A Weight-Based Algorithm to deal with Due Dates
in Flexible Package Production Scheduling

Francisco Ibafiez, German Zavalla, Daniel Diaz, Raymundo Forradellas
LISI — Laboratorio Integrado de Sistemas Inteligentes
Instituto de Informatica — Dpto. de Informatica
Universidad Nacional de San Juan
{fibanez, ddiaz, kike}@iinfo.unsj.edu.ar

Abstract

This paper is an extension of a previous paper published in [2]. In this
problem it is necessary to schedule several jobs that involve four process and for
each one of them there is a group of machines available (of similar characteristics).
Each activity is performed on just one machine. Besides, for our application, the
scheduling must try to verify certain conditions. For each process (and consequently
for all the activities that perform this process) there is a list of attributes.

The problem is not only to assign each activity to a starting time and to a specific
machine, but also to try to verify conditions that depend on the values of the
attributes of the activities. Moreover, there are criteria to choose a particular
machine.

An approach to solve this problem was presented firstin [1]. As mentioned
there, some due dates could not be fulfilled on time. An approach to
decrease the quantity of due dates violations was presented in [2]. Roughly
speaking, the algorithm presented in [1] is entirely dedicated to verify as
many conditions as possible disregarding due dates violations. By the other
hand, the algorithm shown in [2] was focussed to reduce the number of due
dates violations paying the price of decreasing the fulfilment of conditions.
Roughly speaking, the first approach favour the company whereas the
second one is more convenient for the customers.

The present work includes an algorithm which allows to assign weights to
set an appropriate trade-off between due date violations reduction and
fulfillment of conditions.

Keywords: Applications, Scheduling Problems, Constraints Satisfaction, Production, Flexible
Packaging.

1. Introduction

This paper is an extension of a previous paper published in [2]. The problem
consist on scheduling several jobs, which involve four process: Printing, Laminating,
Cutting and Packing. For each one of them there is a group of machines available (of
similar characteristics). Each job is described by a list of four activities of given
processing times, that perform the mentioned processes in that order. Each activity is
performed on just one machine. For example, if a represents a printing activity and
{My, ...,My} represent the set of machines capable of executing the printing process, a
will be performed by a member of the set {M;, ...,Mx}. For our application the
scheduling must also try to verify certain conditions.

For each process (and for all the activities that perform this process) there is a list
of attributes. For the printing process, the attributes are: ink line, duration of the
(printing) process, etc. These attributes are also associated to the machines but their
values depend on the time. For each printing machine My, ...,My, the values of the
attributes at time ¢ are defined as equal to the values of the attributes of the activity
that is being performed at time ¢. If no activity is being performed at ¢, these values
are set to those of the last activity performed before ¢. For each attribute, there is a
condition that must try to satisfy the schedules of the machines My, ...,My. Given a
machine M and an activity a, each condition associated to M is evaluated at time ¢, as
a function of the value of the corresponding attribute of M at time ¢, and the value of
the same attribute of a. For example, for the attribute ink line, (corresponding to the
printing process) the condition is to preserve the ink line. If the activity a uses
machine M and is scheduled starting at time ¢, the condition o preserve the ink line
holds at time ¢, if the value of the attribute ink line for M at time ¢ is equal to the value
of the attribute ink line of the activity a. In the practical application, the verification
of this condition represents the fact that the activity a and the previous one use the
same ink line.

The problem is to assign each activity to a starting time and to a specific machine
trying to verify the conditions. This problem can be considered as a Multi-Objective
COmbinatorial (MOCO) problems where the objectives are determined by the
conditions. In the bibliography that we have found about MOCO problems, the multi-
objective functions are evaluated after finding a solution (see for example [4] & [5]).
In our problem, the objectives to be fulfilled have a very peculiar characteristic: The

conditions (i.e. to preserve ink line, etc.) that must be verified, are associated with
pairs of activities scheduled consecutively in one machine. The nature of these
conditions allows the algorithm to evaluate the objectives in each step that leads to a
solution, as opposed to evaluating the multi-objective function after the whole
solution was found, as it is done in the other approaches. A comparison of these
approaches would be deceptive since we take advantage of particular features of our
problem that allows us to guide our search for solutions whereas the other approaches
are much more general. The problem has been initially modeled in [1], using
alternative resource sets [3]

From now on alternative resource sets will be referred as AltResSets. An
AltResSet is a compound resource that contains two or more equivalent resources,
called alternative resources , to which activities can be assigned. An AltResSet is
defined for each process. Each AltResSet represents a set of machines such as {M;,
...,Mx} and contains k alternative resources that represent the machines My, ...,M.

Two competitive objectives are relevant in this problems: to try to verify as many
conditions as possible, and to meets due dates.

When conditions are not verified, the factory has a cost. For instance, if the ink
line is not preserved, additional set up times for changing the ink line are necessary
increasing the waste of ink and degrading the use of the printing machine. By the
other hand, if due dates are nor met, penalties have to be usually paid.

Assume that two different schedules are produced. The first one tends to meets
due dates, whereas the second one tends to verify as many conditions as possible.

Which schedule should be chosen?

If we know that there will be low demand in the near future, it is normally better to
chose the first schedule. By doing so, more due dates are met and the consequent bad
use of machines do not seriously affect the future performance since the demand in
the near future is low. On the contrary, if a high demand for the near future is
foreseen, the first schedule will avoid due date violations for the time being, but the
resources are forced to be available later (bad use of machines due to Set Ups) and
therefore it is quite likely that new due date violations will arise in the near future. As
a result, the second schedule is more appropriate.

Generalizing this concepts, we are facing basically two competitive criteria. One is
to minimize the number of due date violations and the other is to verify as many
conditions as possible.

The first criterion is basically customer satisfaction oriented, whereas the second
one is usually more convenient for the company.

The present work includes an algorithm which allows to assign weights to set an
appropriate trade-off between due date violations reduction and fulfillment of
conditions.

In [2], no objective function is used. Instead, different measures to evaluate the
quality of the results are provide. In this paper, an objective function that depends on
the assigned weights is included and the algorithm chooses the schedule that
maximize the objective function. In this way, the output depends on the assigned
weights, that are set to meets more due dates (customer oriented) or to verify more
conditions (company oriented).

2. Solving the problem

In order to take into account the due dates, we define two attributes associated to
the activities: PriorityWeight and MaxEnd.

Each job J has a due date, referred as dueDate(J). The values of the attribute
MaxEnd are set by executing the following pre-processing:

For each job J
{Let a;, a,, a; and a, be the activities belonging to the jobJ (Printing,
Laminating, Cutting and Packing, respectively)
as.MaxEnd = dueDate(J)
fori=3 downto 1 {a.MaxEnd = aj;;.MaxEnd — duration(a;+;) }

}

For each activity a, a. MaxEnd represent the maximum time in which the activity a
can finish. This value does not change during the execution of the algorithm, whereas
a.PriorityWeight is initially set to 0 and it increases its value every time that a. End >
a.MaxEnd in the reached solution (a. End represents the end of the activity a). It has
been assumed that each activity requires only one A/tResSet.

Let AltResSets, AltResources, and Conditions represent: all the AltResSets, all the
alternative resources, and all the conditions, respectively. Below we included the
functions involved in the algorithms.

StartMin: takes as argument an activity not scheduled, and returns the minimal
possible start time.

AltResSet: takes as argument an activity, and returns the AltResSet required by this
activity.

Verify: takes as arguments an activity act, an alternative resource al/tRest, and a
condition cond, and returns 1 if act verify the condition cond at the time
StartMin(act) with respect to the alternative resource altRest. Otherwise the function
returns 0.

Conds: takes as argument an AltResSet, and returns the set of conditions
associated with the argument.

Possible: takes as arguments, an activity act, and an alternative resource altRes,
and returns 1 if it is possible to assign altRes to act at the time StartMin(act).
Otherwise it returns 0.

Weight: Takes a condition and returns a value that represents the degree of
importance of that condition.

AltRes: takes an AltResSet and returns the set of alternative resources that are part
of the AltResSet.

AltResPreference: takes an activity and an alternative resource, and returns a non
negative integer number, whose value is set according to the convenience of
assigning the alternative resource to the activity.

Given, an activity a, an AltResSet altResSet, an Alternative Resource
altRes eAltRes(altResSet), and conds = Conds(AltResSet), the functions
AltConvenience, AltResSetConvenience and ActivityConvenience are defined as
follows:

AltConvenience(a, altRes , conds) =

Possible(a, altRes) * (AltResPreference(a, altRes)

+ Decconas Verify(a, altRes,c)*Weight(c)) + a.PriorityWeight)
AltResSetConvenience(act, altResSet) =

Max qiures caiiresaitresseyy AltConvenience(act, altRes, Conds(altResSet))
ActivityConvenience(act) = AltResSetConvenience(act, AltResSet(act))

2.1. Obtaining a solution

The next algorithm produces a solution in which the number of due dates violation
depend on the value of the attribute PriorityWeight assigned to each activity.
Activities represent the set of all the activities that have to be scheduled.

repeat

Min = Min acte Activities StartMin(act)

(Get the minimum time in which it is possible to schedule an activity).

MinSet = {acte Activities : StartMin(act) = Min}

(Get the set of activities with minimum start time Min)

MaxConvenience = Max aereminset ActivityConvenience(act)

Pairs = {(a, altRes) : acMinSet, r = AltResSet(a), altReseAltRes(r),

conds = Conds(r), AltConvenience(a, altRes, conds) = MaxConvenience }
(Get the set of pairs Activity-AlternativeResource
that maximise the function AltConvenience).

Select (randomly) an element of the set Pairs. Let’s say (a, altRes).

Schedule the activity a at time Min assigning the alternative resource altRes.
until All the activities are scheduled

Algorithm 1. Algorithm to obtain a solution

2.2 Reducing due dates violation.

The next algorithm is based on repeatedly solving the scheduling while trying to
verify as many conditions as possible (initially completely disregarding due dates)
and calculating the lateness of the activities with respect to the maximum times in
which the activities can finish. This information is used in the algorithm in the

following iterations so that the delayed activities tend to be scheduled earlier. n
represent the maximum quantity of iterations.

For each activity a that requires the AltResSet 7, such that a.Lateness is greater
than zero, a.PriorityWeight is calculated taking into account the lateness of a, the
maximum lateness of the activities that require r, the weights and preferences
associated to , the preferences of using one or another alternative resource of r, and
the number of the current iteration.

Given, an activity a, an AltResSet altResSet, and an Alternative Resource
ar eAltRes(altResSet), we define the following functions in order to calculate the
value of a. PriorityWeight if a.Lateness is greater than zero.

RequiredActivities(altResSet) = {a eActivities : AltResSet(a) = altResSet}
MaxWeight(altResSet) = ZL‘EConds(altResSet) Welght(c)
MaxAltResPreference(altResSet) =

Max, €RequiredActivities(altResSet), ar eAltRes(altResSet) AltReSPl”eference(a, ar)
MaxWeightPlusPref(altResSet) = MaxWeight(altResSet) +

MaxAltResPreference(altResSet);

MaxLateness(altResSet) = Max , crequireddctivities(aiiResser) (A-End — a.MaxEnd)
(a.End — a.MaxEnd represents the Lateness of activity a)

It is necessary to formalize the objective functions that represent both, the
fulfillment of conditions and the delivered-on-time orders. The former represent the
convenience of the Company and the later represent the degree of satisfaction of the
customers.

In order to calculate the fulfillment of conditions, we need to define the following
functions:

ActsAltRes(altRes) : takes as argument an alternative resource, and returns the set of
the activities that were scheduled on this alternative resource after the Algorithm 1 is
executed.

#ActsAltRes(altRes) : takes as argument an alternative resource, and returns the
cardinality of the set.

The number of activities that were scheduled on an alternative resource set altResSet
is calculated adding up the number of activities scheduled on the alternative resources
which belong to altResSet. Formally:

#ActsAltResSet (altResSet) = 2 uures caliRes(aliResser HActsAltRes(altRes)

VerifyAltRes(altRes, c): takes as arguments an alternative resource al/fRes and a
condition ¢ and returns the number of activities that were scheduled on al/tRes that
verify the condition c. Formally:

VerifyAltRes(altRes, ¢) = 2, cacisresaitresser) Verify(a, altRes, c)

VerifyAltResSet (altResSet, c): takes as arguments an alternative resource set
altResSet and a condition ¢ and returns the number of activities that were scheduled
on altResSet that verify the condition c. Formally:

VerifyAltResSet(altResSet, ¢) = 2 uires caiiRes(aitressey VerifyAltRes(altRes, c)

MaxFulfillments(altResSet, c): takes as arguments an alternative resource set
altResSet and a condition ¢ and returns the maximum number of activities that can be
scheduled on altResSet verifying the condition c.

MinFulfillments(altResSet, c¢): takes as arguments an alternative resource set
altResSet and a condition ¢ and returns the minimum number of activities that can be
scheduled on altResSet verifying the condition c.

FulfillmentPerc(altResSet, ¢): takes as arguments an alternative resource set altResSet
and a condition ¢ and returns the percentage of activities that were scheduled on
altResSet verifying the condition ¢. Formally:

FulfillmentPerc(altResSet, e)=
(VerifyAltResSet(altResSet, c) - MinFulfillments(altResSet, c)) /
(MaxFulfillments(altResSet, c) - MinFulfillments(altResSet, c))

So, FulfillmentPerc(altResSet, c) varies from 0 to 1 (0 if VerifyAltResSet(altResSet, c)
= MinFulfillments(altResSet, c¢) and 1 if VerifyAltResSet(altResSet, c) =
MaxFulfillments(altResSet, c)).

Now we can define the percentage of fulfillment of conditions considering all of the
alternative resource sets.

ConditionFulfillmentPerc =

ZaltResSetEAltReSets Zc eConds(altResSet) FulﬁllmentPerc(altResSet, C) * Welght(c)
/

2 altResSet eAltReSets 2 c eConds(altResSet) Welg ht(C)

So, ConditionFulfillmentPerc varies from 0 to 1 since FulfillmentPerc(altResSet, c)
does.

Now, let’s include some definitions to calculate the quantities of delivered-on-time
orders.

Let’s Jobs be the set of jobs which represent all of the orders of the customers, #J/obs
the total number of jobs and end(J) the time in which the job J finishes after the
Algorithml is executed.

Lateness(J) represents the lateness of the jobJand #DueDatesViolations the quantity
of due dates violations. More formally:

Lateness(J) = end(J) — dueDate(J) and

#DueDatesViolations is defined to be the cardinality of the set {J&Jobs : Lateness(J)
> 0}

Now we can define the delivered on-time-order percentage as follows:

OnTimeOrdersPercentage = (#Jobs - #DueDatesViolations) / #Jobs

So, OnTimeOrdersPercentage varies from 0 to 1 depending on the quantities of due
dates violations.

Finally, if ConditionFulfillmentWeight represents the weight assigned to fulfillment
of the conditions and

OnTimeOrders Weight the weight assigned to delivered on-time-orders, the objective
function that will be used in the algorithm is defined as follows:

OnTimeOrders Weight and ConditionFulfillmentWeight are assigned values within 0
and 1.

ObjectiveFunction = OnTimeOrdersPercentage™* OnTimeOrdersWeight +
ConditionFulfillmentPerc *ConditionFulfillmentWeight

(with OnTimeOrdersWeight + ConditionFulfillmentWeight = 1)

The Algorithm 2 works as follows. As a consequence of the first line, Algorithm 1
is initially executed disregarding due dates. The solution initially found is dedicated
to verify as many conditions as possible.

The algorithm then iterates n times or stops if no lateness is found. In each
iteration, after executing the Algorithm I, values for a.Lateness are determined and
the values of a. PriorityWeight are evaluated for each activity a in order to be used in
the next iteration.

The value of n has to be high enough to produce good results as will be explained
later on.

iter =0;
bestObjectiveFunction = 0;
for each acActivities {a.PriorityWeight = 0}
//(initially due dates will be disregarded)
repeat
execute Algorithm 1;
if ObjectiveFunction > bestObjectiveFunction
then
{ bestObjectiveFunction = ObjectiveFunction;
store:
the schedule produced by Algorithm 1,
OnTimeOrdersPercentage,
ConditionFulfillmentPerc

//(Only the last values are kept)
3

/lapdates a.PriorityWeight for all activity
for each re AltResSets

{

maxLateness = MaxLateness(r);

for each acRequiredActivities(r)

{
a.Lateness = a.End — a.MaxEnd;
if (a.Lateness > 0)
then
a.PriorityWeight = (iter/n) * MaxWeightPlusPref (r) *
(1 + a.Lateness /maxLateness)
else
a.PriorityWeight =0;

}5

}5
iter = iter + 1

until (a.lateness <= 0 for all aeActivities) or (iter > n)
restore:

The schedule produced by Algorithm 1,

OnTimeOrdersPercentage,

ConditionFulfillmentPerc

Algorithm 2. Improved algorithm to obtain a solution minimizing due dates violation

3. Obtained Results

The current implementation provides a very detailed output which includes the
percentage of fulfillment of the conditions associated to all of the alternative
resource sets, the quantity of due date violations, as well as the sum and the average
of the due date violations in terms of time.

We will include a very small set of input data that will suffice to show the main
issues. In the following table we include the output obtained from 3 different sources
of data (Batch 1, Batch 2 and Batch 3).

Batch 1 Batch 2 Batch 3
OnTime Cond | OnTime |Condition |OnTime |Cond |OnTime | Cond
Orders Fulfillm | Orders | Fulfillment Orders | Fulfill| Orders |Fulfill
Weight Weight |Percent |Percentage| Percent |Perc |Percent |Perc
0 1 0.35 0.81 0.28 0.78 10.24 0.75
0.7 0.3 0.63 0.68 0.59 0.68 10.57 0.60
1 0 0.92 0.64 0.61 0.55]0.81 0.53

Tablel: Percentage of On-Time Orders and Fulfillment of conditions

It can be seen that as we increase the weight for delivered-on-time orders, the On-
Time Orders Percentage increases and the Condition Fulfillment Percentage
diminishes. Depending on many factors mentioned earlier (costs, situation of the
company, etc.) the company must choose appropriate weights to produce the desired
schedule.

In spite of the current factors that could lead to the company to choose one particular
set of Weights, there are also some practical issues that should be taken into account.
If the company needs to give priority to the delivered-on-time order, it could make
sense to choose OnTimeOrdersWeight = 1 (the 3" row in the Table 1). However, if
we are dealing with the Batch 2, we can see that there is just a slight difference
between the OnTimeOrdersPercentage for the last two rows (0.59 if
OnTimeOrdersWeight = (0.7 and 0.61 if OnTimeOrdersWeight = 1) but the
difference between ConditionFulfillmentPerc is significant (0.68 for the 2™ row and
0.55 for the 3™ row). As a result, if you choose the 2™ row, you get a significant
advantage in terms of fulfillment of condition, paying a small price in terms of due
dates violations.

4. Conclusion

In this work, an algorithm for solving a Scheduling for Flexible Package
Production minimizing Due Times violations has been examined. This paper presents
an algorithm that improved the results generated in [2] for some particular cases. That
is, mainly, cases in which there are many conditions associated with the resources and
also the weights of the resources are very different among them. Typically, the
performance of the algorithm improves as the number of iterations grows, but of
course the execution time increases as well.

Although the results obtained up to now with the algorithm presented here are
better than those obtained in [2] for the mentioned cases, an exhaustive evaluation on
both algorithms has to done on a large variety of data and this is the task that is being
carried out at the present moment. MODIFICA EL ALG. ANTERIOR [2].....

In this work, an algorithm for solving a Scheduling for Flexible Package
Production which allows to assign weights to set an appropriate trade of between due
date violations reduction and fulfillment of conditions.

The setting of these weights has to be carefully chosen according to the desired
output, considering costs, situation of the company an so on. The performance of the
algorithm is strongly dependent on the value chosen for Step.

Although the algorithm presented in [1] solve the problem of fulfillment of
conditions and the [2] reduces the number of due date violations, the situation of
some companies requires to reach a solution in which a trade of between these
requirements is desired. The present works allows also to try different weights
and to analyze the output and to select the adequate values according to wanted
schedule driven by the current situation of the company.

Even though the results obtained up to now with the algorithm presented here
are acceptable, an exhaustive evaluation has to done on a large variety of data
and this is the task that is being carried out at the present moment.

References

[1] Ibafiez F., Diaz D., Forradellas R.,“Scheduling for flexible package production”,
Proceedings IEPM’2001. Vol. 1, 385-400, Quebec, Canada, 2001. Selected work

for the International Journal of Production Economics (IJPE) topic “Operation
Management”, http://www.elsevier.com

[2] Ibafiez F., Diaz D., Forradellas R.,” An Algorithm for Minimising Due Times
Violations in Flexible Package Production ”, CACIC 2002, Bs As, 2002.

[3] “Ilog Schedule- Reference Manual Version 4.4”, Tllog, France, 1999.

[4] Teghem J., Tuyttens D., Ulungu E.L., “An interactive heuristic method for
multiobjective combinatorial optimization”. Computers and Operations Research
, Vol. 27. 621-634, 2000.

[5] Teghem J., Ph. Fortemps, Tuyttens D., T. Loukil “Solving multi-objective
production scheduling problems using metaheuristics”, Proceedings [IEPM’2001.
Vol. 1, 385-400, 2001.

