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1. Abstract 
In this article we present the Video Analysis Platform (VAP) which is an open source software 
framework for video analysis, processing and description. The main goals of VAP are: to provide a 
multiplatform system which allows the easy implementation of video algorithms, provide structures 
and algorithms for the segmentation of video data in its different levels of abstraction: shots, 
frames, objects, regions, etc, permit the generation and comparison of MPEG7-like descriptors, and 
develop testing applications for shot detection, shot matching, object segmentation and tracking, 
etc.  

2. Introduction 
In recent years the amount multimedia data (text, sound, image, and video) has grown remarkably. 
In this context, several problems arise regarding analysis, compression, transmission, manipulation, 
search and organization of such media. The main goal of VAP project is to study and develop 
useful tools for the analysis, compression, transmission and search of video sequences. With this 
goal in mind, we worked on the design and development of data structures suitable for describing 
video sequences and their contents.  
Due to its enormous amount of data, video analysis imposes important requirements in memory and 
computational resources; therefore it is mandatory to be very conservative in their use. This 
restriction applies also to the overhead that is introduced in the processing due to repetitive data 
structure construction and software procedures invocation.  
Another important issue when working with video data is the fact that video is usually compressed. 
That means that we need to decode it every time we want to process it. Unfortunately, there are a lot 
of different codecs. Although the process of decoding may seem a simple task, it is a time-
consuming one when you do not have the proper tools at hand.  One of the aims of VAP was to 
make the process of video decoding transparent to the end user and to the algorithms programmed. 
In this way, if the system supports the video codec, you just need to connect to the proper Video 
Reader to access the video information. 
Finally, inspired in the MPEG7 standard [6], VAP includes a description module that handles XML 
to provide content description capabilities. 
In summary the main goals for VAP design were to: 

� Develop a multiplatform framework for easy and efficient implementation of video 
algorithms.  

� Allow the segmentation of video data in its different levels of abstraction: shots, frames, 
objects, regions, etc.  

� Generate and compare MPEG7-like descriptors.  
� Develop testing applications for shot detection, shot matching, object segmentation and 

tracking, etc. 
In the next section some concepts and constrains of video processing are introduced. In section 4, 
the approach to video processing applied to the development of VAP is presented. Section 5 
presents the Architecture overview of VAP; this section contains many examples to show the use of 
VAP. Finally in section 6 we present the conclusions and the lines of future work. 
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3. Video processing 
Video is processed to extract information from it. For instance, shot detection (the partition of a 
video into continuous scenes) may be done by analyzing the similarity of subsequent frames pairs. 
This is an example of event detection, which could be accompanied with some outputs, like 
sounding a beep or annotating the frame number in a file. In other cases, like in noise reduction, the 
objective is to obtain a modified version of the input video. A general video processing method 
schema is shown in Figure 1. The process can be categorized in five stages: Acquisition, Extraction, 
Analysis, Representation and finally Recognition. 

 

 
 

First of all, video has to be acquired by a camera or artificially created. Regardless the technologies 
used for acquisition or generation, audio and image get digital. In the next step coding algorithms 
are applied to compress the data; most times modifying once more the original contents. Coded 
information can then be stored, for further use or for immediate transmission.  
The opposite process consists in decoding the video to extract frames and audio information. Once 
decoded, the frames are the main working unit for video analysis. 
The analysis process consists in executing different algorithms to the video image and audio 
information.  
Some algorithms results may be used by other ones forming an algorithm pipeline. Each algorithm 
could represent different abstraction level needed for event detection and video description. In the 
case of shot detection algorithms, they may calculate individual frames histograms and then use 
them to obtain accumulative histograms useful for segment description.  Both results may be used 
to guess whether shot has changed or not having two different views of the scene, one of them 
instantaneous and the other one accumulative. 
It is important to distinguish between progressively accessing the video from a file or accessing it 
from a streaming source. First of all, not all the algorithms access video information sequentially. 
For example, some shot detection algorithms look ahead in video windows consisting of sets of 
frames, for example to detect fade-in and fade-out effects [7]. Within a file, algorithms can go all 
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Figure 1: Video processing 
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around the video looking for the requested information, but the only way for going back and forth 
when receiving a streaming is having a buffer and waiting until the requested frame comes into it. 
Therefore, working with small windows of frames is mandatory for effective live analysis of 
streamed video. In addition, algorithms have to be computationally lightweight enough in order to 
be run without having to leave frames out.  
The results of every algorithm can be stored in temporal memory structures, or can be persisted for 
further uses. This process is called representation. 
The MPEG7 standard [6] is conceived for long-term persistence of analysis results and can be 
applied to all kinds of multimedia material. It establishes extensible rules for XML-based 
representations of metadata and defines a binary format to be attached to multimedia elements. 
Unfortunately, MPEG7 is not widely used, and there is not much literature about practical 
implementations and applications. In addition to textual descriptors, other types of persistence may 
be needed, like modified video, for instance highlighting tracked objects or applying filters, or 
selected frames and sound sequences.  
In the recognition process, stored or streamed video is taken as input and an algorithm tries to detect 
sets of properties in the sequences which are interpreted as events. This is the case of many 
challenges in video analysis, for instance detecting the presence of an actor in a film, a goal in a 
soccer game or an intruder in a security camera transmission.  
Persistent information extracted from analysis processes can be used for recognition algorithms in 
which features described from an initial video have to be detected in other videos. Particular cases 
of this are signature finding algorithms, like the commercials detection ones. In these cases, an 
information set – the signature – is extracted from a video fragment, and then it can get matched 
within other videos, using some distance measure. These algorithms usually use MPEG7 
descriptors for the signature applied to a pre-established video fragment and feature set. 

4. VAP’s approach for video processing 
VAP is a software framework developed with the goal of making the development of video 
processing software easy. With this purpose, it has to make some trade-offs between execution 
speed, memory usage efficiency and ease of programming. 
It is not a library; developers who want to use VAP have to learn its architecture and how to work 
upon it. This approach permits VAP to automate many common tasks of video processing, having 
the drawback that its learning curve may be somehow steper. 
As a starting point, VAP provides a Video Reader, which allows the access to coded video files and 
connects it with different toolkits for image processing, mathematical and statistical operations etc.  
To accomplish the objective of efficiently handling the large amounts of video data keeping 
computation and memory requirements under control we decided the implementation of 
Descriptors. Descriptors are lightweight data structures to hold analysis results of a given video 
unit. For example, we can have Frame Descriptors, Shot Descriptors, Region Descriptors, etc.  
As it was discussed above, in several video processing and analysis applications we need to access 
its descriptors several times. For instance, when computing the interframe histogram difference, 
dh(frame_a, frame_b), we may need the histogram of a given frame several times. Furthermore, if 
we are running several algorithms at the same time, it may happen that more than one algorithm 
uses the same description. This could lead to the same descriptor being computed and stored several 
times. To solve this problem, we included a descriptor cache to hold the last computed descriptors. 
Then, once a descriptor’s cache is created, analysis results will be reused, saving computation time.  
To provide tools for making MPEG7 and other kinds of persistent descriptions, VAP integrated 
XML generation and parsing tools in a subset we called MP7. This subset provides the tools for 

867



making a duality between memory-stored descriptors and XML descriptors that can be saved and 
restored. 
VAP is conceptually divided into three subsystems; two of which have been explained above: 
Descriptors subsystem, MP7 subsystem and Analyzers subsystem. The last one provides the tools 
for automating video analysis with specific objectives, like shot detection and signature detection. 

5. Architecture overview 
VAP is completely developed using C++ language. Since it was conceived as an open-source 
system, we used some pieces of open source libraries. The decoding and coding of video data is 
performed with the library ffmpeg [3] using a customized version of the C++ wrapper fobs [4]. 
Ffmpeg is able to decode a wide range of codecs and for this reason was used. In some cases we use 
the fobs wrapper while in others, such as for color conversion and reading in YUV format we use 
ffmpeg functions directly. All the video input/output methods are encapsulated in two classes, 
VideoReader and VideoWriter.  
In order to give VAP good image processing capabilities we decided to provide a interconnection 
module with ITK (Insight Toolkit of Kitware) [1,2]. ITK is a well known and extend image 
processing library, mainly focused in medical images treatment, that provides a comprehensive 
tools set for image analysis. 
VAP has four decoupable software units, which are represented in figure 2: vapCore which contains 
the central elements of the system. vapMP7 contains MPEG7-like functionalities and descriptors; 
vapITK provides an interface to integrate ITK image processing functionalities; and finally 
vapAlgorithms implements algorithms for video processing based on previous units.  

 
 

vapCore  
Figure 3 overviews vapCore’s design. vapCore provides access to video data through ffmpeg 
library. The class VideoReader encapsulates this logic allowing easy access to video data. This class 
uses the singleton design pattern; therefore there is only one input video in the system which is 
easily accessed. Through the VideoReader it is possible to access the raw data corresponding to 
frames, identifying each one by its FrameNumber, an integer value.  
 
 
 
 

 

Figure 2. VAP software units and interactions 
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In Source 1 we show how to use the video reader to obtain a pointer to the decoded video frame. 
First, in line 1, we declare the input file. In line 2 we declare the Frame Number. In line 3 we get 
the VideoReader instance and assign it to myVideoReader pointer. Finally, we use GetRGB() to 
obtain the raw RGB values of the first frame (f=0) in the video file. As we can see accessing the 
video data is very easy. 
 
  1- vap::VideoReader::SetVideoFileName("filename.a vi"); 
  2- vap::FrameNumber f = 0; 
  3- vap::VideoReader* myVideoReader = VideoReader: :GetInstance(); 
  4- unsigned char* data = myVideoReader->GetRGB(f) ;  

Source 1: VideoReader example. 

 
The main concepts introduced by vapCore correspond to the Descriptors and their corresponding 
caches. Descriptors run algorithms over a part of the video to get the desired information and store 
it. The procedure for analyzing a video consists on creating one FrameDescriptor for each frame, or 
a ShotDescriptor for continuous sequences of frames. For that end, two interfaces are defined. Each 
descriptor has to inherit from its corresponding interface class, FrameDescriptor or ShotDescriptor 
(see Figure 3). Figure 4 shows an example on how different FameDescriptors hold information 
obtained from video frames. It is important to notice that each frame has a corresponding 
FrameDescriptor object for each type of FrameDescriptor (in the example, 
FrameDescriptorHistogram and FrameDescriptorMeanColor). The example also shows how 
different ShotDescriptors can refer to different framesets depending on the shot detection algorithm 
that was used. 

 
Figure 4: Use of FrameDescriptors. 

75 7674 7977 78# Frame

FrameDescriptor
Histogram

FrameDescriptor
MeanColor

ShotDescriptor
MeanHistogram

1

ShotDescriptor
MeanHistogram

2

C0F331 C8333D D1323E 91313E A0453F A55140

 
Figure 4. Descriptors usage. 

 
Figure 3: Main elements of vapCore. 
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The FrameDescriptor interface only defines one method to be implemented, ComputeFrame, which 
receives a FrameNumber. When it is called, implementations can access raw video data or other 
descriptors. This information can later be accessed by suitable “getter” methods implemented. An 
example is the ItkImageFrameDescriptor (see Figure 3) together with the FrameReader. For each 
frame that it is computed, FrameReader accesses the raw video data through the VideoReader to 
generate an itkImage (an image stored in the format handled by the ITK library). FrameReader 
inherits from ItkImageFrameDescriptor (and therefore also from FrameDescriptor).  Then, 
FrameReader is a special case of FrameDescritor. Other descriptors may run algorithms taking 
advantage of the new functionalities available, calling its GetImage() method to obtain a pointer to a 
ITK image.  
In Source 2 we present an example of the use of FrameReader to connect VideoReader with ITK. In 
line 3 we declare the ITK image type. Once we defined the ITK image type we define, based on it, 
the FrameReader type in line 4. When defining the FrameReader type we also declare the type of 
output, in this case RGB. Then, in line 5, we define and create a cache of frame FrameReaders 
(remember that FrameReader is a Descriptor). For details on caches see below. Finally, in line 6, 
we read the first ten frames from the video file and store the result in itkImage. Once we have the 
itkImage we can proceed to use all ITK functionalities.  
 
  1- vap::VideoReader::SetVideoFileName("filename.a vi"); 
  2- vap::FrameNumber f; 
 
 // Define ITK image type. In this case a 2-dimensio nal RGB image. 
 // Each color channel is stored as a unsigned char . 
  3- typedef itk::Image<itk::RGBPixel<unsigned char >,2> TColorImage; 
 
 // Define FrameReader type. It will use a TColorIm age as defined above. 
 // The output of the VideoReader will be stored in  RGB format. 
  4- typedef vap::FrameReader<TColorImage,RGB> TCol orFrame; 
  
 // Pointer to a FrameDescriptorCache of FrameReade r’s. 
  5- FrameDescriptorCache< TColorFrame >* videoFram e; 
     _videoFrame = FrameDescriptorCache< TColorFram e >::Instance(); 
 
 for(f=0;f<10;f++) { 
  6-  TColorImage::Pointer itkImage = videoFrame->G etData(f)->Getimage(); 
  ... 

} 

Source 2: Example on how to use FrameReader to obtain an ITK image. 

 
ShotDescriptors apply to different kinds of frames sequences. To be strict, they do not necessarily 
have to describe shots, as the only requirement the system imposes is to hold information relative to 
a set of frames identified by two particular ones, usually the first and the last one. How does the 
implementation know which frames to process? For this purpose, a ComputeFrame method is 
defined in the interface, just like it happens in FrameDescriptor. In addition to this, ShotDescriptors 
have to implement a ComputeShot method, which receives as parameters the two aforementioned 
FrameNumbers. With this information and the information already obtained during consecutive 
calls to ComputeFrame method, ComputeShot can obtain a summary description of the analyzed 
group of frames. We are going to present an example of this together with the description of the 
MPEG7 subsystem. 
To reduce computational costs, descriptors can be used as flyweight objects, having as intrinsic data 
the ones obtained after running algorithms and as extrinsic data the FrameNumber and, in 
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consequence, other associated information. Then, descriptor objects can be reused, for instance 
when the information obtained from a past frame is no longer needed. As it will be detailed later, 
this concept is widely used by caches. Finally, as descriptors define a family of interchangeable 
algorithms, they follow the strategy design pattern. 
To optimize the implementation of several algorithms over the same frames a Cache was created. 
The class FrameDescriptorCache allows to temporally save last computed FrameDescriptors. In 
this way it is possible to have universal access to already extracted information that can be re-used 
by other algorithms. Figure 4 shows this need clearly. For FrameDescriptorMeanColor it may be 
cheaper to obtain its value looking at the histograms, which are also used by 
ShotDescriptorMeanHistogram.  
FrameDescriptorCache was designed with the following requirements: a) have different caches for 
different FrameDescriptors; b) keep temporally the last descriptors calculated (most algorithms 
analyze frames within small windows of frames); c) be able to create and access descriptors in 
random order; d) be as lightweight as possible. This led us to two main design decisions: 1) Make a 
templetized singleton class FrameDescriptorCache; it means there can be only one instance of the 
cache for each type of FrameDescriptor and 2) keep FrameDescriptors in a fixed-length circular 
array.  
Now we explain how FrameDescriptorCaches works. Each one is templetized on the specific 
FrameDescriptor it will cache, having a singleton access method Instance(). For example, a pointer 
to a cache of FrameDescriptorHistogram can be obtained from anywhere in the system calling 
FrameDescriptor<FrameDescriptorHistogram>::Instance(). If the cache was already used, its 
pointer is returned, otherwise it is created. The array has two fields: FrameNumber and Descriptor. 
The latter one is a pointer to the specific class of descriptors to be cached. Initially, all 
FrameNumber fields have an UNDEFINED value. When access to the descriptors is requested 
through the method GetFrameDescriptor(f), the access position Module(f, CACHE_LENGTH) is 
calculated. If the corresponding FrameNumber does not match f, then it is updated as well as the 
pointed descriptor. 
Figure 5 shows an example of the usage of FrameDescriptorCache<SpecificFrameDescriptor> 
with CACHE_LENGTH=16. In this case, the access to descriptors of frames 0, 1, 15, 18 and 19 has 
been requested. Maybe before requesting the access to frame 18, frame 2 was requested, but in this 
case its value was overwritten. If access to frame 2 is requested again later, it will have to be 
calculated again. This is not a drawback if we work within windows of frames smaller than 
CACHE_LENGTH. In addition to this, results which are known to be needed later can be retained 
easily.  

 
 

Considering the nature of video processing algorithms, this design brings some advantages: 1) 
seeking the access position in the cache is extremely fast; 2) specific descriptors can be created, one 

 

Figure 5: Example on FrameDescriptorCache<SpecificFrameDescriptor> 
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for each of the array positions, all at once, and then they can be reused fast, without having to create 
structures again. 
Source 3 shows how use caches to implement a shot detection based on histogram differences. In 
line 1 we declare and get the instance of the cache of FrameDescriptorHistogram. The in line 2 we 
request the histograms of frames f-1 and f and compare them using the method Distance() of 
FrameDescriptorHistogram class. With this example we can show the simplicity of the resulting 
code. Once we declared the use of the video filename.avi and the FrameDescriptors needed, the rest 
of the code is very simple and easy to read. We don’t need to worry about low level details at this 
stage. So, in each step of the development we concentrate on one specific problem. The framework 
provides the access to the video data and some descriptors. The used can easily then create its own 
descriptors and use them in a similar way as described in  Source 3.  

 
   vap::VideoReader::SetVideoFileName("filename.avi ");  
   vap::FrameNumber f; 
 
// Get the needed cache. As it was not previously r equired, the cache array 
// will be created with empty instances of FrameDes criptorHistogram, 
1- FrameDescriptorCache<FrameDescriptorHistogram>* fdch =  

FrameDescriptorCache< FrameDescriptorHistogram >::I nstance(); 
 
   for (f=1; f<maxFrames; f++)  
 { 
2-   if(fdch->GetFrameDescriptor(f-1)->GetItkHistog ram(). 
     Distance(fdch->GetFrameDescriptor(f)->GetItkHi stogram()) > threshold)  
 { 
  cout << “Shot has changed in frame “ << f << endl ; 
    } 
    } 

Source 3: Descriptors usage with caches 

 
Figure 6 shows the whole descriptors subsystem, which provides as core elements the caches and 
defines pure interfaces for FrameDescriptor and ShotDescriptor. In a second level, where abstract 
classes which implement some functionalities, are defined, ItkImageFrameDescriptor was 
programmed for descriptors which store results as ITK images. The lower level represents concrete 
descriptors instantiated in the vapAlgorithms unit. Finally, vapCore includes some specific-purpose 
base classes to detect shots (ShotDetector), segment objects (ObjectSegmentator) and look for 
commercials and other fashions of signatures (SignatureFinder). 
 

vapItk  
VAP gives the possibility to use all the tools provided by ITK to process image data. For that end a 
particular FrameDescriptor was implemented (ItkImageFrameDescriptor) which converts raw data 
into an ITK image that can be accessed through the cache like any other descriptor. In the Appendix 
we present an example that uses vapItk to convert a color image to greyscale and writes it to disk. 
 

vapAlgorithms  
This is the upper layer of the system and can use any of the functionalities previously mentioned to 
implement video analysis algorithms in an easy way. 
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vapMP7  
This unit complements vapCore implementing the logic of generation of XML descriptors extracted 
from the video, using the Xerces library [5]. We called them MP7 descriptors, as they are inspired 
in the MPEG-7 standard. Nevertheless, the platform has all the elements to be adapted to other type 
of XML formats. As it was previously introduced, the goal of the MP7 subsystem is to make 
possible the persistence of already computed descriptors. For instance, if we get 12-bins histogram 
descriptors for frames and shots, the result would be as shown in Source 4. 
<MP7> 
 <ScalarHistogram FrameNumber="0"> 
  <Component Channel="R">126 8 13 19 35 34 99 464 9 52 1503 2172 4588
 </Component>  
  <Component Channel ="G">5 18 21 42 97 163 263 294  283 158 102 175
 </Component>  
  <Component Channel ="B">30 94 99 173 232 138 396 351 371 345 414 9
 </Component>  
  </ScalarHistogram> 
… 
 <ShotMeanScalarHistogram FramesConsidered="15" Ini tial="0" NumberOfFrames="13"> 
  <Component Channel ="R">107 11 10 11 22 29 24 20 15 30 68 145 
 </Component>  
  <Component Channel ="G">4 14 20 35 52 86 137 168 285 348 365 482 </Component>  
  <Component Channel ="B">49 96 91 561 826 991 702 493 332 333 49 75
 </Component>  
  </ShotMeanScalarHistogram> 
</MP7> 

Source 4: Sample MP7 

 
Figure 6: Descriptors subsystem design 
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The system defines a duality between FrameDescriptor and MP7FrameDescriptor, and between 
ShotDescriptor and MP7ShotDescriptor. This means that if a MP7 descriptor is properly 
programmed, it will persist correspondent information of the descriptor. Conversely, reading the 
MP7 descriptor, the pure descriptor can be reconstructed which is useful for signatures finding, as it 
will be described later. 
XML descriptors can be organized in different structures, often one contained inside another, 
forming a tree structure. The class MP7Tree is defined to store and navigate this structure of MP7 
descriptors, and it makes possible its persistence to disk.  
In construction time, MP7Tree uses an auxiliary class MP7TreeCreator, or a child of it, to set up 
the MP7 descriptors to include: MP7FrameDescriptors as well as MP7ShotDescriptors can be 
subscribed. Then it can be indicated the MP7 of which frames and shots to be computed and stored 
in the tree.  
In the example shown in Source 4, we use a ShotDetector to determine the segmentation of the 
video into shots which in turn will be described in MP7. MP7TreeCreator simplifies the MP7 tree 
construction, also encapsulating its organizational aspects such as the elements order and other 
formalities to be accomplished. In line 1 we declare a MP7TreeCreator. In lines 2 and 3 we 
construct the frame and shot descriptors. Lines 4 and 5 attach the descriptors to the MP7Tree. Then, 
for each frame we call the method ComputeFrame() of the MP7Tree. When a shot change is 
encountered, the partial information that has been collected so far it is processed with 
ComputeShot(). Once again, the framework developed allows developing video analysis methods 
easily. 
    vap::VideoReader::SetVideoFileName("filename.av i"); 
    vap::FrameNumber f; 
 
   // Shot detector to be used 
   vap::ShotDetector shotdetector; 
 
   // MP7 tree creator 
1- vap::MP7TreeCreator tc; 
 
   // MP7 descriptors to be computed 
2- MP7ShotDescriptor* mp7sd = new MP7ShotDescriptor (); 
3- MP7FrameDescriptor mp7fd = new MP7FrameDescripto r(); 
 
   // Set up the descriptors to be used in the new MP7 tree 
4- tc.Include(mp7sd); 
5- tc.Include(mp7fd); 
 
   // Process the video detecting shots and buildin g the MP7 tree 
   for(f=0; f<lastFrame; f++) 
   { 
6-  tc.ComputeFrame(f); 
  shotdetector.AnalyzeFrame(f); 
  // If there is a shot change in this frame, close  the shot and store 
  // its description calling ComputeShot(). 
  if(shotdetector.ShotChange()){ 
7-   tc.ComputeShot(f); 
    } 
   } 
   tc.CloseTree(); 
   cout << tc.GetTree()->GetString(); 
   delete tc.GetTree(); 

Source 5: MP7Tree creation 
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MP7 trees can be restored later. This is useful for contents search and other techniques of video 
comparison. Commercial detection, for instance, is a particular case of it, in which describing 
aspects of a piece of video are searched into new videos. With this purpose, we developed a 
SignatureFinder class, which defines the main aspects of this kind of searches: First, a piece of 
video y described with MP7, saving it (we call this description the signature of the video). Then, the 
MP7 tree can be restored and corresponding descriptors reconstructed. Finally, the same classes of 
descriptors can be obtained from a new video and try to match them with the signature ones. 
Signature finding process is not straightforward, as some relaxation has to be made in the 
comparison algorithms. 

6. Conclusions and future works 
In this article we presented the development of a software framework for video processing and 
analysis. The system is very easy to use and it is efficient in memory and CPU use1. It also 
integrates the capabilities of ITK making it very attractive. So far we implemented some testing 
applications which showed the benefits of the system. It was successfully tested in MS Windows 
with Visual C++ 6.0 and in GNU Linux with GCC 3.3.3-7. We believe the system can be useful to 
develop video analysis algorithms prototypes, proving good computational performances and small 
memory requirements. For future work we are going to implement more testing applications to 
obtain a stable version of the software that will be released as open source. Also, video streaming is 
a line for future developments. 

Appendix Example - Working with pixels 
Here we present a small example using the proposed framework to read a color frame from a video 
sequence, convert it to gray values (a way to process each pixel or a region of the frame) and save it 
to disk. We use the ITK library to access and handle the frames. First, the image format can be 
define by selecting the types of pixels to be used, in this case a three-component pixel 
(itk::RGBPixel) and a one-component pixel (gray pixel). Also pointers to these images are 
defined. 
  typedef itk::Image<itk::RGBPixel<unsigned char>,2 > TColorImage; 
  typedef itk::Image<unsigned char,2> TGrayImage; 
  TColorImage::Pointer _frameImage; 
  TGrayImage::Pointer _grayImage; 
 

In the same way as the example presented in Source 2, we use FrameReader to obtain a pointer to 
the ITK image _frameImage . 
 
  typedef vap::FrameReader<TColorImage,RGB> TColorF rame; 
  vap::VideoReader::SetVideoFileName ("filename.avi "); 
  vap::FrameNumber f = 0; 
  FrameDescriptorCache< TColorFrame >* _videoFrame;  
  _videoFrame = FrameDescriptorCache< TColorFrame > ::Instance(); 
  _frameImage = _videoFrame->GetData(f)->GetImage() ; 
 

In order to work with the pixel values of the image is necessary to access to the pixel level of the 
image, we can use the iterators provided by ITK. Each iterator is associated with an image and 
defined in a particular region, in this case the whole image. The image can be processed in an 
intermediate level using the regions defined with the iterators (For details see [1]). 

                                                
1 We don’t present results on CPU usage in this paper due to lack of space. However, it is easy to verify that the 
overhead of the systems is very low.  
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  typedef itk::ImageRegionIterator< TColorImage > T ColorImageIterator; 
  typedef itk::ImageRegionIterator< TGrayImage > TG rayImageIterator; 
  TColorImageIterator iterColor(_frameImage, _frame Image->GetRequestedRegion()); 
  TGrayImageIterator iterGray (_grayImage, _grayIma ge->GetRequestedRegion()); 
 

Using both iterators each pixel in the region of interest is accessed sequentially in the color image, 
processed and set in the gray image. 
 
  TColorImage::PixelType colorPixel; 
  TGrayImage::PixelType grayPixel; 
  for (iterColor.GoToBegin(), iterGray.GoToBegin();  !iterColor.IsAtEnd();  
                                                      ++iterColor, ++iterGray) { 
    colorPixel = iterColor.Get();  // Get the pixel RGB values... 
    grayPixel = (colorPixel[0] +    
                 colorPixel[1] +  
                 colorPixel[2])/3; // ...compute the gray level... 
    iterGray.Set(grayPixel);   // ...and set the pixel. 
  } 
 

Finally, to save the gray image we use the writer filter provided with ITK 

  typedef itk::ImageFileWriter< TGrayImage >::Point er grayImageWriter; 
  grayImageWriter->SetFileName("grayImage.png"); 
  grayImageWriter->SetInput(_grayImage); 
  grayImageWriter->Update(); 
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