Building precompiled knowledge inopeLr*

Marcela Capobianco
Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering
Universidad Nacional del Sur — Av. Alem 1253, (8000) BaBlanca, ARGENTINA
EMAIL : mc@cs.uns.edu.ar

and

Guillermo R. Simari
Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering
Universidad Nacional del Sur — Av. Alem 1253, (8000) BaBlanca, ARGENTINA
EMAIL : grs@cs.uns.edu.ar

Abstract

Argumentation systems have substantially evolved in the past few years, resulting in adequate tools to model
some forms of common sense reasoning. This has sprung a new set of argument-based applications in diverse
areas.

In previous work, we defined how to use precompiled knowledge to obtain significant speed-ups in the in-
ference process of an argument-based system. This development is based on a logic programming system with
an argumentation-driven inference engine, called Observation Based Defeasible Logic Programming (ODeLP).
In this setting was first presented the concepdiafectical databaseghat is, data structures for storing pre-
compiled knowledge. These structures provide precompiled information about inferences and can be used to
speed up the inference processTas do in general problem solvers.

In this work, we present detailed algorithms for the creation of dialectical databases in ODelLP and analyze
these algorithms in terms of their computational complexity.

Keywords: Non-monotonic reasoning, Argumentation, Computational complexity

1 INTRODUCTION

Argumentation systems have substantially evolved in the past few years, resulting in adequate tools to
model some forms of common sense reasoning. This has sprung a new set of argument-based appli-
cations in diverse areas, where knowledge representation issues play a major role, such as clustering
algorithms [13], intelligent web search [6] and critiquing systems [5].

In previous work [3], we defined how to use precompiled knowledge to obtain significant speed-
ups in the inference process of an argument-based system. The development is based on a logic
programming system that uses an argumentation driven inference engine, called Observation Based

*This work was partially supported by Agencia Nacional de Prooro@ientfica y Tecnobgica (PAV 2003 Nro. 076,
PICT 2002 Nro. 13096, PICT 2003 Nro. 15043), &6 NICET (Consejo Nacional de Investigaciones Ciénas y
Técnicas de la Rdfblica Argentina.
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Defeasible Logic Programming (ODeLP). Logic programming approaches to argumentation [7, 16]
have proved to be suitable formalization tools in different application domains as they combine the
powerful features provided by logic programming for knowledge representation together with the
ability to model complex, argument-based inference procedures in unified, integrated frameworks.

In these models, real time issues play a particularly important role when modeling most applica-
tions, specially those concerning interactive systems. In argument-based approaches a timely inter-
action is especially hard to achieve, as the inference process involved is complex and computation-
ally expensive. To achieve this kind of interaction we proposed the use of precompiled knowledge
for argumentation systems, in the same wayh maintenance systensms) [9] use precompiled
knowledge to improve the performance of problem solvers.

To implement this idea we defined in [3] the conceptddadlectical databases These are data
structures that store precompiled knowledge, providing precompiled information about inferences that
can be used to speed up the inference processyiagio in general problem solvers. We discussed
the main issues of the integration of dialectical databas@dilL P, such as defining the theoretical
background and modifying the inference process to take advantage of the new component.

In this work, we present detailed algorithms for the creation of dialectical databases in ODeLP.
Then, we analyze these algorithms in terms of their computational complexity. The remainder of this
paper is organized as follows. First, we present a brief overview adbet Psystem. Next, we detalil
the rol of dialectical databases as structures of precompiled knowledge to assist inference, and finally
we formulate and analyze the algorithms for dialectical databases creat@elP.

2 RELATED WORK

Before addressing the contributions of our work, we present a brief overview of related work in
the fields of precompiled knowledge. truth maintenance systenfsms) the use of precompiled
knowledge helps improve the performance of problem solvers. A similar technique will be used in
ODeLPto address real time constrains.

Truth Maintenance SystemsNs) were defined by Doyle in [9] as support tools for problems
solvers. The function of ams is to record and maintain the reasons for an agent’s beliefs. Doyle
describes a series of procedures that determine the current set of beliefs and update it in accord with
new incoming reasons. Under this viaational thoughtis deemed as the process of finding reasons
for attitudes [9]. Some attitude (such as belief, desire, etc.) is rational if it is supported by some
acceptable explanation.

Basically, TMs have two basic data structuresodes which represent beliefs, andstifications
which model reasons for the nodes. Tihes believes in a node if it has a justification for the node
and believes in the nodes involved in it. Although this may seem circular, there are assumptions (a
special type of justifications) which involve no other nodes. Justifications for nodes may be added or
retracted, and this accounts fotrath maintenance proceduf@], to make any necessary revisions in
the set of beliefs. An interesting featureTofis is the use of a particular type of justifications, called
non-monotonicto make tentative guesses. A non-monotonic justification bases an argument for a
node not only on current beliefs in certain nodes, but also on lack of beliefs in other nodes. Any node
supported by a non-monotonic justification is callecaaaumption

TMS solve part of the belief revision problem in general problem solvers and provide a mechanism
for making non-monotonic assumptions. As Doyle mentions in [9] performance is also significantly
improved, even though the overhead required to record justifications for every program belief might
seem excessive, we must consider the expense of not keeping these records. When information about
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derivations is discarded, the same information must be continually re-derived, even when only irrele-
vant assumptions have changed.

The fundamental actions of avs are create or retract nodes (to which the problem solving
program using th@ms can attach the statement of a belief) and add (or retract) a justification for a
node, to represent a step of an argument for the belief represented by the node. The system can also
mark a node as a contradiction, to represent the inconsistency of any set of beliefs which enters into
an argument for the node.

Every node in therms has an associated set of justifications. Each justification represents a
different reason for asserting it. The node is believed if and only if at least one of the justifications is
valid.! In this case it is say to bia the set of beliefs. Otherwise, the nodeig of this set. In thams,
each potential belief to be used as a hypothesis or a conclusion of an argument must be given its own
distinct node. When uncertainty about some infereRoexists, nodes for botl# and its negation
must be provided. Either of these nodes can have or lack well-founded arguments, leading to a four-
element belief set (neithd? nor~P are believed, exactly one is believed, or both are believed). The
author details the procedures needed to establish the state of every node, and to update these states ir
case new justifications or facts are added torttias.

Since the appearance of1s a large body of literature and applications have been developed [8,
10, 15, 11, 2]. The original idea appears not to have been any particular technical mechanism, but the
general concept of an independent module for belief maintenance [15].

In this and previous work [3] we apply the same idea to argument systems. This is a novel idea in
the argumentation field and has not been introduced before in any argumentation framework.

3 ODELP: OBSERVATION-BASED DELP

Observation based Defeasible Logic Programm@®@dLP [3] is a language for knowledge represen-
tation and reasoning that usgsfeasible argumentatiao decide between contradictory conclusions
through adialectical analysisODeLPcan be seen as an specialization oflee&Planguage [12] use-

ful for dynamic environments, since it provides perception mechanisms to incorporate the changes in
the world and integrate them into the knowledge base. In what follows, we present a brief reference
of theODeLPlanguage. The interested reader can consult [3] for a more detailed version.

The language obDeLPis based on the language of logic programming. Standard logic program-
ming concepts (such as signature, variables, functions, etc) are defined in the usual way. Literals
are atoms that may be preceded by the symbdl denoting strict negation, as in extended logic
programming.

ODeLP programs are formed bgbservationsand defeasible rules Observations correspond
to facts in the context of logic programming, and represent the knowledge an agent has about the
world. Defeasible ruleprovide a way of performing tentative reasoning as in other argumentation
formalisms [7].

Definition 3.1 An observations a ground literal. representing some fact about the world, obtained
through the perception mechanism, that the agent believes to be correetfedsible rulehas the
form Lo <Ly, Lo, ..., Ly, WhereLg is a literal andL+, Lo, . . ., L is a non-empty finite set of literals.

Definition 3.2 An ODeLPprogramis a pair(¥, A), whereV is a finite set of observations andis
a finite set of defeasible rules. In a progr&mthe setl must benon-contradictory(i.e., it is not the
case that) € ¥ and~Q € ¥, for any literal@).

see [9] for a precise definition.
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lion(simba).

lion(mufasa).

puppy(simba).

feline(X) —=lion(X).

climbs _tree(X) —<feline(X).
~climbs _tree(X) —<lion(X).

climbs _tree(X) —=lion(X), puppy(X).
~climbs _tree(X) —sick(X).

Figure 1: AnODeLPprogram modeling the behavior of a group of lions

Example 3.1 Fig. 1 shows arODeLP program for modeling the behavior of a group of lions. Ob-
servations describe that Mufasa is a lion, and Simba is a puppy lion. The rules establish that felines
usually climb trees, lions usually don’t. Exceptionally, puppy lions can climb trees. The remaining
rule states that seriously sick animals cannot climb trees.

Given anODeLPprogramP, a query posed t® corresponds to a ground liter@ which must be
supported by aargumen{12]. Arguments are built on the basis oflafeasible derivatioocomputed
by backward chaining applying the usual SLD inference procedure used in logic programming. Ob-
servations play the role of facts and defeasible rules function as inference rules. In addition to provide
a proof supporting a ground literal, such a proof must be non-contradictory and minimal for being
considered as an argumentdeLP. Formally:

Definition 3.3 Given aODeLP program”P, an argument.A for a ground literal@, also denoted
(A, @), is a subset of ground instances of the defeasible rulg8 such that: (1) there exists a
defeasible derivation fof) from ¥ U A4, (2) ¥ U A is non-contradictory, and (3} is minimal with
respect to set inclusion in satisfying (1) and (2).

Given two arguments.A;, Q1) and (As, Q2), we will say that(A4,,Q,) is a sub-argumenbf
(As, Q) iff A C Ay,

To use defeasible rules in arguments we must first obtain ¢in@eimd instanceschanging variables
for ground terms, so that variables with the same name are replaced for the same term.

As in most argumentation frameworks, argumentSireLPcan attack each other. This situation
is captured by the notion @ounterargument

Definition 3.4 An argument.A;, );) counter-arguesn argument.A,, ;) at a literalQ if and only
if there is a sub-argumentd, Q) of (As, Q) such that); and@ are complementary literals.

Defeat among arguments is defined combining the counterargument relation and a preference
criterion “<". An argument(A;, Q);) defeats(A,, ()2) if (A, Q1) is a counterargument @fd,, ()2)
at a literal@ and (A4, Q1) = (A, Q) (proper defeater) ofA;, @) is unrelated td.A, @) (blocking
defeate).

Defeaters are arguments and may in turn be defeated. Thus, a complete dialectical analysis is re-
quired to determine which arguments are ultimately accepted. Such analysis results in a tree structure
calleddialectical tree in which arguments are nodes labeled as undefeatatfes ) or defeated
(D-nodes ) according to a marking procedure. Formally:

Definition 3.5 Thedialectical treefor an argumentA, ), denotedZ, 4 ¢, is recursively defined as
follows:
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1. A single node labeled with an arguméent, ) with no defeaters (proper or blocking) is by
itself the dialectical tree fofA, Q).

2. Let(A;,Q1), (A2, Q2), ..., (A, Q,) be all the defeaters (proper or blocking) fot, Q). The
dialectical tree fof A, Q), 7( 4,¢), is obtained by labeling the root node witd, @), and making
this node the parent of the root nodes for the dialectical tre€d 0fQ0;), (A2, Q2), . . ., (A, Qn)-

For the marking procedure we start labeling the leaved-asdes . Then, for any inner node
(Ag,Q,), it will be marked asU-node iff every child of (A4, Q,) is marked as @-node . If
(Ay, Q2) has at least one child markedl@dshode then it is marked as B-node .

Dialectical analysis may in some situations give riséattacious argumentatiofil2]. In ODeLP,
dialectical trees avoid fallacies applying additional constraints when buiidggnentation linegthe
different possible paths in a dialectical tree). These constrains also avoid circular argumentation. The
resulting kind of trees is calledcceptable dialectical treesThe interested reader can consult [12]
where these issues are analyzed in detail in the context afebe system.

Finally, the notion of warrant is grounded on acceptable dialectical trees. Given a@asiy an
ODeLP programP, we will say thatQ) is warrantedwrt P iff there exists an argumenf 4 ;) such
that the root of its associated dialectical ttRg ) is marked as &-node.

Solving a queryy) in ODeLPaccounts for trying to find a warrant f@I, as shown in the following
example.

Example 3.2 Consider the program shown in Example 3.1, anclienbs _tree(simba) be a
qguery wrt that program. The search for a warrantdbmbs _tree(simba) will result in an
argument(A, climbs _tree(simba) ) with one defeater(3,~climbs _tree(simba) ) thatis

in turn defeated by(C, climbs _tree(simba) ). The structure of these arguments is detailed in
Fig. 2.

Using specificity as the preference criterigs, ~climbs _tree(simba) ) is proper defeater for
(A,climbs _tree(simba) ), butBisinturn properly defeated by, climbs _tree(simba) ).

In this caseclimbs _tree(simba) is a warranted fact.

Suppose now we learn that Simba is sickObeLPwe can add this fact to the knowledge base using
an updating function [3, 14]. Then, a new argument will arise that could not have been built before,
(D,~climbs _tree(simba) ) detailed Fig. 3.

Using specificity as the preference criterid®, ~climbs _tree(simba) ) is a blocking defeater
for both(A, climbs _tree(simba) )and(C,climbs _tree(simba) ). The resulting dialectical
tree is shown Fig.3. Now, the marking procedure determines that the root node-mode and
thereforeclimbs _tree(simba) is no longer warranted.

4 PRECOMPILED KNOWLEDGE IN ODELP

The ODeLPlanguage was specifically designed to be integrated in practical applications. Therefore,
the inference engine should be able to address real-time constrains that arise in these scenarios. To do
this, we use precompiled knowledge to avoid recomputing arguments which were already computed
before, in a TMS fashion.

The notion ofdialectical databases fundamental for precompiled knowledge@DeLP. A di-
alectical database for a given progré@htollects a set of schematic arguments, cafleténtial argu-
ments and the defeat relation among them. Every potential argument represents a set of arguments
that are obtained usingjfferentinstances of theamedefeasible rules. This avoids generating and
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Figure 2: Dialectical tree from Example 3.2

storing many arguments which are structurally identical, only differing in the constant names being
used to build the corresponding derivations. The dialectical database is also defined independently
from the observation sdlt, so it does not have to be changed if the set of observations is updated with
new perceptions. Next we introduce a set of auxiliary notions that will be used to formally define
dialectical databases.

Definition 4.1 Let A be a set of defeasible rules. A ¢tormed by ground instances of the defeasible
rules in A is aninstance ofA iff every instance of a defeasible rule fhis an instance of a defeasible
rule in A.

Example 4.1 1f A ={s(X) —=~r(X) ;~r(X) —=p(X) }thenB={s(t) =~rt) ;~r@@ —=p@) }
is an instance ofl.

Definition 4.2 Let A be a set of defeasible rules. A sub&eif A is apotential argumentor a literal
(), noted ag(A, Q)), if there exists a non-contradictory set of literésind an instancg of the rules
in A such that5, ) is an argument wrt®, A).

In the definition above the sét stands for a state of the world (set of observations) in which we
can obtain the instandg from the sefA of defeasible rules such thé8, @) is an argument (as stated
in Def.3.3). Note that the sdt must necessarily be non-contradictory to model a coherent scenario.

Precompiled knowledge associated withGeLPprogramP = (¥, A) will involve the set of all
potential arguments that can be built fréPras well as the defeat relation among them. Then, instead
of computing a query for a given ground litei@| the ODeLPinterpreter will search for a potential
argumentA for  such that a particular instangeof A is an argument fo€) wrt P.

To speed-up inference, the defeat relations among potential arguments must also be recorded, as
we will see later on. To do this, we extend the concepts of counterargument and defeat for potential
arguments. A potential argumef{A;, Q,)) counter-argues(A,, Q,)) at a literalQ if and only if
there is a potential sub-argume, Q) of (A, Q,)) such thaQ, andQ are contradictory literals.

2Note thatP(X) and~P(X) are contradictory literals although they are non-grounded. The same idea is applied to
identify contradiction in potential arguments.
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Figure 3: Final dialectical tree from Example 3.2

Note that potential counter-arguments may or may not result in a real conflict between the instances
(arguments) associated with the corresponding potential arguments. In some cases instances of these
arguments cannot co-exist in any scena¢ig.( consider two potential arguments based on contra-
dictory observations). The notion of defeat is also extended to potential arguments, redefining the
preference criterion accordingly.

Finally, using potential arguments and their associated defeat relation, we can formally define the
notion ofdialectical databaseassociated with a give@DeLPprogrampP.

Definition 4.3 Let P = (¥, A) be anODeLP program. Thedialectical databasef P, denoted as
DB, is a 3-tuple(PotArg A), D, D,) such that:

1. PotArgA) is the set{ (A1, Q1)), ..., (Ax, Qi) } of all the potential arguments that can be built
from A.

2. D,andD, are relations over the elementRuftArg(A) such that for every(A,, Q1)), (A2, Q2)))
in D, (respectivelyD,) it holds that{(A, Q.)) is a proper (respectively blocking) defeater of

(A1, Q1)).

Example 4.2 Consider the program in example 3.1. The dialectical databagei®fcomposed by
the following potential arguments:

e ((A,climbs _tree(X) ),
A; = {climbs _tree(X) —<feline(X) }.
e ((Ag,climbs _tree(X) ),
Ay = {climbs _tree(X) —<feline(X) ,feline(X) —=lion(X) }.
1214
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Figure 4: Dialectical database corresponding to Example 4.2.

e ((As,climbs _tree(X) ),
As = {climbs _tree(X) —=lion(X), puppy(X) }.

e (A4,~climbs _tree(X) ),
Ay = {~climbs _tree(X) —=lion(X) }.

e ((As,~climbs _tree(X) ),
A; = {~climbs _tree(X) —sick(X) }.

o ((Ag, feline(X) ),
As = {feline(X) —<lion(X) }.

and the defeat relations:
o D, ={(As,A1), (A1, A3)}
° Db - {(A17A4)7 (A4;A1)a (A17A5)7 (A57A1)a (A27A5)7 (A57A2)a (A37A5)7 (A57A3)}

The relations are also depicted in figure 4, where proper defeat is indicated with a normal arrow and
blocking defeat is distinguished with a dotted arrow.

5 ALGORITHMS FOR BUILDING DIALECTICAL DATABASES

Given anODeLPprogramP, its dialectical databasBB3, can be understood as a graph from which
all possible dialectical trees computable fréhtan be obtained. In previous work [3], it was already
addressed how to use precompiled knowledge for computing warrants with respect to a given program.
In this section we address how to build this graph for a given set of defeasibleXules

To build the dialectical database for a given program we need to obtain every potential argument
and record the defeat relation among them. This is done by algosihikiDialecticalDatabase.
Briefly speaking, it first uses the algorithdbtainPotentialArgs to select a of candidates that may be
potential arguments for the satin the setCandidates. Every member of this set is later analyzed
to verify if it complies with the conditions present in definition 4.2. To do tlgakatelnstance
consistently replaces variables in a given potential argument for a set of literals. Then the argument
obtained in(A, ;) must be consistent and minimal (requirements present in definition 4.2) to be
finally added in the set d?otArgs.
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If the answer is positive, then it is selected as a potential arguments and its defeaters are found
using the algorithnFindDefeaters that compares the potential argument to be added into the set with
the potential arguments already considered to update the defeat relatiansi D,,.

Algorithm 1 BuildDialecticalDatabase

input: A

output:  PotArgs, D,, D, //(a dialectical database)
PotArgs == ()

ObtainPotential Args( A, Candidates)

/I[Finds the set of potential arguments
For every ((A,Q) in Candidates
Createlnstance(  ((A,Q)), (A, Q1))
Vo= G((AQ)
/[Calculates the ground for A, that is the literals
/lin A that do not appear in the head of a rule
If Literals( (A,Q1)) is not contradictory and
GA)UARrQ, and no A" C A is such that G(A")U A ~Q, then
FindDefeaters(PotArgs, (A,Q)), D,, Dy)
PotArgs := PotArgs U{{(A, Q) }

Next, we analyze the auxiliary algorithms usedBujldDialecticalDatabase. The algorithmOb-
tainPotentialArgs finds the set of potential arguments using backward chaining from every rie in
This is an smart way to build this set, that results in computational gains with respect to finding all
the set of rules that can be obtained frédm First, it chooses a rule to guide the backward chaining.
Then, it uses the algorithifindCandidates that recursively considers every potential argument that
can be found starting with that rule. This algorithm also marks rules that have been already used to
avoid re-computing potential arguments that have been already added into the set of candidates.
Finally, Createlnstance consistently replaces variables in a given potential argument for a set of
literals. It uses backward chaining and composes substitutions to build the instance, if any exists.
This algorithm requires defeasible rules in theA#d be standarized apart so that they do not contain
common variables. That is, for any pair of rulgsr, in A it must hold that the intersection between
the set of variables in, and the set of variables ify is empty.

Algorithm 2 Obtain Potential Arguments

input: A
output: Candidates

Candidates = 0
Marked = 0
For every rule such that reA and r ¢ Marked
FindCandidates(r, NewCandidates)
Candidates := Candidates U NewCandidates
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Algorithm 3 FindCandidates

input: = a = /luninstanciated rule

output: Cand //set of candidates found from r
Cand := {({a—=p}, o)}

For every literal p € § such that

there is a rule with p in the head, p =y

FindCandidates( p—~, C)
For every C,cC, C;<>10

Cand := Cand U{{({a=p}UC;,a)}
Marked := Marked U{a —=3}

Algorithm 4 Createlnstance
input: ~ ((A,Q)) //a possible potential argument

output: (A,Q1) llan argument built from the rules in (A, Q)), if any
CreateStack( S)

Instanciate( Q, ©1) /lSets as goal an instance of Q

push( Q1, S)

0= {}

While S is not empty
goal := pop( 9S)

If there exists a rule r in A and a substitution o
such that head( r)o = goal

then
new_body := apply o to the body of the rule r

f# = compose ¢ and o
push(new _body, S)

else
r = pop( S)
If there exists a substitution o and an observation o

such that 7o = «
then 6 := compose 6 and o
else fail {It is not possible to find an instance }
A = apply 6 to every rule in A

Return( (A, Q1))

Figure 5: Algorithm to obtain an instance of a potential argument.

5.1 Complexity results

In this section we analyze the complexity of algoritBuildDialecticalDatabase since this algorithm
resumes the construction proces©afeLPs precompiled knowledge.

To do this, we first consider the complexity of auxiliary algorithms. Note that the analysis pre-
sented here holds f@DeLPprograms with a finite Herbrand base. We plan to extend this analysis in
future work to fullODeLPprograms.
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Createlnstance consistently replaces variables in a given potential argument for a set of literals.
This task is analogous to the following decision problema given subset of defeasible rules an
argument for a literal from a given prograrR?. In [4] this is shown to be &-complete problem for
the DeLP system. This result is an upper bound @beLP, where there is no strict knowledge and
thus complexity is clearly reduced.

ObtainPotentialArguments returns every set of rules that may be a potential argumenhfoA
rough upper bound for the number of potential argumen2s™is Therefore Obtain potential argu-
ments is in O (2141,

Algorithm FindDefeaters must compare the potential argument to be added with every potential
argument that is already in the s&itArgs . This is also inO(2/4]).

Finally, we analyze algorithrBuildDialecticalDatabase. It first calls ObtainPotentialArguments.
Then, for every argument in the sedndidates , it does following four tasks:

1. Calls algorithnCreatelnstance.

2. Checks consistency: this check depends on the number of literals in the argument, that can be
bounded by the number of literals in the signature of the program, notétliby Thus, this
task is inP.

3. Checks minimality: a simple algorithm for verifying whether a set of defeasible rules is minimal
with respect to set inclusion (for entailing a given liteljalvould delete every rule at a time and
verify if the remaining set of rules can entail Worst case of the minimality condition is
considered when we assume that the argumenihiadefeasible rules. In this case computing
minimality condition takesA| to verify that! cannot be entailed for a subset of the rules in the
potential argument. Then every loop isihand the problem of checking minimality is solvable
in polynomial time.

4. Calls algorithnFindDefeaters.

Therefore the cost of the loop is (2/4!) and the number of times it is executed is bounded by
2|21, Then algorithmBuildDialecticalDatabase is in Eg, that is, the second level of the polynomial
hierarchy?

6 CONCLUSIONS AND FUTURE WORK

The notion of dialectical databases was proposed in [3] to comply with real time requirements needed
to model agent reasoning in dynamic environments. In this paper we have devised a set of algorithms
for the construction of the precompiled knowledge compone®DaLP.

We have also analyzed the complexity of these algorithms from a theoretical standpoint. Even
though the algorithms are computationally expensive we must recall that the task of building pre-
compiled knowledge is performed only once, after codifying the program. Moreover, the dialectical
database is not affected by changes in the program’s observations and the set of rules is not expected
to change in applications usir@peLP.

As future work, we will analyze how the use of precompiled knowledge in the inference process
reduces complexity i©ODeLP. We also plan to extend the complexity analysis, currently valid for
programs with a finite Herbrand base, to f0beLPprograms.

3The interested reader may consult [1] for more information on the polynomial hierarchy.
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