
Building precompiled knowledge inODeLP∗

Marcela Capobianco
Artificial Intelligence Research and Development Laboratory

Department of Computer Science and Engineering
Universidad Nacional del Sur – Av. Alem 1253, (8000) Bahı́a Blanca, ARGENTINA

EMAIL : mc@cs.uns.edu.ar

and

Guillermo R. Simari
Artificial Intelligence Research and Development Laboratory

Department of Computer Science and Engineering
Universidad Nacional del Sur – Av. Alem 1253, (8000) Bahı́a Blanca, ARGENTINA

EMAIL : grs@cs.uns.edu.ar

Abstract

Argumentation systems have substantially evolved in the past few years, resulting in adequate tools to model
some forms of common sense reasoning. This has sprung a new set of argument-based applications in diverse
areas.

In previous work, we defined how to use precompiled knowledge to obtain significant speed-ups in the in-
ference process of an argument-based system. This development is based on a logic programming system with
an argumentation-driven inference engine, called Observation Based Defeasible Logic Programming (ODeLP).
In this setting was first presented the concept ofdialectical databases, that is, data structures for storing pre-
compiled knowledge. These structures provide precompiled information about inferences and can be used to
speed up the inference process, asTMS do in general problem solvers.

In this work, we present detailed algorithms for the creation of dialectical databases in ODeLP and analyze
these algorithms in terms of their computational complexity.

Keywords: Non-monotonic reasoning, Argumentation, Computational complexity

1 INTRODUCTION

Argumentation systems have substantially evolved in the past few years, resulting in adequate tools to
model some forms of common sense reasoning. This has sprung a new set of argument-based appli-
cations in diverse areas, where knowledge representation issues play a major role, such as clustering
algorithms [13], intelligent web search [6] and critiquing systems [5].

In previous work [3], we defined how to use precompiled knowledge to obtain significant speed-
ups in the inference process of an argument-based system. The development is based on a logic
programming system that uses an argumentation driven inference engine, called Observation Based

∗This work was partially supported by Agencia Nacional de Promoción Cient́ıfica y Tecnoĺogica (PAV 2003 Nro. 076,
PICT 2002 Nro. 13096, PICT 2003 Nro. 15043), andCONICET (Consejo Nacional de Investigaciones Cientı́ficas y
Técnicas de la Reṕublica Argentina).

1208

Defeasible Logic Programming (ODeLP). Logic programming approaches to argumentation [7, 16]
have proved to be suitable formalization tools in different application domains as they combine the
powerful features provided by logic programming for knowledge representation together with the
ability to model complex, argument-based inference procedures in unified, integrated frameworks.

In these models, real time issues play a particularly important role when modeling most applica-
tions, specially those concerning interactive systems. In argument-based approaches a timely inter-
action is especially hard to achieve, as the inference process involved is complex and computation-
ally expensive. To achieve this kind of interaction we proposed the use of precompiled knowledge
for argumentation systems, in the same waytruth maintenance systems(TMS) [9] use precompiled
knowledge to improve the performance of problem solvers.

To implement this idea we defined in [3] the concept ofdialectical databases. These are data
structures that store precompiled knowledge, providing precompiled information about inferences that
can be used to speed up the inference process, asTMS do in general problem solvers. We discussed
the main issues of the integration of dialectical databases inODeLP, such as defining the theoretical
background and modifying the inference process to take advantage of the new component.

In this work, we present detailed algorithms for the creation of dialectical databases in ODeLP.
Then, we analyze these algorithms in terms of their computational complexity. The remainder of this
paper is organized as follows. First, we present a brief overview of theODeLPsystem. Next, we detail
the rol of dialectical databases as structures of precompiled knowledge to assist inference, and finally
we formulate and analyze the algorithms for dialectical databases creation inODeLP.

2 RELATED WORK

Before addressing the contributions of our work, we present a brief overview of related work in
the fields of precompiled knowledge. Intruth maintenance systems(TMS) the use of precompiled
knowledge helps improve the performance of problem solvers. A similar technique will be used in
ODeLPto address real time constrains.

Truth Maintenance Systems (TMS) were defined by Doyle in [9] as support tools for problems
solvers. The function of aTMS is to record and maintain the reasons for an agent’s beliefs. Doyle
describes a series of procedures that determine the current set of beliefs and update it in accord with
new incoming reasons. Under this view,rational thoughtis deemed as the process of finding reasons
for attitudes [9]. Some attitude (such as belief, desire, etc.) is rational if it is supported by some
acceptable explanation.

Basically,TMS have two basic data structures:nodes, which represent beliefs, andjustifications
which model reasons for the nodes. TheTMS believes in a node if it has a justification for the node
and believes in the nodes involved in it. Although this may seem circular, there are assumptions (a
special type of justifications) which involve no other nodes. Justifications for nodes may be added or
retracted, and this accounts for atruth maintenance procedure[9], to make any necessary revisions in
the set of beliefs. An interesting feature ofTMS is the use of a particular type of justifications, called
non-monotonic, to make tentative guesses. A non-monotonic justification bases an argument for a
node not only on current beliefs in certain nodes, but also on lack of beliefs in other nodes. Any node
supported by a non-monotonic justification is called anassumption.

TMS solve part of the belief revision problem in general problem solvers and provide a mechanism
for making non-monotonic assumptions. As Doyle mentions in [9] performance is also significantly
improved, even though the overhead required to record justifications for every program belief might
seem excessive, we must consider the expense of not keeping these records. When information about

1209

derivations is discarded, the same information must be continually re-derived, even when only irrele-
vant assumptions have changed.

The fundamental actions of aTMS are create or retract nodes (to which the problem solving
program using theTMS can attach the statement of a belief) and add (or retract) a justification for a
node, to represent a step of an argument for the belief represented by the node. The system can also
mark a node as a contradiction, to represent the inconsistency of any set of beliefs which enters into
an argument for the node.

Every node in theTMS has an associated set of justifications. Each justification represents a
different reason for asserting it. The node is believed if and only if at least one of the justifications is
valid.1 In this case it is say to bein the set of beliefs. Otherwise, the node isoutof this set. In theTMS,
each potential belief to be used as a hypothesis or a conclusion of an argument must be given its own
distinct node. When uncertainty about some inferenceP exists, nodes for bothP and its negation
must be provided. Either of these nodes can have or lack well-founded arguments, leading to a four-
element belief set (neitherP nor∼P are believed, exactly one is believed, or both are believed). The
author details the procedures needed to establish the state of every node, and to update these states in
case new justifications or facts are added to theTMS.

Since the appearance ofTMS a large body of literature and applications have been developed [8,
10, 15, 11, 2]. The original idea appears not to have been any particular technical mechanism, but the
general concept of an independent module for belief maintenance [15].

In this and previous work [3] we apply the same idea to argument systems. This is a novel idea in
the argumentation field and has not been introduced before in any argumentation framework.

3 ODELP: OBSERVATION-BASED DELP

Observation based Defeasible Logic Programming (ODeLP) [3] is a language for knowledge represen-
tation and reasoning that usesdefeasible argumentationto decide between contradictory conclusions
through adialectical analysis. ODeLPcan be seen as an specialization of theDeLP language [12] use-
ful for dynamic environments, since it provides perception mechanisms to incorporate the changes in
the world and integrate them into the knowledge base. In what follows, we present a brief reference
of theODeLPlanguage. The interested reader can consult [3] for a more detailed version.

The language ofODeLPis based on the language of logic programming. Standard logic program-
ming concepts (such as signature, variables, functions, etc) are defined in the usual way. Literals
are atoms that may be preceded by the symbol “∼” denotingstrict negation, as in extended logic
programming.

ODeLP programs are formed byobservationsand defeasible rules. Observations correspond
to facts in the context of logic programming, and represent the knowledge an agent has about the
world. Defeasible rulesprovide a way of performing tentative reasoning as in other argumentation
formalisms [7].

Definition 3.1 An observationis a ground literalL representing some fact about the world, obtained
through the perception mechanism, that the agent believes to be correct. Adefeasible rulehas the
form L0 –≺L1, L2, . . . , Lk, whereL0 is a literal andL1, L2, . . . , Lk is a non-empty finite set of literals.

Definition 3.2 An ODeLPprogramis a pair〈Ψ, ∆〉, whereΨ is a finite set of observations and∆ is
a finite set of defeasible rules. In a programP, the setΨ must benon-contradictory(i.e., it is not the
case thatQ ∈ Ψ and∼Q ∈ Ψ, for any literalQ).

1see [9] for a precise definition.

1210

lion(simba).

lion(mufasa).

puppy(simba).

feline(X) –≺ lion(X).

climbs tree(X) –≺ feline(X).
∼climbs tree(X) –≺ lion(X).

climbs tree(X) –≺ lion(X), puppy(X).
∼climbs tree(X) –≺sick(X).

Figure 1: AnODeLPprogram modeling the behavior of a group of lions

Example 3.1 Fig. 1 shows anODeLPprogram for modeling the behavior of a group of lions. Ob-
servations describe that Mufasa is a lion, and Simba is a puppy lion. The rules establish that felines
usually climb trees, lions usually don’t. Exceptionally, puppy lions can climb trees. The remaining
rule states that seriously sick animals cannot climb trees.

Given anODeLPprogramP, a query posed toP corresponds to a ground literalQ which must be
supported by anargument[12]. Arguments are built on the basis of adefeasible derivationcomputed
by backward chaining applying the usual SLD inference procedure used in logic programming. Ob-
servations play the role of facts and defeasible rules function as inference rules. In addition to provide
a proof supporting a ground literal, such a proof must be non-contradictory and minimal for being
considered as an argument inODeLP. Formally:

Definition 3.3 Given a ODeLP programP, an argumentA for a ground literalQ, also denoted
〈A, Q〉, is a subset of ground instances of the defeasible rules inP such that: (1) there exists a
defeasible derivation forQ from Ψ ∪ A, (2) Ψ ∪ A is non-contradictory, and (3)A is minimal with
respect to set inclusion in satisfying (1) and (2).

Given two arguments〈A1, Q1〉 and 〈A2, Q2〉, we will say that〈A1, Q1〉 is a sub-argumentof
〈A2, Q2〉 iff A1 ⊆ A2.

To use defeasible rules in arguments we must first obtain theirground instances, changing variables
for ground terms, so that variables with the same name are replaced for the same term.

As in most argumentation frameworks, arguments inODeLPcan attack each other. This situation
is captured by the notion ofcounterargument.

Definition 3.4 An argument〈A1, Q1〉 counter-arguesan argument〈A2, Q2〉 at a literalQ if and only
if there is a sub-argument〈A, Q〉 of 〈A2, Q2〉 such thatQ1 andQ are complementary literals.

Defeat among arguments is defined combining the counterargument relation and a preference
criterion “�”. An argument〈A1, Q1〉 defeats〈A2, Q2〉 if 〈A1, Q1〉 is a counterargument of〈A2, Q2〉
at a literalQ and〈A1, Q1〉 � 〈A, Q〉 (proper defeater) or〈A1, Q1〉 is unrelated to〈A, Q〉 (blocking
defeater).

Defeaters are arguments and may in turn be defeated. Thus, a complete dialectical analysis is re-
quired to determine which arguments are ultimately accepted. Such analysis results in a tree structure
calleddialectical tree, in which arguments are nodes labeled as undefeated (U-nodes) or defeated
(D-nodes) according to a marking procedure. Formally:

Definition 3.5 Thedialectical treefor an argument〈A, Q〉, denotedT〈A,Q〉, is recursively defined as
follows:

1211

1. A single node labeled with an argument〈A, Q〉 with no defeaters (proper or blocking) is by
itself the dialectical tree for〈A, Q〉.

2. Let〈A1, Q1〉, 〈A2, Q2〉, . . . , 〈An, Qn〉 be all the defeaters (proper or blocking) for〈A, Q〉. The
dialectical tree for〈A, Q〉, T〈A,Q〉, is obtained by labeling the root node with〈A, Q〉, and making
this node the parent of the root nodes for the dialectical trees of〈A1, Q1〉, 〈A2, Q2〉, . . . , 〈An, Qn〉.

For the marking procedure we start labeling the leaves asU-nodes . Then, for any inner node
〈A2, Q2〉, it will be marked asU-node iff every child of 〈A2, Q2〉 is marked as aD-node . If
〈A2, Q2〉 has at least one child marked asU-node then it is marked as aD-node .

Dialectical analysis may in some situations give rise tofallacious argumentation[12]. In ODeLP,
dialectical trees avoid fallacies applying additional constraints when buildingargumentation lines(the
different possible paths in a dialectical tree). These constrains also avoid circular argumentation. The
resulting kind of trees is calledAcceptable dialectical trees. The interested reader can consult [12]
where these issues are analyzed in detail in the context of theDeLPsystem.

Finally, the notion of warrant is grounded on acceptable dialectical trees. Given a queryQ and an
ODeLPprogramP, we will say thatQ is warrantedwrt P iff there exists an argumentT〈A,Q〉 such
that the root of its associated dialectical treeT〈A,Q〉 is marked as aU -node.

Solving a queryQ in ODeLPaccounts for trying to find a warrant forQ, as shown in the following
example.

Example 3.2 Consider the program shown in Example 3.1, and letclimbs tree(simba) be a
query wrt that program. The search for a warrant forclimbs tree(simba) will result in an
argument〈A, climbs tree(simba) 〉 with one defeater,〈B, ∼climbs tree(simba) 〉 that is
in turn defeated by〈C, climbs tree(simba) 〉. The structure of these arguments is detailed in
Fig. 2.
Using specificity as the preference criterion,〈B, ∼climbs tree(simba) 〉 is proper defeater for
〈A, climbs tree(simba) 〉, butB is in turn properly defeated by〈C, climbs tree(simba) 〉.
In this caseclimbs tree(simba) is a warranted fact.
Suppose now we learn that Simba is sick. InODeLPwe can add this fact to the knowledge base using
an updating function [3, 14]. Then, a new argument will arise that could not have been built before,
〈D, ∼climbs tree(simba) 〉 detailed Fig. 3.
Using specificity as the preference criterion,〈D, ∼climbs tree(simba) 〉 is a blocking defeater
for both〈A, climbs tree(simba) 〉 and〈C, climbs tree(simba) 〉. The resulting dialectical
tree is shown Fig.3. Now, the marking procedure determines that the root node is aD-node and
thereforeclimbs tree(simba) is no longer warranted.

4 PRECOMPILED KNOWLEDGE IN ODELP

TheODeLP language was specifically designed to be integrated in practical applications. Therefore,
the inference engine should be able to address real-time constrains that arise in these scenarios. To do
this, we use precompiled knowledge to avoid recomputing arguments which were already computed
before, in a TMS fashion.

The notion ofdialectical databasesis fundamental for precompiled knowledge inODeLP. A di-
alectical database for a given programP collects a set of schematic arguments, calledpotential argu-
ments, and the defeat relation among them. Every potential argument represents a set of arguments
that are obtained usingdifferent instances of thesamedefeasible rules. This avoids generating and

1212

�
�
�
�
�
��

L
L

L
L

L
LL

U

lion(simba),puppy(simba)
f|

climbs tree(simba)

�
�
�
�
�
��

L
L

L
L

L
LL

D

lion(simba)
f|

∼climbs tree(simba)

�
�
�
�
�
��

L
L

L
L

L
LL

U

lion(simba)
f|

feline(simba)
f|

climbs tree(simba)

Figure 2: Dialectical tree from Example 3.2

storing many arguments which are structurally identical, only differing in the constant names being
used to build the corresponding derivations. The dialectical database is also defined independently
from the observation setΨ, so it does not have to be changed if the set of observations is updated with
new perceptions. Next we introduce a set of auxiliary notions that will be used to formally define
dialectical databases.

Definition 4.1 LetA be a set of defeasible rules. A setB formed by ground instances of the defeasible
rules inA is aninstance ofA iff every instance of a defeasible rule inB is an instance of a defeasible
rule inA.

Example 4.1 If A ={ s(X) –≺∼r(X) ; ∼r(X) –≺p(X) } thenB = { s(t) –≺∼r(t) ; ∼r(a) –≺p(a) }
is an instance ofA.

Definition 4.2 Let ∆ be a set of defeasible rules. A subsetA of ∆ is apotential argumentfor a literal
Q, noted as〈〈A, Q〉〉, if there exists a non-contradictory set of literalsΦ and an instanceB of the rules
in A such that〈B, Q〉 is an argument wrt〈Φ, ∆〉.

In the definition above the setΦ stands for a state of the world (set of observations) in which we
can obtain the instanceB from the setA of defeasible rules such that〈B, Q〉 is an argument (as stated
in Def.3.3). Note that the setΦ must necessarily be non-contradictory to model a coherent scenario.

Precompiled knowledge associated with anODeLPprogramP = 〈Ψ, ∆〉 will involve the set of all
potential arguments that can be built fromP as well as the defeat relation among them. Then, instead
of computing a query for a given ground literalQ, theODeLP interpreter will search for a potential
argumentA for Q such that a particular instanceB of A is an argument forQ wrt P.

To speed-up inference, the defeat relations among potential arguments must also be recorded, as
we will see later on. To do this, we extend the concepts of counterargument and defeat for potential
arguments. A potential argument〈〈A1, Q1〉〉 counter-argues〈〈A2, Q2〉〉 at a literalQ if and only if
there is a potential sub-argument〈〈A, Q〉〉 of 〈〈A2, Q2〉〉 such thatQ1 andQ are contradictory literals.2

2Note thatP (X) and∼P (X) are contradictory literals although they are non-grounded. The same idea is applied to
identify contradiction in potential arguments.

1213

�
�
�
�
�
��

L
L

L
L

L
LL

U

�
�
�
�
�
��

L
L

L
L

L
LL

D

sick(simba)
f|

∼climbs tree(simba)

�
�

�

@
@

@

lion(simba),puppy(simba)
f|

climbs tree(simba)

�
�
�
�
�
��

L
L

L
L

L
LL

U

lion(simba)
f|

∼climbs tree(simba)

�
�
�
�
�
��

L
L

L
L

L
LL

D

lion(simba)
f|

feline(simba)
f|

climbs tree(simba)

�
�
�
�
�
��

L
L

L
L

L
LL

U

sick(simba)
f|

∼climbs tree(simba)

Figure 3: Final dialectical tree from Example 3.2

Note that potential counter-arguments may or may not result in a real conflict between the instances
(arguments) associated with the corresponding potential arguments. In some cases instances of these
arguments cannot co-exist in any scenario (e.g., consider two potential arguments based on contra-
dictory observations). The notion of defeat is also extended to potential arguments, redefining the
preference criterion accordingly.

Finally, using potential arguments and their associated defeat relation, we can formally define the
notion ofdialectical databasesassociated with a givenODeLPprogramP.

Definition 4.3 Let P = 〈Ψ, ∆〉 be anODeLPprogram. Thedialectical databaseof P, denoted as
DB∆, is a 3-tuple(PotArg(∆), Dp, Db) such that:

1. PotArg(∆) is the set{〈〈A1, Q1〉〉, . . . ,〈〈Ak, Qk〉〉} of all the potential arguments that can be built
from ∆.

2. Dp andDb are relations over the elements ofPotArg(∆) such that for every(〈〈A1, Q1〉〉, 〈〈A2, Q2〉〉)
in Dp (respectivelyDb) it holds that〈〈A2, Q2〉〉 is a proper (respectively blocking) defeater of
〈〈A1, Q1〉〉.

Example 4.2 Consider the program in example 3.1. The dialectical database ofP is composed by
the following potential arguments:

• 〈〈A1, climbs tree(X) 〉〉,
A1 = {climbs tree(X) –≺ feline(X) }.

• 〈〈A2, climbs tree(X) 〉〉,
A2 = {climbs tree(X) –≺ feline(X) , feline(X) –≺ lion(X) }.

1214

A4 A5 A6

A1 A2 A3

�

	?

6I

R?

6

�
�

�
�

�
�

�
�

���
�

���
���

���
���

���
�����

Figure 4: Dialectical database corresponding to Example 4.2.

• 〈〈A3, climbs tree(X) 〉〉,
A3 = {climbs tree(X) –≺ lion(X), puppy(X) }.

• 〈〈A4,∼climbs tree(X) 〉〉,
A4 = {∼climbs tree(X) –≺ lion(X) }.

• 〈〈A5,∼climbs tree(X) 〉〉,
A5 = {∼climbs tree(X) –≺sick(X) }.

• 〈〈A6, feline(X) 〉〉,
A6 = {feline(X) –≺ lion(X) }.

and the defeat relations:

• Dp = {(A2, A4), (A4, A3)}

• Db = {(A1, A4), (A4, A1), (A1, A5), (A5, A1), (A2, A5), (A5, A2), (A3, A5), (A5, A3)}.

The relations are also depicted in figure 4, where proper defeat is indicated with a normal arrow and
blocking defeat is distinguished with a dotted arrow.

5 ALGORITHMS FOR BUILDING DIALECTICAL DATABASES

Given anODeLPprogramP, its dialectical databaseDB∆ can be understood as a graph from which
all possible dialectical trees computable fromP can be obtained. In previous work [3], it was already
addressed how to use precompiled knowledge for computing warrants with respect to a given program.
In this section we address how to build this graph for a given set of defeasible rules∆.

To build the dialectical database for a given program we need to obtain every potential argument
and record the defeat relation among them. This is done by algorithmBuildDialecticalDatabase.
Briefly speaking, it first uses the algorithmObtainPotentialArgs to select a of candidates that may be
potential arguments for the set∆ in the setCandidates. Every member of this set is later analyzed
to verify if it complies with the conditions present in definition 4.2. To do that,CreateInstance
consistently replaces variables in a given potential argument for a set of literals. Then the argument
obtained in〈A, Q1〉 must be consistent and minimal (requirements present in definition 4.2) to be
finally added in the set ofPotArgs.

1215

If the answer is positive, then it is selected as a potential arguments and its defeaters are found
using the algorithmFindDefeaters that compares the potential argument to be added into the set with
the potential arguments already considered to update the defeat relationsDb andDp.

Algorithm 1 BuildDialecticalDatabase

input: ∆
output: PotArgs, Dp, Db //(a dialectical database)

PotArgs := ∅
ObtainPotentialArgs(∆, Candidates)

//Finds the set of potential arguments

For every 〈〈A, Q〉〉 in Candidates

CreateInstance(〈〈A, Q〉〉, 〈A, Q1〉)
Ψ := G(〈A, Q1〉)
//Calculates the ground for A, that is the literals

//in A that do not appear in the head of a rule

If Literals(〈A, Q1〉) is not contradictory and

G(A) ∪ A |∼Q1 and no A′ ⊂ A is such that G(A′) ∪ A′ |∼Q1 then

FindDefeaters(PotArgs, 〈〈A, Q〉〉, Dp, Db)

PotArgs := PotArgs ∪{〈〈A, Q〉〉}

Next, we analyze the auxiliary algorithms used byBuildDialecticalDatabase. The algorithmOb-
tainPotentialArgs finds the set of potential arguments using backward chaining from every rule in∆.
This is an smart way to build this set, that results in computational gains with respect to finding all
the set of rules that can be obtained from∆. First, it chooses a rule to guide the backward chaining.
Then, it uses the algorithmFindCandidates that recursively considers every potential argument that
can be found starting with that rule. This algorithm also marks rules that have been already used to
avoid re-computing potential arguments that have been already added into the set of candidates.

Finally, CreateInstance consistently replaces variables in a given potential argument for a set of
literals. It uses backward chaining and composes substitutions to build the instance, if any exists.
This algorithm requires defeasible rules in the setA to be standarized apart so that they do not contain
common variables. That is, for any pair of rulesr1, r2 in A it must hold that the intersection between
the set of variables inr1 and the set of variables inr2 is empty.

Algorithm 2 Obtain Potential Arguments

input: ∆
output: Candidates

Candidates := ∅
Marked := ∅

For every rule such that r ∈ ∆ and r 6∈ Marked

FindCandidates(r, NewCandidates)

Candidates := Candidates ∪ NewCandidates

1216

Algorithm 3 FindCandidates

input: r = α –≺β //uninstanciated rule
output: Cand //set of candidates found from r

Cand := {〈〈{α –≺β}, α〉〉}
For every literal p ∈ β such that

there is a rule with p in the head, p –≺γ

FindCandidates(p –≺γ, C)

For every Ci ⊂ C, Ci <> ∅
Cand := Cand ∪{〈〈{α –≺β} ∪ Ci, α〉〉}

Marked := Marked ∪{α –≺β}

Algorithm 4 CreateInstance

input: 〈〈A, Q〉〉 //a possible potential argument
output: 〈A, Q1〉 //an argument built from the rules in 〈〈A, Q〉〉, if any

CreateStack(S)

Instanciate(Q, Q1) //Sets as goal an instance of Q
push(Q1, S)

θ:= {}
While S is not empty

goal := pop(S)

If there exists a rule r in A and a substitution σ

such that head(r) σ = goal

then

new body := apply σ to the body of the rule r

θ := compose θ and σ

push(new body, S)

else

r := pop(S)

If there exists a substitution σ and an observation α

such that rσ = α

then θ := compose θ and σ

else fail {It is not possible to find an instance }
A := apply θ to every rule in A

Return(〈A, Q1〉)

Figure 5: Algorithm to obtain an instance of a potential argument.

5.1 Complexity results

In this section we analyze the complexity of algorithmBuildDialecticalDatabase since this algorithm
resumes the construction process ofODeLP’s precompiled knowledge.

To do this, we first consider the complexity of auxiliary algorithms. Note that the analysis pre-
sented here holds forODeLPprograms with a finite Herbrand base. We plan to extend this analysis in
future work to fullODeLPprograms.

1217

CreateInstance consistently replaces variables in a given potential argument for a set of literals.
This task is analogous to the following decision problem:is a given subset of defeasible rules an
argument for a literal from a given programP?. In [4] this is shown to be aP-complete problem for
the DeLP system. This result is an upper bound forODeLP, where there is no strict knowledge and
thus complexity is clearly reduced.

ObtainPotentialArguments returns every set of rules that may be a potential argument for∆. A
rough upper bound for the number of potential arguments is2|∆|. Therefore,Obtain potential argu-
ments is in O(2|∆|).

Algorithm FindDefeaters must compare the potential argument to be added with every potential
argument that is already in the setPotArgs . This is also inO(2|∆|).

Finally, we analyze algorithmBuildDialecticalDatabase. It first callsObtainPotentialArguments.
Then, for every argument in the setCandidates , it does following four tasks:

1. Calls algorithmCreateInstance.

2. Checks consistency: this check depends on the number of literals in the argument, that can be
bounded by the number of literals in the signature of the program, noted by|Lit|. Thus, this
task is inP .

3. Checks minimality: a simple algorithm for verifying whether a set of defeasible rules is minimal
with respect to set inclusion (for entailing a given literall) would delete every rule at a time and
verify if the remaining set of rules can entaill. Worst case of the minimality condition is
considered when we assume that the argument has|∆| defeasible rules. In this case computing
minimality condition takes|∆| to verify thatl cannot be entailed for a subset of the rules in the
potential argument. Then every loop is inP and the problem of checking minimality is solvable
in polynomial time.

4. Calls algorithmFindDefeaters.

Therefore the cost of the loop is inO(2|∆|) and the number of times it is executed is bounded by
2|∆|. Then algorithmBuildDialecticalDatabase is in Σ2

p, that is, the second level of the polynomial
hierarchy.3

6 CONCLUSIONS AND FUTURE WORK

The notion of dialectical databases was proposed in [3] to comply with real time requirements needed
to model agent reasoning in dynamic environments. In this paper we have devised a set of algorithms
for the construction of the precompiled knowledge component inODeLP.

We have also analyzed the complexity of these algorithms from a theoretical standpoint. Even
though the algorithms are computationally expensive we must recall that the task of building pre-
compiled knowledge is performed only once, after codifying the program. Moreover, the dialectical
database is not affected by changes in the program’s observations and the set of rules is not expected
to change in applications usingODeLP.

As future work, we will analyze how the use of precompiled knowledge in the inference process
reduces complexity inODeLP. We also plan to extend the complexity analysis, currently valid for
programs with a finite Herbrand base, to fullODeLPprograms.

3The interested reader may consult [1] for more information on the polynomial hierarchy.

1218

REFERENCES

[1] D.P. Bovet and P. Crescenzi.Introduction to the theory of Complexity. Prentice Hall International, 1994.

[2] A. L. Brown. Modal Propositional Semantics for Reason Maintenance Systems. InProceedings of Inter-
national Joint Conference on Artificial Intelligence, pages 178–183, June 1985.

[3] M. Capobianco, C. Chesñevar, and G. Simari. Argumentation and the dynamics of warranted beliefs in
changing environments.Journal of Autonomous Agents and Multiagent Systems, 11:127–151, 2005.

[4] L. Cecchi, P. Fillottrani, and G. Simari. On the complexity of delp through game semantics. InProc. 11th
Intl. Workshop on Nonmonotonic Reasoning (NMR 2006), pages 386–394, 2006.

[5] C. Ches̃nevar and A. Maguitman. An argumentative approach to assesing natural language usage based
on the web corpus. InProc. of European Conference on Artificial Intelligence (ECAI 2004). Valencia,
Spain. ECCAI, August 2004.

[6] C. Ches̃nevar and A. Maguitman. ARGUENET: An Argument-Based Recommender System for Solving
Web Search Queries. InProc. of Intl. IEEE Conference on Intelligent Systems IS-2004. Varna, Bulgaria,
June 2004.

[7] C. Ches̃nevar, A. Maguitman, and R. Loui. Logical Models of Argument.ACM Computing Surveys,
32(4):337–383, 2000.

[8] J. de Kleer. A comparison of ATMS and CSP techniques. In N. S. Sridharan, editor,Proceedings of
the 11th International Joint Conference on Artificial Intelligence, Workshop on Practical Reasoning and
Rationality, pages 290–296, Detroit, USA, August 1989. Morgan Kaufmann.

[9] Jon Doyle. A Truth Maintenance System.Artificial Intelligence, 12(3):231–272, 1979.

[10] Charles Elkan. A Rational Reconstruction of Nonmonotonic Truth Maintenance Systems.Artificial
Intelligence, 43:219–234, 1990.

[11] K. Forbus and J. de Kleer.Building Problem Solvers. MIT Press, Cambridge, Massachusetts, 1993.

[12] A. Garćıa and G. Simari. Defeasible Logic Programming: An Argumentative Approach.Theory and
Practice of Logic Programming, 4(1):95–138, 2004.

[13] S. Gomez and C. Chesñevar. A Hybrid Approach to Pattern Classification Using Neural Networks and
Defeasible Argumentation. InProc. of Intl. 17th FLAIRS Conference. Palm Beach, FL, USA, pages 393–
398. AAAI, May 2004.

[14] Hirofumi Katsuno and Alberto Mendelzon. On the difference between updating a knowledge base and
revising it. In P.Gardenfors, editor,Belief Revision, pages 183–203. Cambridge University Press, 1992.

[15] D. McAllester. Truth Maintenance. In Reid Smith and Tom Mitchell, editors,Proceedings of the 8th
National Conference on Artificial Intelligence, volume 2, pages 1109–1116. American Association for
Artificial Intelligence, AAAI Press, August 1990.

[16] H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. InHandbook of Philosoph-
ical Logic, volume 4, pages 219–318. 2002.

[17] G. R. Simari and R. P. Loui. A Mathematical Treatment of Defeasible Reasoning and its Implementation.
Artificial Intelligence, 53(1–2):125–157, 1992.

1219

