
Modelling Derivation in Defeasible Logic Programming

with Perceptron-based Neural Networks†

Sergio Alejandro Gómez‡

Laboratorio de Investigación y Desarrollo en Inteligencia Artificial (LIDIA)*

Depto. de Ciencias e Ingenieŕıa de la Computación — Universidad Nacional del Sur
Av. Alem 1253 – B8000CPB Bah́ıa Blanca – Argentina

Tel/Fax: (+54) (291) 459 5135/5136 – Email: sag@cs.uns.edu.ar

Abstract

A solution of problems in multiagent systems involves representing beliefs of agents
immersed in dynamic environments. Observation-based Defeasible Logic Programming
(ODeLP) is an argument-based logic programming language that is used to represent an
agent’s knowledge in the context of a multiagent system. The beliefs of the agent depends
on a warrant procedure performed on its knowledge base contents. New perceptions result
in changes in the agent’s beliefs. In the context of real time constraints, this belief change
procedure should be done efficiently.

This paper introduces an algorithm for translating an agent’s knowledge base, ex-
pressed as an ODeLP rule base, into a Perceptron-based neural network. Observations in
an ODeLP program can then be codified as an input pattern. The input pattern is then
fed to the neural network whose propagation results in an output pattern. This output
pattern contains information regarding which beliefs can be hold by the agent as well as
if there exists contradiction among them. The proposal is attractive as the massivelly
parallel processing intrinsic to neural networks make them appropiate for implementing
parts of the aforementioned warrant procedure.

Keywords: Artificial Intelligence, Defeasible Argumentation, Observation-based Defeasible
Logic Programming, Perceptron, Neural Networks.

1 Introduction

Defeasible Logic Programming (DeLP) [GS04] provides a language for knowledge and reason-
ing that uses defeasible argumentation [SL92, CRL00, CML00, PV99] to decide between con-
tradictory defeasible conclusions. Observation-based Defeasible Logic Programming (ODeLP)
[CCS04, Cap03] is a framework that aims at representing the knowledge of a single agent in a
dynamic environment, where agents must perceive the changes in the world and integrate them
into its existing beliefs. ODeLP solves this problem by modelling perception as new facts to be
added to the agent’s knowledge base.

The Neural Networks (NN) [FS93, RR95, Ska96, Was89] approach to knowledge represen-
tation and problem solving weakly resembles the inner workings of the animal brain. Problem
solving is made in NN by feeding a network with an input pattern that represents a problem
instance, the pattern is then propagated through the network to produce an output pattern
representing the solution to the problem instance. The Threshold Logical Unit (TLU) [MP43]

†Sent to Workshop de agentes y sistemas inteligentes
‡Partially supported by the Agencia Nacional de Promoción Cient́ıfica y Tecnológica (PICT 2002 Nro. 13096)

and Secretaŕıa de Ciencia y Tecnoloǵıa of Universidad Nacional del Sur (24/N016).
*LIDIA is a member of IICyTI Instituto de Investigación en Ciencia y Tecnoloǵıa Informática.

is an implementation of an artificial neuron that can be arranged into Perceptron-based neural
network [FS93, RR95, Ska96, Was89].

As pointed out in [CCS04], real time issues play an important role when modelling agent
interaction. In an argument-based multi-agent setting, a timely interaction is particularly
hard to achieve, as the inference process involved is complex and computationally expensive.
In particular, dialectical databases are proposed in [CCS04] to solve this problem by storing
precompiled knowledge. In this paper, we propose an algorithm for translating a ODeLP
program into a neural network. Observations can then be regarded as an input pattern fed
to the obtained neural network, which will act as a black-box capable of producing an output
pattern indicating if exists both an argument supporting a certain conclusion and conflict among
the conclusions obtained.

The rest of the paper is organized as follows. In Section 2, we briefly describe ODeLP. Then,
we describe the Perceptron-based NN approach to problem solving in Section 3. In Section 4, we
describe a method for obtaining a Perceptron-based NN from a propositional ODeLP program.
Section 5 presents some worked examples. Next in Section 6, we compare this work with those
found in the literature. We conclude the paper in Section 7.

2 Observation-based Defeasible Logic Programming

Defeasible logic programming (DeLP) [GS04] is a particular formalization of defeasible argu-
mentation [CML00, PV99] based on logic programming. Although DeLP can be used to model
the behaviour of a single agent in a static environment, it lacks the appropiate mechanisms
to represent knowledge in dynamic environments, where agents must be able to perceive the
changes in the world and integrate them into its existing beliefs. The Observation-based Defea-
sible Logic Programming (ODeLP) framework [CCS04, Cap03] aims at solving this problem by
modelling perception as new facts to be added to the agent’s knowledge base.

The language of ODeLP is based on the language of logic programming. Literals are atoms
that may be preceded by the symbol “∼” denoting strong negation. ODeLP programs are
formed by observations and defeasible rules. Observations correspond to facts in the context
of logic programming, and represent the knowledge an agent has about the world; more for-
mally, an observation is a grounded literal L representing some fact about the world, obtained
through a perception mechanism that the agent believes to be correct. Defeasible rules pro-
vide a way of performing tentative reasoning [SL92]; formally, a defeasible rule R has the form
L0 −−≺ L1 ,L2 , . . . ,Ln , where L0 is a literal and L1, L2, . . . , Ln is a non-empty finite set of literals.
We are going to define Head(R) = L0 and Body(R) = {L1, L2, . . . , Ln}. An ODeLP program is
a pair 〈Ψ,∆〉, where Ψ is a finite set of observations and ∆ is a non-empty finite set of literals.
In a program P , the set Ψ must be non-contradictory (i.e., it is not the case that Q ∈ Ψ and
∼ Q ∈ Ψ, for any literal Q.) A propositional ODeLP program is an ODeLP program where all
predicates have arity 0.

Given a ODeLP program P = 〈Ψ,∆〉 and a literal L, a defeasible derivation of L from P ,
denoted P |∼ L, consists of a finite sequence L1, L2, . . . , Ln = L of literals, and each literal is in
the sequence because: (a) Li is a fact in Ψ, or (b) there exists a rule Ri in P with head Li and
body B1, B2, . . . , Bk and every literal of the body is an element Lj of the sequence appearing
before Li (j < i). A set of rules is contradictory if and only if, there exists a defeasible
derivation for a pair of complementary literals from this set. It must be observed that: (i)
defeasible derivation is monotonic, i.e., if H has a defeasible derivation from P then H will also
have a defeasible derivation from P ∪R, where R is an arbitrary set of program rules, and (ii)

if a program P has no facts, then no defeasible derivation can be obtained.
Deriving literals in ODeLP results in the construction of arguments. An argument A is a

(possibly empty) set of ground defeasible rules that together with the set Ψ provide a logical
proof for a given literal H, satisfying the additional requirements of non-contradiction and
minimality. Formally, Given an ODeLP program P , an argument A for a ground Q, denoted
〈A, Q〉, is a subset of ground defeasible rules in P , such that (i) there exists a defeasible deriva-
tion for Q from Ψ ∪ A, (ii) Ψ ∪ A is non-contradictory, and, (iii) A is minimal with respect
to set inclusion. An argument 〈A1, Q1〉 is a sub-argument of another argument 〈A2, Q2〉 if
A1 ⊆ A2. Given a DeLP program P , we will write Args(P) denotes the set of all possible
arguments that can be derived from P .

The notion of defeasible derivation corresponds to the usual query-driven SLD derivation
used in logic programming, performed by backward chaining on both strict and defeasible rules;
in this context a negated literal ∼ P is treated just as a new predicate name no P . Minimality
imposes a kind of ‘Occam’s razor principle’ [SL92] on argument construction: any superset
A′ of A can be proven to be ‘weaker’ than A itself, as the former relies on more defeasible
information.

Given two arguments A and B, conflict (or attack) among arguments arises whenever A and
B cannot be simultaneously accepted. Many argument systems provide a preference criterion
which defines a partial order among arguments, allowing to determine when A defeats B.
Specificity [SL92] is typically used as a syntax-based criterion among conflicting arguments,
preferring those arguments which are more informed or more direct [SL92, SGCS03]. However,
other alternative preference criteria could also be used.

In order to determine whether a given argumentA is ultimately undefeated (or warranted), a
dialectical process is recursively carried out, where defeaters for A, defeaters for these defeaters,
and so on, are taken into account. We refer the interested reader to [GS04, CCS04].

3 Perceptron-Based Neural Networks

A Neural Network is an interconnected assembly of simple processing elements, units or nodes,
whose functionality is loosely based on the animal neuron. The processing ability of the network
is stored in the inter-unit connection strengths, or weights, that can be obtained by a process
of adaptation to, or learning from, a set of training patterns [Gur99].

The functionality of the animal neuron is captured by the artifficial neuron known as the
Threshold Logic Unit (TLU) originally proposed by McCulloch and Pitts [MP43]. The informa-
tion processing performed in this way may be crudely summarised as follows. Signals appear at
the unit’s inputs or synapses. The effect of each signal has may be approximated by multiplying
the signal by some number or weight to indicate the strength of the synapse. The weighted
signals are now summed to produce an overall unit activation. If this activation exceeds a
certain threshold, the unit produces a an output response.

Formally, we suppose there are n inputs with signals x1, x2, . . . , xn and weights w1, w2, . . . , wn.
The signals take on the values ‘1’ or ‘0’ only; that is, the signals are binary or Boolean valued.
The activation a, is given by:

a =
n∑

i=1

wixi. (1)

The output y is then given by thresholding the activation by a real value θ:

y =

{
1 if a ≥ θ
0 if a < θ

(2)

The threshold function is sometimes called a step-function or hard-limiter to push the analogy
with real neurons where the presence of an action-potential is denoted by binary ‘1’ and its
absence by binary ‘0’.

It is possible to interpret the functionality of a TLU geometrically. In summary, it separates
its input space into two parts divided by a hyperplane according to whether the input is
classiffied as a ‘1’ or a ‘0’. The TLU may be thought of as classifying its input patterns
into two classes: those that give output ‘1’ and those that give output ‘0’ [RR95, Was89].

4 Modelling Arguments with Neural Networks

In this section we will describe the main aspects concerning how to model propositional ODeLP
programs in terms of perceptron-based neural networks. First, in section 4.1 we will consider
how to represent propositional defeasible inference rules with TLU neurons and how to arrange
those neurons to represent both propositional defeasible knowledge bases and logical contra-
diction among them. In section 4.2, we will explain how to model derivation, arguments, and
conflict among arguments from a set of observations with respect to a defeasible knowledge
base using a neural network.

4.1 Modelling Rules and Observations with Neural Networks

In this section we show how defeasible rules, observations, and a propositional ODeLP program
can be modelled with a neural network. We address the issue of representing rules first.

Defeasible rules in an ODeLP program can be modelled as Thresholding Logical Units in
a perceptron-based neural network. As we already said earlier, in ODeLP a defeasible rule is
an ordered pair, denoted Head −−≺ Body , whose first member, Head is a literal, and whose
second member, Body is a finite non-empty set literals. A defeasible rule with head L0 and
body {L1, L2, . . . , Ln} can also be written as: L0 −−≺ L1 ,L2 , . . . ,Ln (n > 0).

In our setting, each individual rule is represented as a perceptron unit for the head, i.e. L0,
with input connections for each Li with weight equal to 1. Besides, the threshold function ψ(x)
for the unit is the step function with threshold θ equal to n.

ψ(x) =

{
1 if x ≥ n
0 if x < n

(3)

The goal of the threshold function is to allow the unit to implement the logical-AND function.
The rationale is that the unit will fire a one if every predecessor is 1, that is every atom in the
body holds; otherwise it will fire a zero, meaning that at least one atom in the body does not
hold. The situation is depicted in Figure 1.

Now we address the issue of representing facts in a propositional ODeLP program. Facts
in an ODeLP program can be modelled as inputs to a neural network. As we mentioned in
Section 2, a fact is a literal, i.e. an atom, or a negated atom. In our setting, a literal will be
represented as a fan-in unit in a neural network. Let P be a literal, if P is known to hold then
the input associated to it will be 1; otherwise, it will be 0.

��
��L0

Σ - ≥ n -

L1
u
@

@
@

@
@R

L2
uH

HHHHj

rr
r

Ln
u�����*

1

1

1

Figure 1: Generic defeasible logic rule as a TLU

We now address the issue of how a propositional ODeLP program P = 〈Ψ,∆〉 can be
modelled by a perceptron-based neural network. In this paper, we are going to restrict the
defeasible rule base ∆ to sets where each atom is defined by at most one rule. As a consequence
of this supposition, given an (positive or negative) atom P in the language of P , if there exists
a rule R belonging to ∆ such that P = Head(R) then P cannot belong to Ψ. The rationale
is that if both P belonged to Ψ and was the head of a rule R, then P would be defined by at
least two rules, contradicting our previous suppossition.

Next, we present an algorithm for translating a defeasible logic program P into a multi-layer
perceptron-based neural network N . The neural network N is depicted as a weighted directed
graph N = (V,E), where V stands for the set of vertices and E for the set of edges. Moreover,
weighted graph edges will be denoted as i

w−→ j, where i is the origin vertex, j the destination
vertex, and w the weight associated to the edge, respectively.

The proposed algorithm is called GenNeuralNet and is presented in Figure 2. The input
to GenNeuralNet is a propositional defeasible rule base while the output is a neural network
represented as a directed graph. The algorithm first initializes the neural network as empty
and then performs three loops. The first loop adds a TLU for every rule in ∆. The second
loop adds fan-out connections for every possible defeasible conclusion of the program; besides,
it both adds TLUs for every pair of complementary literals P and ∼ P (called ⊥P) and its
corresponding fan-out connection. The third loop determines which are the possible inputs for
the neural network — all literals not derived by any rule are in this category; furthermore, as a
contradiction between a defeasible conclusion and a certain input can arise, the corresponding
TLU with its respective fan-out connection is added.

The input and output pattern vectors are binary valued. An input or output equal to one
means that the literal is known to hold. In addition, we assume that the features in both the
input and output pattern are ordered lexicographically.

The input layer requires some explanation. As we already mentioned, we only consider
programs where literals are defined by at most one rule. As a consequence, if a literal is defined
by a rule, then it cannot be an input in Ψ. Because all inputs belong to Ψ, they will hold
strictly and will be considered as observations in the resulting ODeLP program P = 〈Ψ,∆〉.

Furthermore, the algorithm does not produce units for testing consistency in the set Ψ of
observations, as it is assumed consistent [CCS04]1. On the other hand, as we already said

1As the set of observations can be regarded as a set of facts, this stance is also adopted in other argumentative
systems as well [CRL00, CML00, PV99].

contradiction between an input from Ψ and the conclusion of a rule of ∆ is tested as it can be
cause of disagreement.

The output layer consists of binary features for every posible literal (positive or negative)
that could be derived by the program as well as indicators of contradictions. As consequences
of the program are derived by defeasible rules, they will hold defeasibly. One exception is given
by input facts which have output connections but hold strictly.

4.2 Modelling Derivation and Arguments with Neural Networks

Next we show how derivation of literals from a propositional logic program can be represented
using our proposal as the propagation of patterns through a neural network. Given a proposi-
tional ODeLP program P = (Ψ,∆), it can be modelled executing the algorithm GenNeuralNet
on ∆ and obtaining a neural network N . The neural network thus obtained N can be regarded
as a partial function N : 2language(P) 7→ 2language(P) ∪ {⊥p : p ∈ language(P)}, i.e., it takes a
set of literals from P and returns another one or an indication of contradiction associated to a
certain literal. Then a set S of literals can be calculated from N , where S = N (Ψ) is the set
of literals that can be derived from P when Ψ is known to be true.

Then, the literals belonging to the language of P except those that are the head of some
rule in ∆ can be arranged into a pattern vector. An entry of this pattern vector will be one if
the corresponding literal is known to hold; otherwise, the entry will be zero indicating that it
is not known if the literal holds. This pattern vector will represent a set Ψ of observations that
can then be propagated through the neural network to obtain another output pattern vector
indicating which literals can be derived from the program and whether exist or not contradiction
among them.

Moreover, both argument and conflict can be represented in this setting. Arguments can
be regarded as subsets of a neural network. Conflict appears when opposite claims have to be
accepted; in this setting, conflict is represented as the positive output associated to the ⊥P for
a literal P .

It must be remarked that our proposal satisfies two observations made by Garćıa and Simari
[GS04, Obs. 2.1 and 2.2]. Observation [GS04, Obs. 2.1] says that defeasible derivation is
monotonic, i.e., if H has a defeasible derivation from P then H will also have a defeasible
derivation from P ∪R, where R is an arbitrary set of program rules. In our setting, by adding
rules to a defeasible program, the application of algorithm GenNeuralNet will result in the
extension of an existing neural network, thus not invalidating previous propagation of patterns.
Observation [GS04, Obs. 2.2] says that if a program P has no facts, then no defeasible derivation
can be obtained. In our setting, that is equivalent to propagating the input vector (0, . . . , 0)
through the network resulting in the output vector (0, . . . , 0) meaning that no literal could be
derived from a program with no observations.

Moreover, it must be noted that, as it is customary in both DeLP [GS04] and ODeLP
[CCS04], we have supposed that the set of facts (observations, resp.) is consistent. However,
the GenNeuralNet algorithm can be straightforwadly tuned to detect inconsistencies in it by
adding the corresponding ⊥Q unit for literals Q and ∼ Q.

Algorithm GenNeuralNet(∆ : DefeasibleRuleBase; var N = (V,E) : NeuralNet)
var rule for p, rule for neg p : boolean
begin

V := Ø; E := Ø
for each rule Ri ∈ ∆ do

(* Suppose that rule Ri ≡ Pi −−≺ Qi1 , . . . ,Qini . *)
Pi := Head(Ri)
V := V ∪ {Pi}
for each atom Qij ∈ Body(Ri) do

V := V ∪ {Qij}
E := E ∪ {Qij

1−→ Pi}
end for
Set ψ(x) = if x ≥ ni then 1 else 0 fi as the threshold function for unit Pi in N

end for

for each literal Pi ∈ language(P) ∩ V do
if {Pi,∼ Pi} ⊆ V then AddDisagreementUnit(Pi, N)
elsif Pi ∈ V then

Add a fan-out unit and connection for Pi to N
elsif ∼ Pi ∈ V then

Add a fan-out unit and connection for ∼ Pi to N
end if

end for

for each literal Pi ∈ language(P) do
rule for p := ∃R ∈ ∆ : Pi = Head(R)
rule for neg p := ∃R ∈ ∆ : ∼ Pi = Head(R)
if not rule for p then
V := V ∪ {Pi}
Add a fan-in connection for Pi to N
if rule for neg p then AddDisagreementUnit(Pi, N) end if

end if
if not rule for neg p then
V := V ∪ {∼ Pi}
Add a fan-in connection for ∼ Pi to N
if rule for p then AddDisagreementUnit(Pi, N) end if

end if
end for

end

procedure AddDisagreementUnit(Pi : Literal; var N = (V,E) : NeuralNet)
begin

V := V ∪ {⊥Pi}
E := E ∪ {(Pi

1−→ ⊥Pi), (∼ Pi
1−→ ⊥Pi)}

Add fan-out units and connections for Pi, ∼ Pi, and ⊥Pi to N if not already there
Set ψ(x) = if x ≥ 2 then 1 else 0 fi as the threshold function for unit ⊥Pi

end

Figure 2: An algorithm for translating a propositional ODeLP program P into a Perceptron-
based neural network N

5 Some Worked Examples

Now we present some examples of how the proposed approach works.

Example 1 Consider the following defeasible knowledge base ∆1 based on [GS04, Example
2.1]:

∆1 =


∼ flies −−≺ chicken.
flies −−≺ chichen, scared .
nest in trees −−≺ flies .


The defeasible rule set ∆1 expresses that chickens usually do not fly unless they are scared.
Besides, anything that flies usually nest in trees.

If we consider the set of observations Ψ1 = {chicken}, the ODeLP program P1 = 〈Ψ1,∆1〉 is
obtained. From P1 the argument 〈A1,∼ flies〉 can be derived, where A1 = {∼ flies −−≺ chicken}.

Analogously, if we consider the set of observations Ψ′
1 = {chicken, scared}, the ODeLP

P ′
1 = 〈Ψ′

1,∆1〉 is now obtained. From P ′
1, besides 〈A1,∼ flies〉, arguments 〈B1, f lies〉 and

〈C1, nest in trees〉 can be also derived where

• B1 = {∼ flies −−≺ chicken}

• C1 = {(flies −−≺ chicken, scared); (nest in trees −−≺ flies)}

The defeasible rule set ∆1 will be represented by the neural network in Figure 3 obtained by
the application of the GenNeuralNet algorithm. Input patterns of the network obtained will be
made up of the following features:

(chicken, scared,∼ chicken,∼ nest in trees,∼ scared).

Output patterns wil be composed of the following features:

(chicken, flies, nest in trees, scared,∼ chicken,
∼ flies,∼ nest in trees,∼ scared,⊥flies,⊥nest in trees)

Therefore the set Ψ1 of observations will be codified as the input pattern (1, 0, 0, 0, 0). When
the input pattern is fed to the neural network N1, it will output a pattern indicating which
literals can be derived. The existence of the argument 〈A1,∼ flies〉 and the observations Ψ1

will be represented as the output pattern (1, 0, 0, 0, 0, 1, 0, 0, 0, 0). On the other hand, the set
Ψ′

1 of observations will be codified as the input vector (1, 1, 0, 0, 0), and, when this pattern is
fed to N1, the existence of the arguments 〈A1,∼ flies〉, 〈B1, f lies〉, and 〈C1, nest in trees〉 as
well as the existence of contradiction on literal flies will be represented as the output pattern
(1, 1, 1, 1, 0, 1, 0, 0, 1, 0).

We now introduce another example that models some decision criteria in the stock market
domain based on [GS04, Example 2.4].

Example 2 Consider the defeasible rule base ∆2:

∆2 =


buy stock −−≺ good price.
∼ buy stock −−≺ good price, risky co.
risky co −−≺ infusion.
∼ risky co −−≺ infusion, strong partner .



scared
u-scared

- u - scared

chicken
u-chicken

∼ fliesu-

fliesu-

@
@

@
@

@@R nest in treesu-

?

-

�
�

�
�

�
�

��
- u - flies

- u - nest in trees

@
@

@- u⊥flies

A
A
A
A
A
A
A
A
AU

- u - ⊥fliesN1

u∼ chicken

- u - ∼ chicken

u - ∼ flies-∼ chicken u∼ nest in trees
- u - ∼ nest in trees

-

-∼ nest in trees u
⊥nest in trees

- u - ⊥nest in trees

u∼ scared
- u - ∼ scared-∼ scared

- u - chicken

Figure 3: Perceptron based neural network N1 obtained by the application of the GenNeuralNet
algorithm to the defeasible logic program in Example 1. The connection weights between
neurons are all equal to one and are not shown.

The defeasible rule set ∆2 expresses that is usually good to buy stock shares of a company when
they have a good price. However, it is not usually good to buy them when the company is risky.
Besides, a company is usually considered risky if it is undergoing a merger unless it has an
strong partner. This base will be represented by the neural network in Figure 4 obtained by the
application of GenNeuralNet algorithm.

If we consider the set of observations Ψ2 = {good price, infusion}, the ODeLP P2 =
〈Ψ2,∆2〉 is obtained. Then the arguments 〈A2, buy stock〉, 〈B2, risky co〉, 〈C2,∼ buy stock〉
can be derived from P2, where

• A2 = {buy stock −−≺ good price}

• B2 = {risky co −−≺ infusion}

• C2 = {(∼ buy stock −−≺ good price, risky co); (risky co −−≺ infusion)}

If we now consider the set of observations Ψ′
2 = {good price, infusion, strong partner}, the

ODeLP program P ′
2 = 〈Ψ′

2,∆2〉 is obtained. From P ′
2, the arguments obtained from Ψ2 can be

also obtained besides the argument 〈D2,∼ risky co〉 where

D2 = {∼ risky co −−≺ infusion, strong partner}.

The defeasible rule set ∆2 will be represented by the neural network in Figure 4 obtained by
the application of the GenNeuralNet algorithm. Input patterns of the network obtained will be
made up of the following features

(good price, infusion, strong partner,∼ good price,∼ infusion,∼ strong partner)

Output patterns wil be composed of the following features

(buy stock, good price, infusion, risky co, strong partner,
∼ buy stock,∼ good price,∼ infusion,∼ risky co,

∼ strong partner,⊥buy stock,⊥risky co)

Therefore the set Ψ2 of observations will be codified as (1, 1, 0, 0, 0, 0) and the existence of
the arguments 〈A2, buy stock〉, 〈B2, risky co〉, 〈C2,∼ buy stock〉, the observations Ψ2, and the
contradiction in literal buy stock will be represented as the output pattern (1, 1, 1, 1, 0, 1, 0, 0, 1, 0)
obtained from feeding the input vector to the network N2. On the other hand, the set Ψ′

2 of
observations will be codified as (1, 1, 1, 0, 0, 0) and the existence of the arguments 〈A2, buy stock〉,
〈B2, risky co〉, 〈C2,∼ buy stock〉, and 〈D2,∼ risky co〉, along with the observations Ψ′

2 and the
existence of contradiction on literals buy stock and risky co will be represented as the output
pattern (1, 1, 1, 1, 1, 1, 0, 0, 1, 1).

strong partner
strong partner

u-
∼ risky cou-

-

?
-

- u - strong partnerinfusion
infusionu-

risky cou-
∼ buy stocku-

-

�
�

- u - risky co

u - ∼ buy stocku - ∼ good priceu - ∼ infusionu - ∼ risky cou - ∼ strong partner

u - infusion
good price u-

-

-good price

- u - good price

buy stocku - u - buy stock

-
XXXXXXXXXXz

⊥buy stock

u
u - ⊥buy stock

⊥risky co

u u - ⊥risky co

�
�
�
�
���

A
A
A
A
A
A
A
AU

-

-

PPPP
?

N2

u
∼ good price

-∼ good price

-

u
∼ infusion

-∼ infusion

-

u
∼ strong partner

-∼ strong partner

-

Figure 4: Perceptron based neural network N2 obtained by the application of the GenNeuralNet
algorithm to the defeasible logic program in Example 2. The connection weights between
neurons are all equal to one and are not shown.

6 Related Work

Defeasible argumentation is a relatively young area but already mature enough to provide
solutions for other areas [CRL00, CML00, PV99]. Neural networks are also a mature area with
numerous practical applications [FS93, Koh97, KKL+00, RR95, Ska96, Was89, ZSS97].

In [CCS04] Capobianco et al. present the ODeLP framework where the process of computing
beliefs in changing environment is aided by integrating a “dialectical database” with an agent’s
program; our proposal is not aimed at replacing that database but at improving the efficiency of
mentioned process. Given an ODeLP program P = 〈Ψ,∆〉, the neural networkN obtained from
∆ and fed with Ψ can be used to determine if there exists contradiction in the agent’s knowledge
base. If there is none, then there is no need of performing a dialectical analysis; hence improving
the efficiency of the argumentation process. Moreover, the intrinsically parallel nature of neural

networks makes them appealling for efficient implementation of parts of an agent internal state;
thus speeding up the argumentation process again.

In an early work for combining neural networks and rules sets [ST89], rules are used to
initialize a backpropagation neural networks weights, whereas we build a neural network from a
set of defeasible rules. Balduccini [Bal02] proposes an algorithm for inducing a neural network
from a propositional A-Prolog logic program; while his proposal is aimed at calculating the
answer set of a logic program, our proposal is aimed at determining which literals can be
derived from an ODeLP program.

In [GC03, GC04a, GC04c], Gómez and Chesñevar propose combining a set of criteria spec-
ified as a DeLP program with a Fuzzy ART neural network model for solving ambiguities in
clustering problems. Also Gómez and Chesñevar propose combining a Counterpropagation neu-
ral network with a DeLP program for HTML document filtering in [GC04b]. In those works, a
neural network is modelled as a DeLP program while in this work the opposite is done.

7 Conclusions and Future Work

Defeasible logic programming and neural networks are powerful knowledge representation and
problem solving tools whose combination can be very fuitful. We have presented an approach
for building a neural network from a set of propositional defeasible logic rules. The neural
network built can be used to determine the set of possible inferences and contradictions that
can be obtained from that set of rules and a set of observations provided as an input pattern.

An obvious extension to this work consists of allowing atoms being defined by more of a
rule. This can be implemented by defining TLUs as described in this article and next adding
another TLU implementing the logical-OR function for rules sharing the same head.

It remains as an open issue to consider the representational power of neural networks for
the warrant process in argumentation systems. Further research will be needed in order to
establish the feasibility of that approach.

Moreover, another extension to this work consists of extending our proposal to first-order
languages. As in first-order DeLP and ODeLP arguments are only formed by ground formulas,
our proposal extends naturally to cope with the latter. Nevertheless, allowing for rules with
recursive definition has to be further studied.

References

[Bal02] Marcello Balduccini. A neural network-based approach for the computation of the answer
set of logic programs, February 1, 2002. Slides available on the web.

[Cap03] Marcela Capobianco. Argumentación Rebatible en Entornos Dinámicos. PhD thesis, Uni-
versidad Nacional del Sur, Bah́ıa Blanca, Argentina, 2003.

[CCS04] Marcela Capobianco, Carlos Iván Chesñevar, and Guillermo Simari. An argument-based
framework to model an agent’s beliefs in a dynamic environment. In Proc. of First Inter-
national Workshop of on Argumentation in Multi-Agent Systems (ArgMAS 2004). Third
International Joint Conference on Autonomous Agentes and Multi-Agent Systems (AA-
MAS 2004) New York, USA, pages 163–178, July 19-23 2004.

[CML00] Carlos Iván Chesñevar, Ana Maguitman, and Ronald Loui. Logical Models of Argument.
ACM Computing Surveys, 32(4):337–383, December 2000.

[CRL00] Daniela Carbogim, David Robertson, and John Lee. Argument-based applications to knowl-
edge engineering. The Knowledge Engineering Review, 2000.

[FS93] J. Freeman and D. Skapura. Redes Neuronales. Algoritmos, aplicaciones y técnicas de
programación. Addison-Wesley/Dı́az de Santos, 1993.

[GC03] Sergio Alejandro Gómez and Carlos Iván Chesñevar. Combining Argumentation and Clus-
tering Techniques in Pattern Classification Problems. In Proc. of the IX Argentinian Con-
ference in Computer Science (CACIC 2003), pages 601–612, 2003.

[GC04a] Sergio Alejandro Gómez and Carlos Iván Chesñevar. A Hybrid Approach to Pattern Clas-
sification Using Neural Networks and Defeasible Argumentation. In Procs. of the 17th
International FLAIRS Conference, Palm Beach, Florida,USA, pages 393–398, May 2004.

[GC04b] Sergio Alejandro Gómez and Carlos Iván Chesñevar. Combining Counterpropagation Neu-
ral Networks and Defeasible Logic Programming for Text Classification. In Proc. of the VI
Workshop of Researchers in Computer Science (WICC 2004), pages 480–484, 2004.

[GC04c] Sergio Alejandro Gómez and Carlos Iván Chesñevar. Integrating Defeasible Argumentation
with Fuzzy ART Neural Networks for Pattern Classification. In Journal of Computer
Science and Technology, volume 4(1), pages 45–51, April 2004.

[GS04] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible Logic Programming: An Argu-
mentative Approach. Theory and Practice of Logic Programming, 4(1):95–138, 2004.

[Gur99] Kevin Gurney. Computers and symbols versus nets and neurons, 1999.

[KKL+00] Teuvo Kohonen, Samuel Kaski, Krista Lagus, Jarkko Salojärvi, Jukka Honkela, Vesa
Paatero, and Antti Saarela. Self organization of a massive document collection. IEEE
Transactions on Neural Networks, Vol. 11, No. 3, May 2000, 2000.

[Koh97] Teuvo Kohonen. Self-Organizing Maps. Second Edition. Springer-Verlag Berlin Heidelberg,
1997.

[MP43] W. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, (7):115–133, 1943.

[PV99] Henry Prakken and Gerard Vreeswijk. Logics for Defeasible Argumentation. In Dov Gab-
bay, editor, Handbook of Philosophical Logic. Kluwer Academic Publisher, 1999.

[RR95] V. Rao and H. Rao. C++ Neural Networks and Fuzzy Logic, Second Edition. MIS Press,
1995.

[SGCS03] Frieder Stolzenburg, Alejandro Garćıa, Carlos I. Chesñevar, and Guillermo R. Simari.
Computing Generalized Specificity. Journal of Non-Classical Logics, 13(1):87–113, 2003.

[Ska96] David Skapura. Building Neural Networks. ACM Press, Addison-Wesley, 1996.

[SL92] Guillermo R. Simari and Ronald P. Loui. A Mathematical Treatment of Defeasible Rea-
soning and its Implementation. Artificial Intelligence, 53:125–157, 1992.

[ST89] J. Shavlik and G. Towell. An approach to combining explanation-based and neural learning
algorithms. Connection Science, 1(3):233–255, 1989.

[Was89] Philip D. Wasserman. Neural Computing. Theory and Practice. Van Nostrand Reinhold,
1989.

[ZSS97] M. Zeller, R. Sharma, and K. Schulten. Motion planning of a pneumatic robot using a
neural network. IEEE Control Systems, June 1997.

