Video Analysis Platform
Pablo Flore§ Federico LecumbertyPablo Aria§ Alvaro Pardd?
HIE, Facultad de Ingenieria ’DIE, Fac. de Ingenieria y Tecnologia
Universidad de la Republica Univ. Catdlica del Uruguay
gamm@fing.edu.uyhttp://iie.fing.edu.uy/vap

1. Abstract

In this article we present the Video Analysis Riati (VAP) which is an open source software
framework for video analysis, processing and dpton. The main goals of VAP are: to provide a
multiplatform system which allows the easy implemagion of video algorithms, provide structures
and algorithms for the segmentation of video datdts different levels of abstraction: shots,
frames, objects, regions, etc, permit the generatiad comparison of MPEG7-like descriptors, and
develop testing applications for shot detectiorgt shatching, object segmentation and tracking,
etc.

2. Introduction

In recent years the amount multimedia data (texind, image, and video) has grown remarkably.
In this context, several problems arise regardmagyesis, compression, transmission, manipulation,
search and organization of such media. The maih go&AP project is to study and develop
useful tools for the analysis, compression, trassian and search of video sequences. With this
goal in mind, we worked on the design and develapinoé data structures suitable for describing
video sequences and their contents.

Due to its enormous amount of data, video analggmses important requirements in memory and
computational resources; therefore it is mandatorybe very conservative in their use. This
restriction applies also to the overhead that isoduced in the processing due to repetitive data
structure construction and software procedurescation.

Another important issue when working with videoadet the fact that video is usually compressed.
That means that we need to decode it every time/avet to process it. Unfortunately, there are a lot
of different codecs. Although the process of desgdmay seem a simple task, it is a time-
consuming one when you do not have the proper tblsand. One of the aims of VAP was to
make the process of video decoding transparemitet@mnd user and to the algorithms programmed.
In this way, if the system supports the video codet just need to connect to the prop@ieo
Readerto access the video information.

Finally, inspired in the MPEG7 standard [6], VARIlides a description module that handles XML
to provide content description capabilities.

In summary the main goals for VAP design were to:
e Develop a multiplatform framework for easy and @éfnt implementation of video
algorithms.
e Allow the segmentation of video data in its differdevels of abstraction: shots, frames,
objects, regions, etc.
e Generate and compare MPEG7-like descriptors.
Develop testing applications for shot detectionptsimatching, object segmentation and
tracking, etc.
In the next section some concepts and constraingeb processing are introduced. In section 4,
the approach to video processing applied to theeldpment of VAP is presented. Section 5
presents the Architecture overview of VAP; thisteetcontains many examples to show the use of
VAP. Finally in section 6 we present the conclusiand the lines of future work.

865

3. Video processing

Video is processed to extract information fromFar instance, shot detection (the partition of a
video into continuous scenes) may be done by aimg\ythe similarity of subsequent frames pairs.
This is an example of event detection, which cold accompanied with some outputs, like
sounding a beep or annotating the frame numbefila.dn other cases, like in noise reduction, the
objective is to obtain a modified version of thg@uh video. A general video processing method
schema is shown in Figure 1. The process can bgaated in five stages: Acquisition, Extraction,
Analysis, Representation and finally Recognition.

Frame
extraction

Decoding Analysis

Audio
extraction <'\:i>

/_@ Knowledge base <‘,:j‘> Representation

A;

Recognition

Preprocessing

Acquisition Encoding

Figure 1: Video processing

First of all, video has to be acquired by a caneerartificially created. Regardless the technolsgie
used for acquisition or generation, audio and imgefedigital. In the next step coding algorithms
are applied to compress the data; most times madifgnce more the original contents. Coded
information can then be stored, for further us@oimmediate transmission.

The opposite process consists in decoding the wiol@xtract frames and audio information. Once
decoded, the frames are the main working unit ide analysis.

The analysis process consists in executing difteedgorithms to the video image and audio
information.

Some algorithms results may be used by other mresirig an algorithm pipeline. Each algorithm
could represent different abstraction level neefdedvent detection and video description. In the
case of shot detection algorithms, they may caleuladividual frames histograms and then use
them to obtain accumulative histograms useful &gnsent description. Both results may be used
to guess whether shot has changed or not havingdifferent views of the scene, one of them
instantaneous and the other one accumulative.

It is important to distinguish between progressivatcessing the video from a file or accessing it
from a streaming source. First of all, not all #Higorithms access video information sequentially.
For example, some shot detection algorithms loodadhin video windows consisting of sets of
frames, for example to detect fade-in and fadeeffigicts [7]. Within a file, algorithms can go all

866

around the video looking for the requested inforamgtbut the only way for going back and forth
when receiving a streaming is having a buffer amadting until the requested frame comes into it.
Therefore, working with small windows of frames rngndatory for effective live analysis of
streamed video. In addition, algorithms have ta@bomputationally lightweight enough in order to
be run without having to leave frames out.

The results of every algorithm can be stored ingieral memory structures, or can be persisted for
further uses. This process is called representation

The MPEG7 standard [6] is conceived for long-terersistence of analysis results and can be
applied to all kinds of multimedia material. It &slishes extensible rules for XML-based
representations of metadata and defines a binargafioto be attached to multimedia elements.
Unfortunately, MPEG7 is not widely used, and théenot much literature about practical
implementations and applications. In addition tdual descriptors, other types of persistence may
be needed, like modified video, for instance higifing tracked objects or applying filters, or
selected frames and sound sequences.

In the recognition process, stored or streamedovisiéaken as input and an algorithm tries to detec
sets of properties in the sequences which arepitrd as events. This is the case of many
challenges in video analysis, for instance detgctie presence of an actor in a film, a goal in a
soccer game or an intruder in a security camensnéssion.

Persistent information extracted from analysis psses can be used for recognition algorithms in
which features described from an initial video h&wde detected in other videos. Particular cases
of this are signature finding algorithms, like tbemmercials detection ones. In these cases, an
information set — the signature — is extracted feowideo fragment, and then it can get matched
within other videos, using some distance measufeesd algorithms usually use MPEG7
descriptors for the signature applied to a prebéistzed video fragment and feature set.

4.VAP’s approach for video processing

VAP is a software framework developed with the go&lmaking the development of video
processing software easy. With this purpose, it tbtamake some trade-offs between execution
speed, memory usage efficiency and ease of prognagnm

It is not a library; developers who want to use Viadve to learn its architecture and how to work
upon it. This approach permits VAP to automate mamymon tasks of video processing, having
the drawback that its learning curve may be somedteper.

As a starting point, VAP provides\ddeo Readerwhich allows the access to coded video files and
connects it with different toolkits for image preseng, mathematical and statistical operations etc.

To accomplish the objective of efficiently handlitige large amounts of video data keeping
computation and memory requirements under contrel decided the implementation of
Descriptors Descriptorsare lightweight data structures to hold analyssults of a given video
unit. For example, we can hakeame DescriptorsShot DescriptorsRegion Descriptorsetc.

As it was discussed above, in several video praogssd analysis applications we need to access
its descriptors several times. For instance, whempaiting the interframe histogram difference,
dh(frame_a, frame_b), we may need the histogram giffen frame several times. Furthermore, if
we are running several algorithms at the same titneay happen that more than one algorithm
uses the same description. This could lead toaheegdescriptor being computed and stored several
times. To solve this problem, we included a desoripache to hold the last computed descriptors.
Then, once a descriptor’'s cache is created, asalgsults will be reused, saving computation time.

To provide tools for making MPEG7 and other kindspersistent descriptions, VAP integrated
XML generation and parsing tools in a subset wéedaMP7. This subset provides the tools for

867

making a duality between memory-stored descripams XML descriptors that can be saved and
restored.

VAP is conceptually divided into three subsystemwg) of which have been explained above:
Descriptors subsystem, MP7 subsystem and Analymdrysystem. The last one provides the tools
for automating video analysis with specific objeesi, like shot detection and signature detection.

5. Architecture overview

VAP is completely developed using C++ language.c&iit was conceived as an open-source
system, we used some pieces of open source librartee decoding and coding of video data is
performed with the library ffmpeg [3] using a cusiaed version of the C++ wrapper fobs [4].
Ffmpeg is able to decode a wide range of codecdaaritlis reason was used. In some cases we use
the fobs wrapper while in others, such as for cotumversion and reading in YUV format we use
ffmpeg functions directly. All the video input/outp methods are encapsulated in two classes,
VideoReadeandVideoWriter

In order to give VAP good image processing capidsliwe decided to provide a interconnection
module with ITK (Insight Toolkit of Kitware) [1,2]ITK is a well known and extend image
processing library, mainly focused in medical immageeatment, that provides a comprehensive
tools set for image analysis.

VAP has four decoupable software units, which apasented in figure 2apCorewhich contains
the central elements of the systarapMP7 contains MPEG7-like functionalities and descriptor
vaplITK provides an interface to integrate ITK image pssoeg functionalities; and finally
vapAlgorithmamplements algorithms for video processing basegrevious units.

Figure 2. VAP software units and interactions

vapCore

Figure 3 overviewsvapCore’s design.vapCore provides access to video data through ffmpeg
library. The clas¥ideoReadeencapsulates this logic allowing easy accessdeovdata. This class
uses the singleton design pattern; therefore tisemmly one input video in the system which is
easily accessed. Through theeoReadeliit is possible to access the raw data correspgnitin
frames, identifying each one by EsameNumberan integer value.

868

Singleton (for each FrameDescriptor)

Singleton
VideoReader FrameDescrlpt(.)rCache .
<FrameDescriptor>
«Abstract» «Abstract» «Abstract»
ShotDetector ObjectSegmentator FrameDescriptor
/N

A A

ShotDetectorDiff ObjectSegmentatorBasic FrameDescriptorHistogram s s A
<ImageType>
vapAlgorithms

Figure 3: Main elements of vapCore.

In Source 1 we show how to use the video readebtain a pointer to the decoded video frame.
First, in line 1, we declare the input file. Indir2 we declare thErame Numberin line 3 we get
the VideoReadeilinstance and assign it tayVideoReadepointer. Finally, we us&etRGB()to
obtain the raw RGB values of the first frame (f#@)he video file. As we can see accessing the
video data is very easy.

1-vap::VideoReader::SetVideoFileName("filename.a vi');
2-vap::FrameNumber f = O;

3-vap::VideoReader* myVideoReader = VideoReader: :Getlnstance();
4-unsigned char* data = myVideoReader->GetRGB(f) ;

Source 1: VideoReader example.

The main concepts introduced tgpCorecorrespond to th®escriptorsand their corresponding
cachesDescriptorsrun algorithms over a part of the video to getdbsired information and store
it. The procedure for analyzing a video consistem@ating ond-rameDescriptorfor each frame, or
a ShotDescriptoffor continuous sequences of frames. For that valjnterfaces are defined. Each
descriptor has to inherit from its correspondingiiface classi-rameDescriptoror ShotDescriptor
(see Figure 3). Figure 4 shows an example on hdfereint FameDescriptorshold information
obtained from video frames. It is important to netithat each frame has a corresponding
FrameDescriptor object for each type of FrameDescriptor (in the example,
FrameDescriptorHistogramand FrameDescriptorMeanColdr The example also shows how
differentShotDescriptorgan refer to different framesets depending orsti detection algorithm
that was used.

Figure 4: Use of FrameDescriptors.

869

The FrameDescriptorinterface only defines one method to be implensi@emputeFramewhich
receives @&=rameNumberWhen it is called, implementations can access viawo data or other
descriptors. This information can later be accesseduitable “getter” methods implemented. An
example is thdtkimageFrameDescriptofsee Figure 3) together with tk@gameReaderFor each
frame that it is computedsrameReaderccesses the raw video data through\MlieoReadeto
generate arntkimage (an image stored in the format handled by the libkary). FrameReader
inherits from ItkimageFrameDescriptor(and therefore also fronFrameDescripto). Then,
FrameReadeis a special case dirameDescritor Other descriptors may run algorithms taking
advantage of the new functionalities availablelirglits Getimage()Jmethod to obtain a pointer to a
ITK image.

In Source 2 we present an example of the usgaheReadeto connecideoReadewith ITK. In
line 3 we declare the ITK image type. Once we dgfithe ITK image type we define, based on it,
the FrameReadetype in line 4. When defining thierameReadetype we also declare the type of
output, in this case RGB. Then, in line 5, we defand create a cache of frafimmeReaders
(remember thaFrameReadeis a Descriptor). For details on caches see befamally, in line 6,
we read the first ten frames from the video filel @tore the result iitkimage Once we have the
itkimagewe can proceed to use all ITK functionalities.

1-vap::VideoReader::SetVideoFileName("filename.a vi');
2-vap::FrameNumber f;

/I Define ITK image type. In this case a 2-dimensio nal RGB image.
/I Each color channel is stored as a unsigned char .
3- typedef itk::Image<itk::RGBPixel<unsigned char > 2> TColorlmage;
/I Define FrameReader type. It will use a TColorim age as defined above.
/I The output of the VideoReader will be stored in RGB format.
4-typedef vap::FrameReader<TColorimage,RGB> TCol orFrame;
/I Pointer to a FrameDescriptorCache of FrameReade I's.
5-FrameDescriptorCache< TColorFrame >* videoFram e,
_videoFrame = FrameDescriptorCache< TColorFram e >::Instance();

for(f=0;f<10;f++) {
6- TColorimage::Pointer itkimage = videoFrame->G etData(f)->Getimage();

Source 2: Example on how to useameReadeto obtain an ITK image.

ShotDescriptorsapply to different kinds of frames sequences. &astoict, they do not necessarily
have to describe shots, as the only requiremergytstem imposes is to hold information relative to
a set of frames identified by two particular onagsyally the first and the last one. How does the
implementation know which frames to process? F@s furpose, a&ComputeFramemethod is
defined in the interface, just like it happendgmameDescriptorIn addition to thisShotDescriptors
have to implement &omputeShoimethod, which receives as parameters the two mfmmgoned
FrameNumbersWith this information and the information alreaditained during consecutive
calls toComputeFramanethod,ComputeShotan obtain a summary description of the analyzed
group of frames. We are going to present an examipthis together with the description of the
MPEG?7 subsystem.

To reduce computational costs, descriptors carsbd adlyweightobjects, having asitrinsic data
the ones obtained after running algorithms andexsisinsic data theFrameNumberand, in

870

consequence, other associated information. Thesgriggor objects can be reused, for instance
when the information obtained from a past framaddonger needed. As it will be detailed later,
this concept is widely used by caches. Finallydascriptors define a family of interchangeable
algorithms, they follow thetrategydesign pattern.

To optimize the implementation of several algorithaver the same frames a Cache was created.
The class=rameDescriptorCachallows to temporally save last computechmeDescriptors In

this way it is possible to have universal accesslready extracted information that can be re-used
by other algorithms. Figure 4 shows this need tle&or FrameDescriptorMeanColoit may be
cheaper to obtain its value looking at the histogga which are also used by
ShotDescriptorMeanHistogram

FrameDescriptorCachevas designed with the following requirements: ayéhdifferent caches for
different FrameDescriptors b) keep temporally the last descriptors calcala@@ost algorithms
analyze frames within small windows of frames);be) able to create and access descriptors in
random order; d) be as lightweight as possibles Téd us to two main design decisions: 1) Make a
templetized singleton claggameDescriptorCachet means there can be only one instance of the
cache for each type éframeDescriptorand 2) keeg-rameDescriptordn a fixed-length circular
array.

Now we explain howfFrameDescriptorCachesvorks. Each one is templetized on the specific
FrameDescriptoiit will cache, having a singleton access methwdance() For example, a pointer

to a cache ofFrameDescriptorHistograntan be obtained from anywhere in the system callin
FrameDescriptor<FrameDescriptorHistogram>::Instang@e If the cache was already used, its
pointer is returned, otherwise it is created. Tihrayahas two fieldsErameNumbeandDescriptor

The latter one is a pointer to the specific clagsdescriptors to be cached. Initially, all
FrameNumberfields have arlUNDEFINED value. When access to the descriptors is requested
through the metho&etFrameDescriptor(f)the access positioModule(f, CACHE_LENGTHiJs
calculated. If the correspondifgameNumberdoes not match f, then it is updated as well as th
pointed descriptor.

Figure 5 shows an example of the usagdr@meDescriptorCache<SpecificFrameDescriptor>
with CACHE_LENGTH=16In this case, the access to descriptors of fre&inés 15, 18 and 19 has
been requested. Maybe before requesting the atxéssne 18, frame 2 was requested, but in this
case its value was overwritten. If access to fréne requested again later, it will have to be
calculated again. This is not a drawback if we warithin windows of frames smaller than
CACHE_LENGTH In addition to this, results which are known t feeeded later can be retained
easily.

CACHE

Array positon 0 1 2 3 4 5 6 LENGTH - 1
UNDEFT [UNDEFI
Frame Number | 0 1 18 19 |20 |"\ep | nep | 15
Specific
FrameDescriptor* \ \ \ \ \ \
{EMPTV} {EM TV}

i ELE B B

Figure 5: Example on FrameDescriptorCache<SpecditEDescriptor>

Considering the nature of video processing algorsththis design brings some advantages: 1)
seeking the access position in the cache is extydiast; 2) specific descriptors can be create@, on

871

for each of the array positions, all at once, drhtthey can be reused fast, without having toterea
structures again.

Source 3 shows how use caches to implement a gtettobn based on histogram differences. In
line 1 we declare and get the instance of the catReameDescriptorHistogramThe in line 2 we
request the histograms of frames f-1 and f and esephem using the methddistance() of
FrameDescriptorHistograntlass. With this example we can show the simplioit the resulting
code. Once we declared the use of the videname.aviand theFrameDescriptorsieeded, the rest
of the code is very simple and easy to read. Wét adeed to worry about low level details at this
stage. So, in each step of the development we otiate on one specific problem. The framework
provides the access to the video data and soméigtess. The used can easily then create its own
descriptors and use them in a similar way as desdrn Source 3.

vap::VideoReader::SetVideoFileName("filename.avi ");
vap::FrameNumber f;

/I Get the needed cache. As it was not previously r equired, the cache array

I/ will be created with empty instances of FrameDes criptorHistogram,

1- FrameDescriptorCache<FrameDescriptorHistogram>* fdch =
FrameDescriptorCache< FrameDescriptorHistogram >::| nstance();

for (f=1; f<maxFrames; f++)

{
2- if(fdch->GetFrameDescriptor(f-1)->GetltkHistog ram().
Distance(fdch->GetFrameDescriptor(f)->GetltkHi stogram()) > threshold)

{
cout << “Shot has changed in frame “ << f << endl

}

}

Source 3: Descriptors usage with caches

Figure 6 shows the whole descriptors subsystemchwprovides as core elements the caches and
defines pure interfaces féirameDescriptorand ShotDescriptor In a second level, where abstract
classes which implement some functionalities, aedindd, ItkimageFrameDescriptorwas
programmed for descriptors which store resultsT&simages. The lower level represents concrete
descriptors instantiated in tlapAlgorithmsunit. Finally, vapCoreincludes some specific-purpose
base classes to detect shadBhdtDetectg; segment objectsObjectSegmentatprand look for
commercials and other fashions of signatures (Sigeginder).

vapltk

VAP gives the possibility to use all the tools pgd®d by ITK to process image data. For that end a
particularFrameDescriptoiwas implementedtklmageFrameDescriptdrwhich converts raw data
into an ITK image that can be accessed througledbbe like any other descriptor. In the Appendix
we present an example that uses vapltk to conventa image to greyscale and writes it to disk.

vapAlgorithms

This is the upper layer of the system and can ngeofithe functionalities previously mentioned to
implement video analysis algorithms in an easy way.

872

+ ShotDescriptorCache (shotDescriptor)

+ ComputeShot (frameNumber)

+ GetShotDescriptor (frameNumber)

+ Getlnitial () : FrameNumber

+ GetFinal () : FrameNumber

+ GetLastComputed () : FrameNumber

ShotDescri| PtOI’C;éhﬁsmmmmmm

'Singleton, Proxy,
FlyWeightFactory

«Abstract»
FrameDescriptor

+ ComputeFrame (FrameNumber)

FrameDescriptorCache
<FrameDescriptor>

+ Instance()
+ Releaselnstance()

+ GetFrameDescriptor(frameNumber)
+ IsInCache (frameNumber) : boolean

o—

«Abstract»
FrameDescriptoritkimage
<itklmage>

+ ComputeFrame
—| + Getltkimage() : itkimage

5

itkimag
<PixelType>

Abstract classes

Utilities

Algorithm implementations

vapMP7

Strategy,
i FlyWeight

«Abstract»
ShotDescriptor

+ ComputeFrame (frameNumber)
+ ComputeShot (frameNumber1, frameNumber2)

FrameDescriptor
ItkimageEdge
<itklmage>

+ ComputeFrame

FrameDescriptor
ItkHistogram
<itklmage, [FDItk],
[params...]>

ShotDescriptorMeanHistogram

+ ComputeFrame
+ GetltkHistogram()

+ ComputeFrame (frameNumber)
+ ComputeShot (fN1, fN2)
+ GetMeanHistogram()

Figure 6: Descriptors subsystem design

This unit complementgapCoreimplementing the logic of generation of XML degtadrs extracted
from the video, using the Xerces library [5]. Wdled themMP7 descriptors, as they are inspired

in the MPEG-7 standard. Nevertheless, the platfoasiall the elements to be adapted to other type

of XML formats. As it was previously introduced,etlyoal of theMP7 subsystem is to make
possible the persistence of already computed qeecsi For instance, if we get 12-bins histogram
descriptors for frames and shots, the result wbalds shown in Source 4.

<MP7>

<ScalarHistogram FrameNumber="0">
<Component Channel="R">126 8 13 19 35 34 99 464 9

</Component>

<Component Channel ="G">5 18 21 42 97 163 263 294

</Component>

<Component Channel ="B">30 94 99 173 232 138 396

</Component>
</ScalarHistogram>

“<.ShotMeanScaIarHistogram FramesConsidered="15" Ini
<Component Channel ="R">107 11 10 11 22 29 24 20

</Component>

<Component Channel ="G">4 14 20 35 52 86 137 168
<Component Channel ="B">49 96 91 561 826 991 702

</Component>

</ShotMeanScalarHistogram>

</MP7>

52 1503 2172 4588
283158 102 175

3513713454149

tial="0" NumberOfFrames="13">
15 30 68 145

285 348 365 48X/Component>
493 332 33349 75

Source 4: Sample MP7

873

The system defines a duality betwdermmeDescriptorand MP7FrameDescriptgrand between
ShotDescriptor and MP7ShotDescriptar This means that if a@MP7 descriptor is properly
programmed, it will persist correspondent inforroatiof the descriptor. Conversely, reading the
MP7 descriptor, the pure descriptor can be recongtduahich is useful for signatures finding, as it
will be described later.

XML descriptors can be organized in different stmmes, often one contained inside another,
forming a tree structure. The clag¥’7Treeis defined to store and navigate this structur®Bf7
descriptors, and it makes possible its persistemdésk.

In construction timeMP7Treeuses an auxiliary clasdP7TreeCreataror a child of it, to set up
the MP7 descriptors to includeMP7FrameDescriptorsas well asMP7ShotDescriptorcan be
subscribed. Then it can be indicated M7 of which frames and shots to be computed anddtore
in the tree.

In the example shown in Source 4, we usshatDetectorto determine the segmentation of the
video into shots which in turn will be described\viiP7. MP7TreeCreatorsimplifies theMP7 tree
construction, also encapsulating its organizatiasgects such as the elements order and other
formalities to be accomplished. In line 1 we deelarMP7TreeCreator In lines 2 and 3 we
construct the frame and shot descriptors. Linesd5aattach the descriptors to t@&7Tree Then,

for each frame we call the meth&bmputeFrame(pf the MP7Tree When a shot change is
encountered, the partial information that has beefected so far it is processed with
ComputeShot()Once again, the framework developed allows dewetpvideo analysis methods
easily.

vap::VideoReader::SetVideoFileName("filename.av i");
vap::FrameNumber f;

/I Shot detector to be used
vap::ShotDetector shotdetector;

[l MP7 tree creator
1- vap::MP7TreeCreator tc;

/I MP7 descriptors to be computed

2- MP7ShotDescriptor* mp7sd = new MP7ShotDescriptor 0;
3- MP7FrameDescriptor mp7fd = new MP7FrameDescripto r();
/I Set up the descriptors to be used in the new MP7 tree

4- tc.Include(mp7sd);
5- tc.Include(mp7fd);

/I Process the video detecting shots and buildin g the MP7 tree
for(f=0; f<lastFrame; f++)
{
6- tc.ComputeFrame(f);
shotdetector.AnalyzeFrame(f);
/I'If there is a shot change in this frame, close the shot and store
/I its description calling ComputeShot().
if(shotdetector.ShotChange()){
7- tc.ComputeShot(f);

}

tc.CloseTree();
cout << tc.GetTree()->GetString();
delete tc.GetTree();

Source 5MP7Treecreation

874

MP7 trees can be restored later. This is usefuk@mtents search and other techniques of video
comparison. Commercial detection, for instancea iparticular case of it, in which describing
aspects of a piece of video are searched into ndeos. With this purpose, we developed a
SignatureFinderclass, which defines the main aspects of this kihdearches: First, a piece of
video y described with MP7, saving it (we call thesscription the signature of the video). Then, the
MP7 tree can be restored and corresponding desigiptconstructed. Finally, the same classes of
descriptors can be obtained from a new video apdarmatch them with the signature ones.
Signature finding process is not straightforward, sbome relaxation has to be made in the
comparison algorithms.

6. Conclusions and future works

In this article we presented the development obfamgre framework for video processing and
analysis. The system is very easy to use and dffisient in memory and CPU uselt also
integrates the capabilities of ITK making it verigractive. So far we implemented some testing
applications which showed the benefits of the systié was successfully tested in MS Windows
with Visual C++ 6.0 and in GNU Linux with GCC 3.373 We believe the system can be useful to
develop video analysis algorithms prototypes, prg\good computational performances and small
memory requirements. For future work we are goimgmplement more testing applications to
obtain a stable version of the software that wellrbleased as open source. Also, video streaming is
a line for future developments.

Appendix Example - Working with pixels

Here we present a small example using the propiwaetwork to read a color frame from a video
sequence, convert it to gray values (a way to m®each pixel or a region of the frame) and save it
to disk. We use the ITK library to access and harbde frames. First, the image format can be
define by selecting the types of pixels to be usedthis case a three-component pixel
(itk::RGBPi xel) and a one-component pixel (gray pixel). Also peis to these images are
defined.

typedef itk::Image<itk::RGBPixel<unsigned char>,2 > TColorlmage;
typedef itk::Image<unsigned char,2> TGraylmage;

TColorimage::Pointer _framelmage;

TGraylmage::Pointer _graylmage;

In the same way as the example presented in S@uwe use~rameReadeto obtain a pointer to
the ITK image framelmage .

typedef vap::FrameReader<TColorimage,RGB> TColorF rame,
vap::VideoReader::SetVideoFileName (“filename.avi ");
vap::FrameNumber f = 0;

FrameDescriptorCache< TColorFrame >* _videoFrame;

_videoFrame = FrameDescriptorCache< TColorFrame > ::Instance();
_framelmage = _videoFrame->GetData(f)->Getimage() ;

In order to work with the pixel values of the imagenecessary to access to the pixel level of the
image, we can use the iterators provided by ITKchE#erator is associated with an image and
defined in a particular region, in this case theol@himage. The image can be processed in an
intermediate level using the regions defined whiid iterators (For details see [1]).

! We don't present results on CPU usage in this pdpe to lack of space. However, it is easy tofyetfiat the
overhead of the systems is very low.

875

typedef itk::lmageRegionlterator< TColorimage > T Colorlmagelterator;

typedef itk::lmageRegionlterator< TGraylmage > TG raylmagelterator;
TColorimagelterator iterColor(_framelmage, _frame Image->GetRequestedRegion());
TGraylmagelterator iterGray (_graylmage, _graylma ge->GetRequestedRegion());

Using both iterators each pixel in the region déiast is accessed sequentially in the color image,
processed and set in the gray image.

TColorimage::PixelType colorPixel;
TGraylmage::PixelType grayPixel,

for (iterColor.GoToBegin(), iterGray.GoToBegin(); literColor.ISAtEnd();
++iterColor, ++iterGray) {
colorPixel = iterColor.Get(); /I Get the pixel RGB values...

grayPixel = (colorPixel[0] +

colorPixel[1] +

colorPixel[2])/3; /I ...compute the gray level...
iterGray.Set(grayPixel); I ...and set the pixel.

Finally, to save the gray image we use the writlarfprovided with ITK

typedef itk::ImageFileWriter< TGraylmage >::Point er graylmageWriter;
graylmageWriter->SetFileName("graylmage.png");
graylmageWriter->Setlnput(_graylmage);

graylmageWriter->Update();

7. References

[1] Insight Toolkit. www.itk.org

[2] Ibanez, Schroeder, Ng, Cates. The ITK Softwauide. Kitware, Inc. ISBN 1-930934-15-7.
[3] www.ffmpeg.org

[4] fobs.sourceforge.net/

[5] xml.apache.org/xerces-c/

[6] B. S. Manjunath (Editor), Philippe Salembierd{r), Thomas Sikora (Editor), Phillipe
Salembier (Editor). Introduction to MPEG 7: Multidia Content Description Language. John
Wiley & Sons, 2002. ISBN: 0471486787.

[7] A. Hanjalic: Shot-Boundary Detection: Unraveleshd Resolved?, IEEE Transactions on
Circuits and Systems for Video Technology, Febriz0§2

876

