

Building Ontologies in a Domain Oriented Software Engineering Environment

Paula Gomes Mian and Ricardo de Almeida Falbo
Federal University of Espírito Santo, Vitória – Brazil, 29060-900

{pgmian, falbo}@inf.ufes.br

Abstract

Ontologies can be used in Domain Oriented Software Engineering Environments (DOSEEs) to
organize and describe knowledge and to support management, acquisition and sharing of
knowledge regarding some domain. However, ontology construction is not a simple task. Thus, it is
necessary to provide tools that support ontology development. This paper discusses the use of
ontologies to support domain-oriented software development in ODE, an Ontology-based software
Development Environment, and presents ODEd, an ontology editor developed to satisfy the
requirements for an ontology editor in a DOSEE. These requirements include the definition of
concepts and relations using graphic representations, automatic generation of some classes of
axioms, derivation of object frameworks from ontologies, and ontology instantiation and browsing.

Keywords: Ontologies, Ontology Editors, Software Engineering Environments, Domain Oriented
Software Engineering Environments.

Classification: Software Engineering. This article is submitted to the general congress.

1 Introduction
Software quality and productivity can be improved by the use of Software Engineering

Environments (SEEs). They can automate several tasks of the software development process,
making easier to control it. But, in many cases, developers are building systems in non-familiar
domains. Domain Oriented Software Engineering Environments (DOSEEs) are a special class of
SEEs that uses domain knowledge to guide software developers across the several phases of the
software process. DOSEEs organize the application domain knowledge facilitating the
understanding of the problem during system development [1].

According to Oliveira [1], ontologies are a good way to describe and organize domain
knowledge in a DOSEE. However, building ontologies is not a simple task. It involves the
specification of concepts and relations that exist in the domain, besides their definitions, properties
and constrains, described as axioms [2].

In this paper, we present ODEd, an ontology editor developed in the context of ODE (Ontology-
based software Development Engineering) [3]. In section 2 we briefly discuss some aspects of
DOSEEs and the use of ontologies to promote knowledge management in them. Section 3 discusses
some aspects of ontology building. Section 4 discusses the main requirements for an ontology editor
in a DOSEE. Section 5 presents ODEd and how it supports these requirements. In section 6 we
discuss related works. Finally, in section 7 we report our conclusion and future work.

2 Domain Oriented Software Engineering Environments and Ontologies
One great difficulty in software development is that, many times, developers do not know or are

not familiarized with the domain in which the software is being developed. To deal with this
problem, several research groups have proposed to improve and to evolve Software Engineering
Environments (SEEs) to support software development considering peculiar characteristics of the
domain [1]. The identification of the need to support domain-oriented software development and the

CACIC 2003 - RedUNCI 930

limitations of the conventional SEEs to support this kind of development drove to the definition of
Domain Oriented Software Engineering Environment (DOSEE).

To build a DOSEE, it is necessary to define a model that turns explicit the basic
conceptualization of the domain. Ontologies have been used for this propose and, therefore, they
can be very useful to support domain orientation in a SEE.

According to Guarino [4], an ontology is a logical theory accounting for the intended meaning
of a formal vocabulary, i.e., its ontological commitment to a particular conceptualization of the
world. An ontology consists of concepts and relations, and their definitions, properties and
constrains expressed as axioms [2].

DOSEEs can take several advantages from the use of ontologies. In fact, a DOSEE should
support domain-oriented software processes. Several process models have been proposed with this
purpose, almost always establishing parallel tracks for domain engineering and software
engineering. In the domain engineering track, ontologies can act as both a domain model and a
component in a repository of reusable artifacts. It can also be used for structuring this repository.

In [2] it was proposed an ontological approach for domain engineering that considers three main
activities: domain analysis, specification of a reuse infrastructure and implementation of that
infrastructure. This ontological approach involves ontology development (domain analysis),
mapping ontologies into object models (infrastructure specification) and the development of Java
component (infrastructure implementation). The first phase - ontology development - involves the
following activities [2,5]:

• Purpose identification and requirements specification: it concerns to clearly identify the
ontology purpose and its intended uses, that is, the competence of the ontology. To do that,
competency questions are used;

• Ontology capture: the goal is to capture the domain conceptualization based on the ontology
competence. The relevant concepts and relations should be identified and organized. A
model using a graphical language, with a dictionary of terms, should be used to facilitate the
communication with domain experts;

• Ontology formalization: aims to explicitly represent the conceptualization captured in a
formal language;

• Integration of existing ontologies: during the capture and formalization steps, it could be
necessary to integrate the current ontology with existing ones, in order to seize established
conceptualizations;

• Ontology evaluation: the ontology must be evaluated to check whether it satisfies the
specification requirements. It should also be evaluated in relation to the ontology
competence and some design quality criteria, such as those proposed by Gruber [6];

• Ontology documentation: all the ontology development must be documented, including
purposes, requirements and motivating scenarios, textual descriptions of the
conceptualization, the formal ontology and the adopted design criteria.

To support this ontology-based domain engineering process in ODE (Ontology based
Development Environment) [3], ODEd (ODE’s Ontology Editor) was built. ODE is a Process-
Centered SEE that is developed using ontologies. The main goal of ODEd is to support ontology
development in ODE and to evolve it to a DOSEE.

3 Requirements of an Ontology Editor for a DOSEE
Analyzing several ontology editors available, each one developed for a different context, we

were able to identify a set of requirements that should be satisfied by these editors to support
ontology development. Since we are interested in tools for ontology development in a DOSEE, we
will evaluate these requirements from this point of view.

CACIC 2003 - RedUNCI 931

Ideally, ontology editors should support an ontology development process. Therefore, an
ontology editor should provide services to satisfy each one of the activities presented in section 3.
To support purpose identification and requirement specification, an ontology editor should support
competency questions definition (R1). During the ontology capture phase, the use of a graphical
representation is essential in order to facilitate the communication between domain engineers and
experts. Thus, an ontology editor should support the definition of concepts, relations and its
descriptions, preferentially, using a graphical language (R2). To support ontology formalization,
an ontology editor should give support to the definition of axioms (R3), to allow writing them
informally and/or formally. Requirements R1 to R3 are important for editors in any context and
they are considered basic requirements to an ontology editor.

An ontology editor should also provide services for ontology integration (R4), ontology
evaluation (R5) and documentation of the development process (R6). Integration services (R4) can
be important for DOSEEs, because a domain is, usually, wide and rich in details. A way to build
large domain theories is to subdivide them in sub-theories. Each sub-theory is represented by an
ontology [1], and to compose the domain theory, it is necessary to integrate the sub-theories,
defining relationships among them, i.e., to integrate ontologies.

Ontology evaluation is important to guarantee that an ontology describes the domain it intends
to model and to accompany its evolution in the DOSEE. During the usage of the domain theory in
the DOSEE, it could be necessary to extend an ontology. Therefore, it is necessary to verify if the
new definitions do not contradict other definitions formulated previously.

Finally, the documentation of the ontology development process can be important to share the
knowledge about ontology development in a DOSEE. In spite of its importance, this requirement is
not considered essential, because it is not vital for organization and representation of knowledge in
a DOSEE.

An ontology editor should support not only construction but also ontologies usage. An
important ontology use is knowledge acquisition. Thus, an ontology editor should support ontology
instantiation (R7). Ontology instantiation in DOSEEs is important because instances of domains’
concepts can be defined and stored in domain knowledge bases that can be used to support domain
understanding [1].

An ontology editor should also allow the neutral authoring of ontologies (R8), i.e., to build the
ontologies in a “neutral” language and, latter, in the project phase, define what technology will be
used to represent them. This is important, mainly when several applications are developed using
different technologies. In a DOSEE, an ontology can be developed, and then translated for
implementing components using these technologies.

Since an ontology represents a knowledge model for a domain, all applications regarding that
domain could share the vocabulary defined by the ontology. If the ontology editor is capable of
generating software components from the ontology, they could be shared by these applications. The
specification of components for domain applications (R9) starting from the ontologies built in the
editor promotes, in a DOSEE, knowledge reuse, once the components are built using the common
vocabulary defined in the ontologies and several applications can reuse then.

The implementation of the requirement of neutral authoring allows the ontology editor to
represent ontologies in multiple formats (R10). This characteristic was not considered essential for
a DOSEE since its main focus is to define domain models through ontologies.

Finally, a DOSEE should use the knowledge defined during the software development. Thus,
domain investigation (R11) activities should be incorporated to the development processes
accompanied by the SEE [1]. Therefore, an ontology editor should offer mechanisms to browse the
ontologies defined.

CACIC 2003 - RedUNCI 932

These requirements might be useful in several contexts. However, in our opinion, some of them
are especially important for an ontology development tool in a DOSEE. An ontology editor in this
context should support development of software by integrating knowledge to the SEE and allowing
instantiating and browsing the knowledge repository. The tool should be able to generate a
computational infrastructure in order to reuse it in conventional software engineering process.
Therefore, we consider the requirements R4, R7, R9 and R11 as the most important for DOSEEs,
especially R9 (components for domain applications) and R11 (domain investigation).

4 Ontology Development in ODEd

To show an example of the ontology development in ODEd we present a Port Domain
Ontology. Due to limitations of space, we present only part of this ontology.

The first step of the ontology development is purpose identification and requirement
specification. To support this phase, ODEd allows the user to define competency questions. Among
the competency questions of the ontology described in this paper are: What is the structure of an
harbor?; What is the type of a ship?; Where is a ship from, i.e. what is its nationality?; Which
ships are anchored on a harbour? In which deck?; Which freights does a ship transport?; What is
the nature of a freight?; Which types of freight is a deck capable to operate with?; and Is some type
of freight compatible with other, i.e. can they be operated jointly?.

Once the competency questions are defined, it is possible to start the ontology capture. In [2], it
was proposed LINGO, a Graphical Language for Expressing Ontologies. LINGO has the basic
primitives to represent a domain conceptualization, i.e., in its simplest form, its notations represent
only concepts and relations. Nevertheless, some types of relations have a strong semantics and,
indeed, hide a generic ontology. In such cases, specialized notations have been proposed. This is the
striking feature of LINGO and what makes it different from other graphical representations: any
notation beyond the basic notations for concepts and relations aims to incorporate a theory [2].
Therefore, axioms can be automatically generated. These axioms concern simply the structure of
the concepts and are said epistemological axioms (EA). Figure 1 shows the main notations of
LINGO and some of the axioms imposed by the whole-part relation.

Figure 1 - LINGO’s main notations and some axioms.
Anti-reflexivity (EA1), anti-symmetry (EA3) and transitivity (EA4) axioms denote sufficient

and necessary properties for whole-part relations. The remaining axioms complete the theory by
defining suitable ontological distinctions.

ODEd uses LINGO as a graphic language to describe ontologies, allowing the automatic
generation of the LINGO’s notations built-in axioms. Using these notations during ontology
capture, an ontology engineer is also defining the group of axioms that they represent. ODEd uses
this feature to automatically generate these types of axioms.

Besides epistemological axioms, other axioms can be used to represent knowledge. These
axioms can be of two types: consolidation axioms (CA) and ontological axioms (OA) [2]. The
former aims to impose constraints that must be satisfied for a relation to be consistently established.
The latter intends to represent declarative knowledge that is able to derive knowledge from the
factual knowledge represented in the ontology, describing domain signification constraints.

Figure 2 shows part of the Port Ontology in LINGO. In the port domain, a harbor is composed
by docks, port installations where ships moor. Each dock is divided in decks, areas for ship

concept

 relation

Aggregation

Part1 PartN

Supertype

Subtype1 SubtypeN

(EA1) ∀x ¬partOf(x,x)
(EA2) ∀x,y partOf(y,x) ↔ wholeOf(x,y)
(EA3) ∀x,y partOf(y,x) → ¬ partOf(x,y)
(EA4) ∀x,y,z partOf(z,y) ∧ partOf(y,x) → partOf(z,x)
(EA5) ∀x,y disjoint(x,y →¬∃z partOf(z,x)∧ partOf(z,y)
(EA6) ∀x atomic(x) → ¬∃y partOf(y,x)

CACIC 2003 - RedUNCI 933

anchorage. A deck may be used to operate any type of products or it may have equipments to
operate specific goods. The capability relation defines what kind of freight a deck can operate.
Several types of ships circulate in the harbor, such as passenger, marine or freight ships. Ship's
nationality indicates which country the ship comes from. The freight transported in a ship is
characterized by its freight nature, which indicates the type of a freight (bagged, container, grain in
nature, oil, etc). Freight natures are compatible if they can be operated in the same port
infrastructure.

Figure 2 - The LINGO diagram of the Port Ontology.
Table 1 presents some axioms of the Port Ontology, indicating their type. Axioms (EA1) to

(EA3) were derived from the ships hierarchy. (EA4) to (EA6) are directly derived by the usage of
the whole-part relation among harbor, dock and deck. The axioms (OA1) and (OA2) are related to
the compatibility relation.

Table 1 - Some axioms of the Port Ontology.
ID Axiom ID Axiom

EA1 (∀ s) (freightShip(s) → ship(s)) EA5 (∀ h,do,de) (part(do,h) ∧ part(de,do)→ part(de,h))
EA2 (∀ s) (marineShip(s) → ship(s)) EA6 (∀ h) ¬ part(h,h)
EA3 (∀ s) (passengerShip(s) → ship(s)) OA1 (∀n1,n2,n3) compatibility(n1,n2) ∧ compatibility(n2,n3) →

compatibility(n1,n3)
EA4 (∀ h, do) (part(do, h) → ¬ part(h , do)) OA2 (∀n1,n2)compatibility(n1,n2) →compatibility(n2,n1)

Beyond generating LINGO’s pre-defined theories, ODEd also allows the user to compose
his/hers own theories and apply then to relations in the ontology. This approach to represent
theories is similar to that presented in [7]. The core idea is to use a categorization that organizes
axioms. Axioms are classified according to association properties, such as anti-reflexivity, anti-
symmetry, atomicity, disjointed, exclusivity, reflexivity, symmetry and transitivity. These properties
are used to compose theories associated to relations of the ontology.

Each association property has a class associated. Methods of these classes are responsible for
checking if the association properties represented by the class hold. For instance, the antiSymmetry
method of the AntiSymmetry class is responsible for checking if a relation is anti-symmetric.

Besides creating the classes to represent association properties, it is necessary to define how
they can be composed into theories. To support theories composition in ODEd, the PreCondition
pattern [5] is used. This pattern uses the Template Method pattern [8]. In ODEd, the hook methods
are those of the association property classes responsible for evaluating the fulfillment of the
preconditions of the corresponding relation theory. The generic format of the PreCondition Pattern
used in ODEd is: ∀x:X, y:Y relation(x,y) → (associationProperty1) ∧ (associationProperty2) ∧ ...
∧ (associationPropertyN). Object frameworks generated by ODEd incorporate this to compose and
verify relation theories.

The compatibility relation, for example, has the following properties: transitivity - if a freight
nature n1 is compatible with n2 and n2 is compatible with n3, then n1 is compatible with n3 (OA1);
and symmetry - if a freight nature n1 is compatible with n2 then n2 is compatible with n1 (OA2).

CACIC 2003 - RedUNCI 934

Therefore, transitivity and symmetry properties should be incorporated to the compatibility relation
theory, as shown in Figure 3. This form allows the user to associate association properties to
relations.

Figure 3 - Properties of the Compatibility relation.

4.1 Importing Concepts and Relations
Since the Port Domain is very complex, it is necessary to sub-divide it in order to facilitate its

understanding. Thus, during the Port Ontology development, it was built a Port Structure sub-
theory, considering aspects regarding the composition of an harbor, and this was integrated to the
Port Ontology.

ODEd supports ontology integration in a very simple way. It is possible to import concepts from
existing ontologies to the current one. If more than one concept is imported and there are relations
between them, these relations are also incorporated to the ontology. Then, these concepts can be
connected to the concepts of the current ontology. For example, in Figure 2, the Deck concept was
imported from the Port Structure sub-theory and a new relation between Deck and Ship was created
(anchorage).

If an imported concept or relation is removed from the original ontology, it is automatically
removed from the ontology to where it was imported. It means that if the concept Deck is removed
form the Port Structure sub-theory, it will be removed from the Port Ontology, as well as the
anchorage relation.

4.2 From Ontologies to Object Frameworks
ODEd supports codifying the resulting ontologies in Java. To do that, it works based on the

approach defined in [5] that defines a set of directives, design patterns and transformation rules for
deriving object frameworks from ontologies. The directives are used to guide the mapping from the
epistemological structures of the domain ontology (concepts, relations, properties and roles) to their
counterparts in the object-oriented paradigm (classes, associations, attributes and roles). The design
patterns and transformation rules are applied in axioms mapping. The application of these
guidelines is supported by a Java Set framework that implements the abstract data type Set [5]. In
its current stage, ODEd considers the mapping directives and some design patterns. But, since
ODEd does not yet support axiom definition, except those described through theories, the
transformation rules are not being treated. In the next sections, we briefly discuss how ontology
implementation is support by ODEd to derive the Port Ontology framework.

4.2.1 Mapping Directives
In the case of the Port Ontology, the classes Ship and FreightNature were derived from the

corresponding concepts, as well as the associations anchorage, transportation, and
compatibility, as shown in Figure 4. Properties of the concepts were mapped as attributes of the
corresponding classes, as is the case of the property nationality of the concept Ship, which was

CACIC 2003 - RedUNCI 935

mapped as the attribute nationality in the class Ship. Also, for each derived attribute, methods to
get and set values were created.

Still considering the mapping of relations, there are other issues that must be discussed. First,
since in an ontology relations are bi-directional, the corresponding associations must be navigable
in both directions. Thus, the associations are implemented as attributes, and there are methods in
both classes to return them. The returned type of the relation methods depends directly on the
cardinality associated to the relation [5]. For instance, since in the scope of the anchorage relation,
several ships may anchor in a deck, the attribute anchorage is mapped to a Set variable in the class
Deck and, hence, this is the type returned by the invocation of the getAnchorage method on this
class. If the maximum cardinality were 1, the return type of the getAnchorage method would be a
Ship object.

Figure 4 - The Port Framework generated by ODEd.
Reflexive relations, such as compatibility, are also mapped as associations, and generate

methods for each association end. The name of these methods is, instead of the relation’s name, the
name of the roles played by the concept (getCompatibleType and getConciliatory). Whole-Part
relations also are treated by specific methods. In Figure 4, the aggregation relation between Harbor
and Dock originates the methods getPartDock and getWholeHarbor in Harbor and Dock classes,
respectively. Subtype-of relations among concepts can be directly mapped to inheritance among
classes. So, axioms (EA1) to (EA3) do not require any special treatment. In our example, the
subtypes of ship give rise to the following sub-classes: PassengerShip, MarineShip and
FreightShip.
4.2.2 Mapping Axioms

Figure 1 presents the theory (mereology) embodied by a generic whole-part relation.
Notwithstanding, the underlying axioms implied by the proposed notation are not well mapped to
aggregations in an object model, i.e., UML notation for aggregation does not guarantee the
fulfillment of the imposed constraints of whole-part relations. To deal with this problem, Guizzardi
et al. [5] proposed the Whole-Part Pattern. In this pattern, the Whole class is able to guarantee to its
associated concrete classes the verification of the suitable set of constraints before a relation
between them can be established. The interfaces IWhole and IPart must be implemented by the
concrete classes.

In the framework derived from the Port Ontology (Figure 4), the class Dock implements the
interfaces IWhole and IPart respectively. Likewise, it is related to the handlers Aggregation and

+compatibleType

MarineShip

IWhole
<<Interface>>

IPart
<<Interface>>

Whole

PassengerShip

Aggregation

Harbor

setPartDock(obj : Dock)
getPartDock() : Set

FreightShip

getTransportation() : Set
setTransportation(obj : Freight)

Part

Dock

setPartDeck(obj : Deck)
getPartDock() : Set
getWholeHarbor() : Harbor
setWholeHarbor(obj : Harbor)

1
0..n

1
0..n

Ship
national ity : String

getNationality() : String
setNationali ty(obj : String)
getAnchorage() : Set
setAnchorage(obj : Deck)

Freight

getTransportation() : Set
setTransportation(obj : FreightShip)
getCharacterization() : Set
setCharacterization(obj : Container)

0..n

0..n

0..n

0..n
transportation

Deck

getWholeDock() : Dock
setWholeDock(obj : Dock)
getAnchorage() : Set
setAnchorage(obj : Ship)
getCapabil ity() : Set
setCapabil ity(obj : FreightNature)

1
0..n

1
0..n

0..n

0..n

0..n

0..n

anchorage

FreightNature

getCharacterization() : Set
setCharacterization(obj : FreightNature)
getCapabil ity() : Set
setCapabil ity(obj : Deck)
getCompatibleType() : Set
setCompatibleType(obj : FreightNature)
getConcilatory() : Set
setConcilatory(obj : FreightNature)

0..n

0..n

0..n

0..n

characterization

0..n
0..n

0..n
0..n capabil ity 0..n

0..n

0..n

compatibil ity

+conci liatory

0..n

Transitivity

Simmetry

CACIC 2003 - RedUNCI 936

Part. The class Dock has attributes of Part type and of Aggregation type. As shown in the code
fragment below, the access to the decks of a dock is made through Aggregation. The inclusion of
a new deck is made by including a new part in the aggregation variable. The axioms (EA3) to
(EA5) are checked when the method setPart is invoked.

public class Dock implements IWhole, IPart
{ Aggregation a = new Aggregation();
 Part p = new Part();

public void setPartDeck(Deck d)
{ a.setPart(d); }
public Set getPartDeck()
{ return a.part(); }

}

The theory incorporated to the compatibility relation in Figure 3 is presented in the code
fragment below. The class FreightNature is related to the classes Symmetry and Transitivity
through the attributes s and t, respectively. Before setting a freight nature as compatible with the
current freight nature, the compatibility theory is checked. As show in the code below, the method
setCompatibleType of the class FreightNature is responsible for checking the compatibility
theory before setting the freight nature n as compatible to the current freight nature (this). To
verify the axiom (OA2), for example, the method
t.transitivity(this,n,"getCompatibleType") of the Transitivity class is executed. This
method evokes the method getCompatibleType of the freight nature n. Suppose that the current
freight nature (this) is already compatible to the freight nature n. So, the current freight nature
(this) would be returned when the getCompatibleType method is executed for the object n. Since
the compatibility relation is also symmetric, it would be redundant to set n as a freight nature
compatible to this (because of the symmetry property, n is already compatible to this). In this
case, the transitivity property would be false and setting n as compatible type of this should not
be allowed. The transitivity method would return false and the instance would not be created. In
the other hand, if the current freight nature (this) is not compatible with any freight nature that is
compatible with n, n can be added to the compatibleType list of the current freight nature (this).

public class FreightNature
{ Set compatibleType = new Set();
 Symmetry s = new Symmetry();
 Transitivity t = new Transitivity();
 public void setCompatibleType(FreightNature n)
 { if ((s.symmetry(...)) && (t.transitivity(...)))
 { compatibleType.add(n); }
 } }

4.3 Browsing Ontologies
ODEd provides automatic generation of hypertexts based on the ontologies designed. Using

these hypertexts, developers are able to browse and search the domain’s concepts, relations and
constrains.

The language chosen to build these documents was XML. To generate the XML documents, a
set of tags was defined to represent the ODEd’s meta-ontology. The ontologies’ data (concept,
relation, properties, etc.) were introduced in the XML files, marked with theses tags.The tutorials
are presented to the user as HTML documents. In order to do so, the ODEd uses XSL (eXtensible
Style sheet Language).

Figure 5 shows the hypertext derived from the Port Ontology. It is possible to visualize all
ontology’s concepts and relations and their definitions and properties. From the Ship concept, for
example, the user can browse its sub-types and visualize their definition.

CACIC 2003 - RedUNCI 937

Figure 5 - Browsing the Port Ontology.
4.4 Ontology Instantiation in ODEd

ODEd also intends to support an ontology-based knowledge acquisition approach. But, before
beginning the knowledge acquisition activity, it is necessary to create a database to store the
information about the instances of concepts and relations that compose the ontology. So, databases
are automatically generated.

For each concept a table is created. Since every concept should have name and description, a
class Knowledge is created in the frameworks generated by ODEd and there is a respective table
Knowledge that contains those attributes. Every table is related to the Knowledge table to map the
inheritance between the concepts and Knowledge, except those that are derived of concepts that are
subtypes in some hierarchy, such as FreightShip. These tables have keys that indicate which are
the tables that represent their super-types.

Relations (1:1) and (1:N) are mapped as foreign keys and relations (N:N), such as compatibility,
are mapped in associative tables, whose primary keys are the identifiers of the concepts involved in
the relation. To map whole-part relations, there is a unique table WholePart in which the values of
identifiers of instances that belong to whole-part relations are stored.

Once the database was created, it is possible to begin the instantiation. ODEd uses an approach
similar to that implemented in [9]. Customized windows are generated, based on the ontology
contents, to allow the instance data input.

Figure 6 - Creating an instance of the concept Dock (a) and the relation compatibility (b).
Figure 6a shows an instantiation of the Dock concept. To store the value of the properties name

and description presented in the form, when a register is inserted in the table Dock, a register is also
automatically inserted in the table Knowledge. If the super-types of the concept have properties, its
values should be associated to the subtype instantiated. Since Dock does not have super-types, no
other property was inserted in the form. Associations with minimum cardinality 1 are instantiated

 (b)
(a)

CACIC 2003 - RedUNCI 938

when the concept is instantiated. Thus, since every dock is part of an harbor, the user should
choose, from a list of harbors in the database, the one the dock belongs to. In Figure 6a, the Praia
Mole Dock belongs to the Tubarão Harbor.

For instantiating relations (N:N), the user should choose one among the instances of one of the
concepts involved in the relation, and then choose, among the instances of the other concept, those
that are linked to the first. Figure 6b presents the instantiation of the compatibleType role of the
compatibility relation for the Bagged Freight instance. In the example, Bagged Freight is
compatible to Container. A list of all freight natures already instantiated is exhibited and the user
may select those that the Bagged Freight instance is compatible to.

It is worth to point, however, that before instantiating a relation, its theories must be verified.
For example, suppose that Container (C) is compatible to another freight nature: Special Container
(SC). Since the compatibility relation is symmetric, Special Container is compatible to Container.
After creating the instance of the previous example (Figure 6b), the symmetry property assures that
Container is compatible to Bagged Freight (BF). Due to the transitive property, the following
relation among instances is created: BF↔C↔SC. It means that Special Container already is
compatible to Bagged Freight. Therefore, it would be redundant to set Special Container as a
compatible type of Bagged Freight. If the user tries to insert this relation instance in the database,
an error message will be sent and the instance will not be created.

The classes of the framework generated by ODEd are responsible for checking the theories. It is
necessary, therefore, that those classes have access to the database generated to store the instances
of the ontologies, analyzing the soundness of the theories. To do so, besides generating the database
and the domain classes in the framework, a persistence layer is also automatically generated by
ODEd.

For each concept or relation that has a domain class in the framework, a shadow class is created
in the persistence layer. Each one of those classes presents the necessary functionality to implement
the persistence of the objects, such as to save, to remove or to update an object and to retrieve a
group of objects.

Relations that generate associative tables and do not have their own shadow classes are handled
by the shadow classes of the concepts involved in the relation. The anchorage relation, for example,
is manipulated by the classes ShipPers and DeckPers. Each one of these shadow classes has a
method, as shown below, to insert a register in the associative table anchorage.
public void insertAnchorage(String obj, String obj1)
{ String sLocSQL;
 Statement oLocSt;
 sLocSQL="INSERT INTO anchorage(idoShip,idoDeck)VALUES('"+obj+"','"+obj1+"')";
 oLocSt.execute(sLocSQL);
 ... }

Similarly, in the class FreightNaturePers, there is a method insertCompatibility to create
instances of the compatibility relation. Before inserting a register in the table compatibility, it is
necessary to check the theory of the relation compatibility. Thus, the FreightNature class is
associated to the FreightNaturePers class and the insertion method of the shadow class is called
by the method setCompatibleType, responsible for checking the compatibility theory, as shown
below.

public class FreightNature
{ FreightNaturePers pers = new FreightNaturePers();
 public void setCompatibleType(FreightNature n)
 { if ((s.symmetry(...)) && (t.transitivity(...)))
 { compatibleType.add(n);
 pers.insertCompatibility (this.getIDO,n.getIDO); }
 } }

CACIC 2003 - RedUNCI 939

5 Related Work
There are many ontology editors described in the literature. OntoEdit [7] pursues the modeling

of ontologies such that graphical means exploited for modeling of concepts and relations scale up to
axiom specifications (using RDFS). The core idea is to use an axiom categorization. This
categorization is centered on axiom semantic meaning rather than syntactic representation.

OILEd [10] supports the construction of ontologies in OIL. The editor allows the definition of
concepts and relations and also supports the definition of some pre-defined axioms. OILEd has
reasoning services that supports ontologies construction, integration and verification.

The Java Ontology Editor (JOE) [11] was developed to help users build and browse ontologies.
It enables query formulation at several levels of abstraction. JOE provides a graphical user interface
for editing ontologies, using Entity Relationship diagrams to represent them.

Protége-2000 [9] aims to support knowledge acquisition, and to reach interoperability with
other knowledge representation systems. It has classes, instances of these classes, slots representing
attributes of classes and instances, and facets expressing additional information about slots. Protégé-
2000 generates knowledge-acquisition forms automatically based on the types of the slots and
restrictions on their values allowing ontology instantiation.

Most of these tools previously cited emphasize the definition of concepts and relations, but they
have none or little support to constrains definition. The most interesting initiative is the creation of
axioms templates in OntoEdit [7]. This approach aids the construction of axiom classes that has
similar structure, but it can not be applied to axioms that do not fit in its classification. This
approach was incorporated to ODEd in order to facilitate axioms definition, but it is still necessary
to define how to represent other types of axioms. Finally, in ontology instantiation, ODEd uses a
similar approach to Protégé-2000 [9].

Reasoning services are an important feature [10] because they can be used in ontology
evaluation. Other desirable services provided by some of these tools are the support to the
cooperative work and the automatic generation of ontology documentation in HTML [10, 9]. This
last feature is addressed by ODEd but no reasoning service is available. ODEd does not provide
functionalities for collaborative ontology development such as versioning, integration and merging
of ontologies.

Despite of being an important requirement for ontology design, only JOE [11] uses some kind
of graphic representation. But it uses Entity Relationship models that are not adequate to ontology
development [5]. ODEd adopts LINGO, a graphic language specially designed for ontology
representation.

It is worthwhile to point that most of the editors previously mentioned were developed to
support ontology design in the context of Semantic Web. None of them was developed to integrate
domain knowledge in a SEE and then they do not emphasize a domain engineering approach, such
as ODEd. ODEd automatically generates object frameworks from the ontologies. Those
frameworks can be used to support software development in the domain. Also, since ODEd adopts
LINGO as a graphical language, its built-in axioms and those axioms of theories defined by the user
are automatically incorporated to the framework.

6 Conclusions
In this paper, we presented ODEd, an ontology editor that supports ontology development using

graphic representations, besides promoting automatic generation of some classes of axioms and
derivation of frameworks from ontologies. ODEd was built to support an ontology based approach
for domain engineering in ODE.

CACIC 2003 - RedUNCI 940

As shown in Table 2, besides supporting the basic features of a tool for ontology development
(requirements R1 to R3), ODEd supports all requirements considered essential for an ontology
editor in a DOSEE (R4, R7, R9 and R11) and most of the requirements considered important in this
context. However, important activities such as ontology integration (R4) and evaluation (R5) were
not completely addressed. To support these activities, it will be necessary to integrate reasoning
services in ODEd.

Table 2 - Requirements supported by ODEd.
Requirement ODEd Requirement ODEd

Competency Questions Yes Ontology Instantiation Yes
Concepts and relations using a graphic language Yes Neutral Authoring No

Definition of Axioms Partial Components for Domain Applications Yes
Ontology Integration Partial Multiply Representations Partial
Ontology Evaluation No Domain Investigation Yes

Ontology Development Process Documentation No
In the approach presented, ODEd is capable to derivate epistemological, consolidation and

ontological axioms coming from relation theories. However, other ontological axioms, which do not
fit in any category of axioms properties, could also be necessary to describe a domain. Therefore, it
is necessary to define how these axioms should be treated in ODEd. It is being developed an axiom
editor to ODEd that uses DAML+OIL and KIF to describe other axioms, and that allows ontology
evaluation using a JTP inference engine.

Acknowledge
 The authors thanks CAPES and CNPq for the financial support to this work.

References
1. Oliveira, K.M., Rocha, A.R.C., Travassos, G.H. and Menezes, C.S. Using Domain Knowledge

in Software Engineering Environments. SEKE’99, Germany, 1999.
2. Falbo, R.A., Menezes C.S. and Rocha, A.R.C. A Systematic Approach for Building Ontologies.

Proc. of the IBERAMIA’98. Lisboa, Portugal, 1998.
3. Falbo, R.A., Guizzardi, G., Natali, A.C.C., Bertollo, G., Ruy F.B. and Mian, P.G. Towards

Semantic Software Engineering Environments. Proc. of 14th Int. Conference on Software
Engineering and Knowledge Engineering, SEKE’02. Ischia, Italy, 2002.

4. Guarino, N. Formal Ontology and Information Systems. Formal Ontologies in Information
Systems. IOS Press, 1998.

5. Guizzardi, G., Falbo R.A. and Pereira Filho J.G. Using Objects and Patterns to Implement
Domain Ontologies. Journal of the Brazilian Computer Society. Vol. 8, no. 1, July 2002.

6. Gruber, T.R. Towards principles for the design of ontologies used for knowledge sharing. Int.
Journal of Human-Computer Studies. Vol. 43, no. 5/6, 1995.

7. Staab, S. and Maedche, A. Ontology Engineering beyond the Modeling of Concepts and
Relations. Proc. of 14th European Conference on Artificial Intelligence, Workshop on
Applications of Ontologies and Problem-Solving Methods, 2000.

8. Gamma, E., Helm, R., Johnson R. and Vlissides, J. Design patterns: elements of reusable
object-oriented software. Addison-Wesley, 1995.

9. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W. and Musen, M.A. Creating
Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems. March/April 2001

10. Bechhofer, S., Horrocks, I., Goble C. and Stevens, R. OilEd: a Reason-able Ontology Editor for
the Semantic Web. Working Notes of the 14th Int. Workshop on Description Logics, USA, 2001.

11. Mahalingam K. and Huhns, M.N. A Tool for Organizing Web Information. IEEE Computer.
June 1997, Pp. 80-83.

CACIC 2003 - RedUNCI 941

