
Analyzing the Defeat Relation

in Observation-based Defeasible Logic Programming

M. Capobianco1

mc@cs.uns.edu.ar

C. I. Chesñevar1,2

cic@eps.udl.es

G. R. Simari1

grs@cs.uns.edu.ar

1 Dpto. de Cs. e Ing. de la Computación – Universidad Nacional del Sur – Argentina
2 Departament of Computer Science – Universitat de Lleida – España

Abstract

In the last decade several ways to formalize defeasible reasoning have been studied. A

particular approach, defeasible argumentation, has been particularly successful to achieve

this goal.

The inference process of argument-based systems is based on the interaction of ar-

guments for and against certain conclusions. The relations of attack and defeat among

arguments are key elements in these inference process. Usually a preference criterion

is used to calculate the defeat relation to decide, in case of conflict, which argument is

preferred over its contender.

Specificity is a domain independent principle that has been used in several formalisms.

In this work we analyze the problem of incorporating specificity to characterize defeat in a

particular argumentative framework, called Observation Based Defeasible Logic Program-

ming. Since efficiency is an important issue in ODeLP, we have devised a new version of

this criterion, that optimizes the computation of the defeat relation. We also present a

formal proof to show that this new version is equivalent to the old one.

Keywords: knowledge representation, defeasible reasoning, argumentation.

1 Introduction

In the last decade several ways to formalize defeasible reasoning have been studied[6, 13, 19, 1,
18]. A particular approach, defeasible argumentation[5, 15], has been particularly successful to
achieve this goal. Defeasible argumentation is built on the notions of arguments, counterargu-
ments, attack and defeat. The inference process is based on the interaction of arguments for
and against certain conclusions.

The relations of attack and defeat among arguments are key elements in argument-based
frameworks. Attack (also called counterargument) denotes conflict among arguments. Evalu-
ating conflicting pairs of arguments (that is, determining whether an attack among arguments
is successful) is the function of the defeat relation. Usually a preference criterion is used to
analyze which argument is preferred over its contender.

The field of defeasible argumentation has not yet reached a full maturity, and researchers
disagree on many issues, such as which preference criterion should be used to choose among

competing arguments. Some authors believe that general principles for measuring arguments
do not exist, and therefore rely on user-defined criteria, dependent on particular domains [15].

Specificity is a domain independent principle that has been used in several formalisms
[12, 17, 7]. Specificity prefers arguments which are more direct or more informed (i.e., contain
more specific information). It has been argued by some researchers that this criterion cannot
be used as a general principle of common sense reasoning [15]. Nevertheless, specificity is the
only known syntactic-based principle for deciding between conflicting arguments.

In this work we analyze the problem of incorporating specificity to characterize defeat in a
particular argumentative framework, called Observation Based Defeasible Logic Programming,
ODeLP [2]. Efficiency is an important issue in ODeLP, since this framework is designed for
representing the knowledge of intelligent agents in real world applications. Computing speci-
ficity using domain knowledge is a demanding operation. Thus, we have devised a new version
of this criterion, that optimizes the computation of the defeat relation. We present a formal
proof to show that this new version is equivalent to the old one. We also analyze the role of
the preference criterion in the context of argumentative frameworks.

The rest of the paper is structured as follows. First, in Section 2 we detail the main elements
of the ODeLP formalism, particularly the defeat relationship. Section 3 discusses the proposed
alternative for computing specificity in ODeLPand Section 4 contains the formal equivalence
results between the traditional criterion and the new one. Finally Section 5 presents some
conclusions and outlines future work.

2 The ODeLP Framework

Defeasible Logic Programming (DeLP) [7] provides capabilities for knowledge representation
and reasoning that uses defeasible argumentation to decide between contradictory conclusions
through a dialectical analysis. Codifying the knowledge base of the agent by means of a DeLP

program provides a good trade-off between expressivity and implementability. DeLP has been
used to model the behavior of a single intelligent agent in a static scenario (e.g. clustering algo-
rithms [10] and intelligent web search [3]), but lacks the appropriate mechanisms to represent
knowledge in dynamic environments, where agents must be able to perceive the changes in the
world and integrate them into its existing beliefs [11].

The ODeLP framework aims at solving this problem by modeling perception and optimizing
the inference system, to cope with time restrictions of dynamic environments. The language
of ODeLP is based on the language of logic programming. Concepts like signature, alphabet
and atoms are used in their description with their usual meaning. Literals are atoms that may
be preceded by the symbol “∼” denoting strict negation, as in ELP [9]. ODeLP programs are
formed by observations and defeasible rules. Observations correspond to facts in the context
of logic programming, and represent the knowledge an agent has about the world. Defeasible
rules provide a way of performing tentative reasoning as in other argumentation formalisms
[17, 14].

Definition 1. ([Observation]–[Defeasible Rule]) An observation is a ground literal L repre-
senting some fact about the world, obtained through the perception mechanism, that the agent
believes to be correct. A defeasible rule has the form L0

–≺ L1, L2, . . . , Lk, where L0 is a literal
and L1, L2, . . . , Lk is a non-empty finite set of literals. �

Based on these elements, programs in ODeLP are defined as follows:

poor performance(john).

sick(john).

good performance(peter).

unruly(peter)

suspend(X) –≺ ∼responsible(X).
suspend(X) –≺ unruly(X).
∼suspend(X) –≺ responsible(X).
∼responsible(X) –≺ poor performance(X).
responsible(X) –≺ good performance(X).
responsible(X) –≺ poor performance(X),sick(X).

Figure 1: An ODeLP program for assessing the status of employees in a company

Definition 2. ([ODeLP Program])An ODeLP program is a pair 〈Ψ, ∆〉, where Ψ is a finite set
of observations and ∆ is a finite set of defeasible rules. In a program P, the set Ψ must be
non-contradictory (i.e., it is not the case that Q ∈ Ψ and ∼Q ∈ Ψ, for any literal Q). �

Example 2.1. Fig. 1 shows an ODeLP program. Observations describe that John has a poor
performance at his job, John is currently sick, and Peter also has a good performance, but is
unruly. Defeasible rules deal with the evaluation of the employees’ performance, according with
their responsibility in the job. If a given person is not responsible in his/her job then he/she
could be suspended, a responsible person should not be suspended, and a person is hold as
responsible (or not responsible) considering his/her performance in the company. �

Given an ODeLP program P, a query posed to P corresponds to a ground literal Q which
must be supported by an argument [17, 7]. Arguments are built on the basis of a defeasible
derivation computed by backward chaining applying the usual SLD inference procedure used
in logic programming. Observations play the role of facts and defeasible rules function as
inference rules. In addition to provide a proof supporting a ground literal, such a proof must
be non-contradictory and minimal for being considered as an argument in ODeLP. Formally:

Definition 3. ([Argument – Sub-argument])Given a ODeLP program P, an argument A for
a ground literal l, also denoted 〈A, l〉, is a subset of ground instances of the defeasible rules
in P such that: (1) there exists a defeasible derivation for l from Ψ ∪ A, (2) Ψ ∪ A is non-
contradictory, and (3) A is minimal with respect to set inclusion in satisfying (1) and (2). Given
two arguments 〈A1, l1〉 and 〈A2, l2〉, we will say that 〈A1, l1〉 is a sub-argument of 〈A2, l2〉 iff
A1 ⊆ A2. �

As in most argumentation frameworks, arguments in ODeLP can attack each other. This
situation is captured by the notion of counterargument. Defeat among arguments is defined
combining the counterargument relation and a preference criterion “�”, that must be a partial
order.

Definition 4. ([Counter-argument])An argument 〈A1, l1〉 counter-argues an argument 〈A2, l2〉
at a literal l if and only if there is a sub-argument 〈A, l〉 of 〈A2, l2〉 such that l1 and l are
complementary literals. �

Definition 5. ([Defeater])An argument 〈A1, l1〉 defeats 〈A2, l2〉 at a literal l if and only if there
exists a sub-argument 〈A, l〉 of 〈A2, l2〉 such that 〈A1, l1〉 counter-argues 〈A2, l2〉 at l, and either:

1. 〈A1, l1〉 is strictly preferred over 〈A, l〉 according to the preference criterion “�” (then
〈A1, l1〉 is a proper defeater of 〈A2, l2〉), or

2. 〈A1, l1〉 is unrelated to 〈A, l〉 by “�” (then 〈A1, l1〉 is a blocking defeater of 〈A2, l2〉).

�

Defeaters are arguments and may in turn be defeated. Thus, a complete dialectical analysis
is required to determine which arguments are ultimately accepted. Such analysis results in
a tree structure called dialectical tree, in which arguments are nodes labeled as undefeated
(U-nodes) or defeated (D-nodes) according to a marking procedure. Formally:

Definition 6. ([Dialectical Tree]) The dialectical tree for an argument 〈A, l〉, denoted T〈A,l〉, is
recursively defined as follows:

1. A single node labeled with an argument 〈A, l〉 with no defeaters (proper or blocking) is
by itself the dialectical tree for 〈A, l〉.

2. Let 〈A1, l1〉, 〈A2, l2〉, . . . , 〈An, ln〉 be all the defeaters (proper or blocking) for 〈A, l〉. The
dialectical tree for 〈A, l〉, T〈A,l〉, is obtained by labeling the root node with 〈A, l〉, and mak-
ing this node the parent of the root nodes for the dialectical trees of 〈A1, l1〉, 〈A2, l2〉, . . . , 〈An, ln〉

�

Definition 7. ([Marking of the Dialectical Tree])Let 〈A1, l1〉 be an argument and T〈A1,l1〉 its
dialectical tree, then:

1. All the leaves in T〈A1,l1〉 are marked as a U-node.

2. Let 〈A2, l2〉 be an inner node of T〈A1,l1〉. Then 〈A2, l2〉 is marked as U-node iff every child
of 〈A2, l2〉 is marked as a D-node. The node 〈A2, l2〉 is marked as a D-node if and only if
it has at least a child marked as U-node.

�

Dialectical analysis may in some situations give rise to fallacious argumentation [16]. In
ODeLP dialectical trees are ensured to be free of fallacies [2] by applying additional constraints
when building argumentation lines (the different possible paths in a dialectical tree). A detailed
analysis of these issues is outside the scope of this paper.

Given a query Q and an ODeLP program P, we will say that Q is warranted wrt P iff there
exists an argument T〈A,Q〉 such that the root of its associated dialectical tree T〈A,Q〉 is marked
as a U-node.

Definition 8. ([Warrant]) Let A be an argument for a literal Q, and let T〈A,Q〉 be its associated
dialectical tree. A is a warrant for Q if and only if the root of T〈A,Q〉 is marked as a U-node. �

Solving a query Q in ODeLP accounts for trying to find a warrant for Q, as shown in the
following example.

Example 2.2. Consider the program shown in Example 2.1, and let suspend(john) be a query
wrt that program. The search for a warrant for suspend(john) will result in an argument
〈A, suspend(john)〉 with two defeaters 〈B, ∼suspend(john)〉 and 〈C, responsible(john)〉,
where

�
�
�

L
L

L
B

U

�
�
�

L
L

L
C

U
�

�
�

@
@

@
�
�
�

L
L

L
A

D

Figure 2: Dialectical tree from Example 2.2

• A = {suspend(john) –≺ ∼responsible(john);
∼responsible(john) –≺ poor performance(john)}.

• B = {∼suspend(john) –≺ responsible(john);
responsible(john) –≺ poor performance(john),sick(john)}.

• C = {responsible(john) –≺ poor performance(john),sick(john)}.

Using specificity as the preference criterion, 〈B, ∼suspend(john)〉 is a blocking defeater for
〈A, suspend(john)〉, and 〈C, responsible(john)〉 is a proper defeater for 〈A, suspend(john)〉.
The associated dialectical tree is shown in Fig.2. The marking procedure determines that the
root node 〈A, suspend(john)〉 is a D-node and hence suspend(john) is not warranted. �

3 Characterizing Defeat in OdeLP

In the past section we defined the defeat relation parameterized wrt to the preference criterion,
like in the DeLP system. Nevertheless, we also propose a defeat criterion that can be used
when no specific information about the domain is provided by the user. To this end, we have
defined a particular version of specificity, adapted for ODeLP. In DeLP, an special version of
this criterion was defined [7]. This version could be adapted for ODeLP in a simple manner:

Definition 9. (ODeLP Specificity (1)) Let P be an ODeLP program and lit(P) the set of
ground literals that can be derived from P. An argument 〈A1, l1〉 is strictly more specific than
an argument 〈A2, l2〉 (noted as 〈A1, l1〉 � 〈A2, l2〉) iff: (1) For every L ⊆ lit(P) holds that
L ∪ A1

|∼ l1 and L /|∼ l1 imply that L ∪ A2
|∼ l2; and (2) There exists L′ ⊆ lit(P) such that

L′ ∪ A2
|∼ l2, l2 6∈ L′ and L′ ∪A1 /|∼ l1. �

To understand definition 9, lets analyze the first condition. As a general rule this holds for
a non-empty set L, given that arguments do not contain facts, and L is said to activate A1.
The restriction L /|∼ l1 avoids trivial cases, forcing the use of L to derive l1. Thus, definition
9 can be paraphrased as 〈A1, l1〉 is more specific than 〈A2, l2〉 iff for every set L such that L
non-trivially activates 〈A1, l1〉 it holds that L non-trivially activates 〈A2, l2〉.

Example 3.1. The argument 〈C, responsible(john)〉 in example 2.2 is more specific than
〈D, ∼responsible(john)〉, where D = {∼responsible(john) –≺ poor performance(john)}. Ap-
plying definition 9, every subset of lit(P) that activates C also activates D, but there is a subset
of lit(P) ({poor performance(john)}) that activates D and does not activate C. �

Observation 3.1. There is an alternative formulation for this definition that can be stated
as follows: Let P be a ODeLP program and lit(P) the set of basic literals that can be derived
from P. An argument 〈A1, l1〉 is more especific that an argument 〈A2, l2〉 (noted as 〈A1, l1〉 �
〈A2, l2〉) if and only if for every L ⊆ lit(P) it holds that L ∪ A1

|∼ l1 and L /|∼ l1 imply that
L ∪A2

|∼ l2. 〈A1, l1〉 is strictly more especific than 〈A2, l2〉 (noted as 〈A1, l1〉 � 〈A2, l2〉) if and
only if 〈A1, l1〉 � 〈A2, l2〉 and 〈A2, l2〉 /� 〈A1, l1〉. This alternative definition has been used in
related works [4, 8].

Definition 9 retains the underlying idea of specificity according to Poole’s work [12] and it is
technically correct. Nevertheless, it could have practical drawbacks. Computing the subsets of
lit(P) is a demanding operation. ODeLP is an argumentative formalism intended for real-world
applications in dynamic environments, and therefore efficiency is an important issue. Hence,
we have devised a new version of specificity, where a smaller number of activation sets must be
considered.

Definition 10. (ODeLP specificity (2)) An argument 〈A1, l1〉 is strictly more specific than an
argument 〈A2, l2〉 (noted as 〈A1, l1〉 � 〈A2, l2〉) iff: (1) for every L ⊆ literals(A1) it holds that
L∪A1

|∼ l1 and L /|∼ l1 imply that L∪A2
|∼ l2; and (2) there exists L′ ⊆ literals(A1) such that

L′ ∪ A2
|∼ l2, l2 6∈ L′ and L′ ∪A1 /|∼ l1. �

In definition 10 only the subsets of the literals in the language generated by A1 must be
taken into account. This optimizes the preference criterion and speeds up its implementation.
In example 3.1 we can verify that the subset {poor performance(john)} is also a subset of
the literals in C, and thus the example still complains with the new definition.

Observation 3.2. As in definition 9, definition 10 also has the following equivalent formu-
lation: an argument 〈A1, l1〉 is more specific than an argument 〈A2, l2〉 (noted as 〈A1, l1〉 �
〈A2, l2〉) if and only if for each L ⊆ literals(A1) it holds that H ∪ A1

|∼ l1 and L /|∼ l1 implies
that L ∪ A2

|∼ l2. 〈A1, l1〉 is strictly more specific than 〈A2, l2〉 (noted as 〈A1, l1〉 � 〈A2, l2〉) if
and only if 〈A1, l1〉 � 〈A2, l2〉 and 〈A2, l2〉 /� 〈A1, l1〉.

Definition 10 is computationally more efficient than definition 9. Still, before advising its
use, we must be prove that both criteria are equivalent, that is to say, that definition 10 can
be applied with no changes in the semantic associated to the ODeLP system.

4 Equivalence results

In this section we present a formal proof to the claim that both definitions of specificity,
optimized and traditional, are equivalent. Note that in the proof of this claim we will use the
alternative formulations of definitions 9 and 10, introduced respectively in observations 3.1 and
3.2, given that it simplifies the demonstrations.

First, we present two auxiliar results that will be used in the main proof. Proposition
4.1 shows that every activation set L of an argument A has a non empty intersection with
literals(A) (that is to say, both sets must have literals in common).

Proposition 4.1. For every non-trivial activation set L of an argument A for l, such that
L ∪ A |∼ l and l /∈ L it holds that L ∩ literals(A) 6= ∅ �

Proof 1. Suppose that L is a non trivial activation set for an argument 〈A, l〉, such that
L ∩ literals(A) = ∅. Since L is a non-trivial activation set of A, there must exist a defeasible
derivation for l from A ∪ L. Nevertheless, it is not possible to build a derivation from A ∪ L
for a literal li such that li ∈ literals(A). Then, L ∪ A /|∼ li and in particular, L ∪ A /|∼ l. This
contradiction arises from the initial supposition that L ∩ literals(A) = ∅. �

Given an argument B and a set of literals L, we only have to consider the literals in L
that belongs to the rules in B to decide if L activates this argument. According to this, the
following lemma shows that meaningful elements of an activation set for a given argument B
are the literals that belong to the rules of that argument.

Lemma 4.1. Let 〈A, l〉 be an argument built from a program P, and let L1 and L2 be two set
of literals that are included in the signature of P such that L1 ∩ literals(A) = L2 ∩ literals(A).
Then L1 activates A if and only if L2 activates A.

Proof 2. (1) ⇒ (2): Suppose that L1 activates A and L2 does not. Then there exists a
derivation δ for l that can be built using the literals in L1 and the rules in A. Since L1 ∩
literals(A) = L2 ∩ literals(A) this same derivation can be used to obtain l from L2 ∪A, since
every rule in A that can be applied using the literals in L1 can also be applied using the literals
in L2. Therefore L2 activates A. This contradiction arose from the initial suposition that that
L1 activates A and L2 does not. The proof in the other way ((2) ⇒ (1)) goes in a similar
manner. �

Finally, we prove the equivalence among both formulations of specificity, using lemma 4.1
and proposition 4.1.

Theorem 4.1. Definitions 10 and 9 are equivalent. �

Proof 3. As it was previously remarked in observation 3.1, definition 9 can also be stated as
follows: an argument 〈A1, l1〉 is more especific that an argument 〈A2, l2〉 (noted as 〈A1, l1〉 �
〈A2, l2〉) if and only if for every L ⊆ lit(P) it holds that L ∪ A1

|∼ l1 and L /|∼ l1 imply that
L ∪ A2

|∼ l2.
Analogously, definition 10 can be stated as: an argument 〈A1, l1〉 is more specific than an

argument 〈A2, l2〉 (noted as 〈A1, l1〉 � 〈A2, l2〉) if and only if for each L ⊆ literals(A1) it holds
that H ∪ A1

|∼ l1 and L /|∼ l1 implies that L ∪A2
|∼ l2.

Thus, to show the equivalence between both definitions, we will the equivalence among these
two claims, that is to say, we will show that if 〈A1, l1〉 and 〈A2, l2〉 are two arguments with
respect to a program P and lit(P) is the set of basic literals that can be derivated from P, then
the following conditions are equivalents:

1. For every L ⊆ lit(P) it holds that L ∪ A1
|∼l1 and L /|∼ l1 imply that L ∪A2

|∼l2.

2. For every L ⊆ literals(A1) it holds that L ∪A1
|∼l1 and L /|∼ l1 imply that L ∪ A2

|∼l2.

(1) ⇒ (2): In this case the proof is trivial, (the second clause is a particular case of the first
one).
(2) ⇒ (1): Suppose by contradiction that this implication does not hold. Then, there must
exists a set L1 of basic literals such that L1 /⊆ literals(A1), L1 non trivially activates A1 and
L1 does not activate A2. Applying proposition 4.1 we can conclude that L1 ∩ literals(A1) 6= ∅
(given that L1 activates A1). Then there exists another activation set L2 such that L2 =

L1∩ literals(A1) y L2 ⊂ literals(A1). Since L1∩ literals(A1) = L2∩ literals(A1) we can apply
lemma 4.1 and conclude that L2 activates A1. Given our initial hypothesis, L2 also activates
A2 and since L2 ⊂ L1, L1 must activate A2. This contradicts the initial supposition that L1

does not activate A2. This contradiction arises from supposing the existence of the set L1.
Thus, (2) ⇒ (1). �

5 Conclusions

Even though domain-dependent criteria can be useful in many situations, they set an extra
burden on the user. In many domains, codifying the preference relation is not straightforward.
Therefore, we have devised a new version of specificity tailored for the ODeLP system. The
proposed definition is computationally attractive and provides a default criterion to be used
in case no particular criterion has been defined. Moreover, equivalence results stated by the
formal proof in section 4 assure us that definition 10 can be used in place of 9 without changing
the semantics of the system.

The defeat relation is an important component of argumentative systems, and its definition
directly affects the behavior of the formalism. If user-defined criteria are permitted, a set of
standard conditions should be specified over it.

Some authors believe that the preference criterion should induce a partial order on the
set of arguments (as [17, 16, 7]), while Vreeswijk [19] devised a different set of conditions.
Nevertheless, developing an agreed set of adequate conditions is still an open problem. The
partial order approach is reasonable, but could be too restrictive. As future work, it could be
interesting to explore (using a particular framework as an study case) how different restrictions
in the preference criterion vary the set of properties of the framework.

Acknowledgements

This research was partially supported by Projects TIC2001-1577-C03-01 and TIC2003-00950,
by Ramón y Cajal Program (Ministerio de Ciencia y Tecnoloǵıa, Spain), by Secretaŕıa General
de Ciencia y Tecnoloǵıa de la Universidad Nacional del Sur (24/N016) and by Agencia Nacional
de Promoción Cient́ıfica y Tecnológica (PICT 2002 No. 13096). The first author is also partially
supported by a fellowship of the Comisión de Investigaciones Cient́ıficas (CIC).

References

[1] Amgoud, L., and Cayrol, C. A reasoning model based on the production of acceptable
arguments. Annals of Mathematics and Artificial Intelligence 34 (2002), 197–215.

[2] Capobianco, M. Argumentación rebatible en entornos dinámicos. PhD thesis, Universi-
dad Nacional del Sur, Bah́ıa Blanca, Argentina, June 2003.

[3] Chesñevar, C., and Maguitman, A. ArgueNet: An Argument-Based Recommender
System for Solving Web Search Queries. In Proc. of Intl. IEEE Conference on Intelligent
Systems (IS-2004). Varna, Bulgaria (to appear) (June 2004).

[4] Chesñevar, C. I., Dix, J., Stolzenburg, F., and Simari, G. Relating defeasible
and normal logic programs through transformation properties. In Proceedings of the 1st

Workshop en Agentes y Sistemas Inteligentes (WASI), 6th Congreso Argentino de Ciencias
de la Computaci n (CACIC) (Ushuaia, Oct. 2000), Universidad Nacional de la Patagonia,
pp. 371–382.

[5] Chesñevar, C. I., Maguitman, A., and Loui, R. Logical Models of Argument. ACM
Computing Surveys 32, 4 (Dec. 2000), 337–383.

[6] Dung, P. M. On the Acceptability of Arguments and its Fundamental Role in Nonmono-
tonic Reasoning and Logic Programming and n-Person Games. Artificial Intelligence 77,
2 (1995), 321–357.

[7] Garćıa, A., and Simari, G. Defeasible Logic Programming: An Argumentative Ap-
proach. Theory and Practice of Logic Programming 4, 1 (2004), 95–138.

[8] Garćıa, A. J. La Programación en Lógica Rebatible: Lenguaje, Semántica Operacional,
y Paralelismo. PhD thesis, Departamento de Ciencias de la Computación, Universidad
Nacional del Sur, Bah́ıa Blanca, Argentina, Dec. 2000.

[9] Gelfond, M., and Lifschitz, V. Classical negation in logic programs and disjunctive
databases. New Generation Computing (1991), 365–385.

[10] Gomez, S., and Chesñevar, C. A Hybrid Approach to Pattern Classification Using
Neural Networks and Defeasible Argumentation. In Proc. of Intl. FLAIRS Conference.
Florida, USA (to appear) (May 2004).

[11] Pollock, J. L. Taking Perception Seriously. In Proceedings of the 1st International
Conference on Autonomous Agents (Feb. 1997), pp. 526–527.

[12] Poole, D. L. On the Comparison of Theories: Preferring the Most Specific Explanation.
In Proceedings of the Ninth International Joint Conference on Artificial Intelligence (1985),
IJCAI, pp. 144–147.

[13] Prakken, H., and Sartor, G. A System for Defeasible Argumentation with Defeasible
Priorities. In Proceedings of the International Conference on Formal and Applied Practical
Reasoning (1996), Springer Verlag, pp. 510–524.

[14] Prakken, H., and Sartor, G. Argument-based extended logic programming with
defeasible priorities. Journal of Applied Non-classical Logics 7 (1997), 25–752.

[15] Prakken, H., and Vreeswijk, G. Logical systems for defeasible argumentation. In
Handbook of Philosophical Logic, D. Gabbay, Ed., vol. 4. Kluwer Academic Publisher, 2002,
pp. 219–318.

[16] Simari, G. R., Chesñevar, C. I., and Garćıa, A. J. The Role of Dialec-
tics in Defeasible Argumentation. In Proceedings of the XIV Conferencia Internacional
de la Sociedad Chilena para Ciencias de la Computación (Nov. 1994), pp. 111–121.
http://cs.uns.edu.ar/giia.html.

[17] Simari, G. R., and Loui, R. P. A Mathematical Treatment of Defeasible Reasoning
and its Implementation. Artificial Intelligence 53, 1–2 (1992), 125–157.

[18] Verheij, B. Rules, Reasons and Arguments: formal studies of argumentation and defeat.
PhD thesis, Maastricht University, Department of Computer Science, Maastricht, Holanda,
Dec. 1996.

[19] Vreeswijk, G. Abstract Argumentation Systems. Artificial Intelligence 90, 1–2 (1997),
225–279.

