(). If the cache was already used, its
pointer is returned, otherwise it is created. The array has two fields: FrameNumber and Descriptor.
The latter one is a pointer to the specific class of descriptors to be cached. Initially, all
FrameNumber fields have an UNDEFINED value. When access to the descriptors is requested
through the method GetFrameDescriptor(f), the access position Module(f, CACHE_LENGTH) is
calculated. If the corresponding FrameNumber does not match f, then it is updated as well as the
pointed descriptor.
Figure 5 shows an example of the usage of FrameDescriptorCache<SpecificFrameDescriptor>
with CACHE_LENGTH=16. In this case, the access to descriptors of frames 0, 1, 15, 18 and 19 has
been requested. Maybe before requesting the access to frame 18, frame 2 was requested, but in this
case its value was overwritten. If access to frame 2 is requested again later, it will have to be
calculated again. This is not a drawback if we work within windows of frames smaller than
CACHE_LENGTH. In addition to this, results which are known to be needed later can be retained
easily.

Considering the nature of video processing algorithms, this design brings some advantages: 1)
seeking the access position in the cache is extremely fast; 2) specific descriptors can be created, one

Figure 5: Example on FrameDescriptorCache<SpecificFrameDescriptor>

871

for each of the array positions, all at once, and then they can be reused fast, without having to create
structures again.
Source 3 shows how use caches to implement a shot detection based on histogram differences. In
line 1 we declare and get the instance of the cache of FrameDescriptorHistogram. The in line 2 we
request the histograms of frames f-1 and f and compare them using the method Distance() of
FrameDescriptorHistogram class. With this example we can show the simplicity of the resulting
code. Once we declared the use of the video filename.avi and the FrameDescriptors needed, the rest
of the code is very simple and easy to read. We don’t need to worry about low level details at this
stage. So, in each step of the development we concentrate on one specific problem. The framework
provides the access to the video data and some descriptors. The used can easily then create its own
descriptors and use them in a similar way as described in Source 3.

 vap::VideoReader::SetVideoFileName("filename.avi ");
 vap::FrameNumber f;

// Get the needed cache. As it was not previously r equired, the cache array
// will be created with empty instances of FrameDes criptorHistogram,
1- FrameDescriptorCache<FrameDescriptorHistogram>* fdch =

FrameDescriptorCache< FrameDescriptorHistogram >::I nstance();

 for (f=1; f<maxFrames; f++)
 {
2- if(fdch->GetFrameDescriptor(f-1)->GetItkHistog ram().
 Distance(fdch->GetFrameDescriptor(f)->GetItkHi stogram()) > threshold)
 {
 cout << “Shot has changed in frame “ << f << endl ;
 }
 }

Source 3: Descriptors usage with caches

Figure 6 shows the whole descriptors subsystem, which provides as core elements the caches and
defines pure interfaces for FrameDescriptor and ShotDescriptor. In a second level, where abstract
classes which implement some functionalities, are defined, ItkImageFrameDescriptor was
programmed for descriptors which store results as ITK images. The lower level represents concrete
descriptors instantiated in the vapAlgorithms unit. Finally, vapCore includes some specific-purpose
base classes to detect shots (ShotDetector), segment objects (ObjectSegmentator) and look for
commercials and other fashions of signatures (SignatureFinder).

vapItk
VAP gives the possibility to use all the tools provided by ITK to process image data. For that end a
particular FrameDescriptor was implemented (ItkImageFrameDescriptor) which converts raw data
into an ITK image that can be accessed through the cache like any other descriptor. In the Appendix
we present an example that uses vapItk to convert a color image to greyscale and writes it to disk.

vapAlgorithms
This is the upper layer of the system and can use any of the functionalities previously mentioned to
implement video analysis algorithms in an easy way.

872

vapMP7
This unit complements vapCore implementing the logic of generation of XML descriptors extracted
from the video, using the Xerces library [5]. We called them MP7 descriptors, as they are inspired
in the MPEG-7 standard. Nevertheless, the platform has all the elements to be adapted to other type
of XML formats. As it was previously introduced, the goal of the MP7 subsystem is to make
possible the persistence of already computed descriptors. For instance, if we get 12-bins histogram
descriptors for frames and shots, the result would be as shown in Source 4.
<MP7>
 <ScalarHistogram FrameNumber="0">
 <Component Channel="R">126 8 13 19 35 34 99 464 9 52 1503 2172 4588
 </Component>
 <Component Channel ="G">5 18 21 42 97 163 263 294 283 158 102 175
 </Component>
 <Component Channel ="B">30 94 99 173 232 138 396 351 371 345 414 9
 </Component>
 </ScalarHistogram>
…
 <ShotMeanScalarHistogram FramesConsidered="15" Ini tial="0" NumberOfFrames="13">
 <Component Channel ="R">107 11 10 11 22 29 24 20 15 30 68 145
 </Component>
 <Component Channel ="G">4 14 20 35 52 86 137 168 285 348 365 482 </Component>
 <Component Channel ="B">49 96 91 561 826 991 702 493 332 333 49 75
 </Component>
 </ShotMeanScalarHistogram>
</MP7>

Source 4: Sample MP7

Figure 6: Descriptors subsystem design

873

The system defines a duality between FrameDescriptor and MP7FrameDescriptor, and between
ShotDescriptor and MP7ShotDescriptor. This means that if a MP7 descriptor is properly
programmed, it will persist correspondent information of the descriptor. Conversely, reading the
MP7 descriptor, the pure descriptor can be reconstructed which is useful for signatures finding, as it
will be described later.
XML descriptors can be organized in different structures, often one contained inside another,
forming a tree structure. The class MP7Tree is defined to store and navigate this structure of MP7
descriptors, and it makes possible its persistence to disk.
In construction time, MP7Tree uses an auxiliary class MP7TreeCreator, or a child of it, to set up
the MP7 descriptors to include: MP7FrameDescriptors as well as MP7ShotDescriptors can be
subscribed. Then it can be indicated the MP7 of which frames and shots to be computed and stored
in the tree.
In the example shown in Source 4, we use a ShotDetector to determine the segmentation of the
video into shots which in turn will be described in MP7. MP7TreeCreator simplifies the MP7 tree
construction, also encapsulating its organizational aspects such as the elements order and other
formalities to be accomplished. In line 1 we declare a MP7TreeCreator. In lines 2 and 3 we
construct the frame and shot descriptors. Lines 4 and 5 attach the descriptors to the MP7Tree. Then,
for each frame we call the method ComputeFrame() of the MP7Tree. When a shot change is
encountered, the partial information that has been collected so far it is processed with
ComputeShot(). Once again, the framework developed allows developing video analysis methods
easily.
 vap::VideoReader::SetVideoFileName("filename.av i");
 vap::FrameNumber f;

 // Shot detector to be used
 vap::ShotDetector shotdetector;

 // MP7 tree creator
1- vap::MP7TreeCreator tc;

 // MP7 descriptors to be computed
2- MP7ShotDescriptor* mp7sd = new MP7ShotDescriptor ();
3- MP7FrameDescriptor mp7fd = new MP7FrameDescripto r();

 // Set up the descriptors to be used in the new MP7 tree
4- tc.Include(mp7sd);
5- tc.Include(mp7fd);

 // Process the video detecting shots and buildin g the MP7 tree
 for(f=0; f<lastFrame; f++)
 {
6- tc.ComputeFrame(f);
 shotdetector.AnalyzeFrame(f);
 // If there is a shot change in this frame, close the shot and store
 // its description calling ComputeShot().
 if(shotdetector.ShotChange()){
7- tc.ComputeShot(f);
 }
 }
 tc.CloseTree();
 cout << tc.GetTree()->GetString();
 delete tc.GetTree();

Source 5: MP7Tree creation

874

MP7 trees can be restored later. This is useful for contents search and other techniques of video
comparison. Commercial detection, for instance, is a particular case of it, in which describing
aspects of a piece of video are searched into new videos. With this purpose, we developed a
SignatureFinder class, which defines the main aspects of this kind of searches: First, a piece of
video y described with MP7, saving it (we call this description the signature of the video). Then, the
MP7 tree can be restored and corresponding descriptors reconstructed. Finally, the same classes of
descriptors can be obtained from a new video and try to match them with the signature ones.
Signature finding process is not straightforward, as some relaxation has to be made in the
comparison algorithms.

6. Conclusions and future works
In this article we presented the development of a software framework for video processing and
analysis. The system is very easy to use and it is efficient in memory and CPU use1. It also
integrates the capabilities of ITK making it very attractive. So far we implemented some testing
applications which showed the benefits of the system. It was successfully tested in MS Windows
with Visual C++ 6.0 and in GNU Linux with GCC 3.3.3-7. We believe the system can be useful to
develop video analysis algorithms prototypes, proving good computational performances and small
memory requirements. For future work we are going to implement more testing applications to
obtain a stable version of the software that will be released as open source. Also, video streaming is
a line for future developments.

Appendix Example - Working with pixels
Here we present a small example using the proposed framework to read a color frame from a video
sequence, convert it to gray values (a way to process each pixel or a region of the frame) and save it
to disk. We use the ITK library to access and handle the frames. First, the image format can be
define by selecting the types of pixels to be used, in this case a three-component pixel
(itk::RGBPixel) and a one-component pixel (gray pixel). Also pointers to these images are
defined.
 typedef itk::Image<itk::RGBPixel<unsigned char>,2 > TColorImage;
 typedef itk::Image<unsigned char,2> TGrayImage;
 TColorImage::Pointer _frameImage;
 TGrayImage::Pointer _grayImage;

In the same way as the example presented in Source 2, we use FrameReader to obtain a pointer to
the ITK image _frameImage .

 typedef vap::FrameReader<TColorImage,RGB> TColorF rame;
 vap::VideoReader::SetVideoFileName ("filename.avi ");
 vap::FrameNumber f = 0;
 FrameDescriptorCache< TColorFrame >* _videoFrame;
 _videoFrame = FrameDescriptorCache< TColorFrame > ::Instance();
 _frameImage = _videoFrame->GetData(f)->GetImage() ;

In order to work with the pixel values of the image is necessary to access to the pixel level of the
image, we can use the iterators provided by ITK. Each iterator is associated with an image and
defined in a particular region, in this case the whole image. The image can be processed in an
intermediate level using the regions defined with the iterators (For details see [1]).

1 We don’t present results on CPU usage in this paper due to lack of space. However, it is easy to verify that the
overhead of the systems is very low.

875

 typedef itk::ImageRegionIterator< TColorImage > T ColorImageIterator;
 typedef itk::ImageRegionIterator< TGrayImage > TG rayImageIterator;
 TColorImageIterator iterColor(_frameImage, _frame Image->GetRequestedRegion());
 TGrayImageIterator iterGray (_grayImage, _grayIma ge->GetRequestedRegion());

Using both iterators each pixel in the region of interest is accessed sequentially in the color image,
processed and set in the gray image.

 TColorImage::PixelType colorPixel;
 TGrayImage::PixelType grayPixel;
 for (iterColor.GoToBegin(), iterGray.GoToBegin(); !iterColor.IsAtEnd();
 ++iterColor, ++iterGray) {
 colorPixel = iterColor.Get(); // Get the pixel RGB values...
 grayPixel = (colorPixel[0] +
 colorPixel[1] +
 colorPixel[2])/3; // ...compute the gray level...
 iterGray.Set(grayPixel); // ...and set the pixel.
 }

Finally, to save the gray image we use the writer filter provided with ITK

 typedef itk::ImageFileWriter< TGrayImage >::Point er grayImageWriter;
 grayImageWriter->SetFileName("grayImage.png");
 grayImageWriter->SetInput(_grayImage);
 grayImageWriter->Update();

7. References
[1] Insight Toolkit. www.itk.org
[2] Ibanez, Schroeder, Ng, Cates. The ITK Software Guide. Kitware, Inc. ISBN 1-930934-15-7.
[3] www.ffmpeg.org
[4] fobs.sourceforge.net/
[5] xml.apache.org/xerces-c/
[6] B. S. Manjunath (Editor), Philippe Salembier (Editor), Thomas Sikora (Editor), Phillipe
Salembier (Editor). Introduction to MPEG 7: Multimedia Content Description Language. John
Wiley & Sons, 2002. ISBN: 0471486787.
[7] A. Hanjalic: Shot-Boundary Detection: Unraveled and Resolved?, IEEE Transactions on
Circuits and Systems for Video Technology, February 2002

876

