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Abstract. We present P- , a Stochastic Process Algebra (SPA) that allows for the model-
ing of timed systems with priorities and urgency. We de�ne the semantics of P- in terms of
Prioritized Stochastic Automata (PSA), an extension of automata with clock events, prior-
ities and probabilistic symbolic transitions. PSAs are symbolic objects that have a concrete
semantics on Probabilistic Timed Transition Systems (PTTS). Therefore, P- has seman-
tics in two steps in terms of PTTS. We also de�ne several operators directly on PTTS.
They include parallel composition and a prioritizing operator. We show that this operators
applied to PTTS commute (modulo probabilistic bisimulation) with their relatives in P- .

1 Introduction

The design and analysis of systems, like embedded systems, communication and network proto-
cols or multi-media systems, requires insight both in functional aspects and in the real-time and
performance aspects. It is known that a separate focus on this aspects has a negative impact in
the design process [16, 17]. Usually a system is fully design and functionally tested before making
any attempt to determine its performance characteristics [17]. This is negative for the design pro-
cess since an undesired performance measurement may require to redesign the system. Stochastic
Process Algebra (SPA) [18, 14, 15, 3, 9, 4, etc.] provides a framework to integrate both aspects of
analysis.

SPA are process algebras [19, 23, 2, 13] extended with operations that allows to represent the
occurrence time of events. Moreover, this occurrence time is governed by a probability distribu-
tion function. A �rst group of SPA, the so called called Markovian SPAs, only considers negative
exponential distributions (e.g. [18, 15, 3]). These distributions have a nice property |the memo-
ryless property| that allows for good axiomatizations. However, they impose a clear limitation.
To overcome this, a second kind of SPA allows for generally distributed timed events (e.g. [14, 20,
9, 4]. In particular, results of [9, 4] overcame the earlier axiomatization problems and moreover,
their techniques allow for reasonable symbolic semantics. A profound technical study of SPA with
generally distributed timed events is given in [6].

This work extends the second kind of SPAs with prioritized events. Priorities are a key in-
gredient when designing real-time systems. They allow that urgent events are realized as soon as
possible and, moreover, to be executed before less important events. In this paper, we introduce
P- , an extension of [10, 9] that allows for modeling urgency and a priority scheme on actions.

P- divides actions in two types: urgent and delayable. A delayable action is an action that,
once enabled, can wait inde�nitely before actually occurring. Therefore, they are prepared to in-
teract with the environment, waiting as long as necessary to synchronize with another component.
Urgent actions, on the contrary, cannot wait: as soon as they become enable, they (or any other
action enabled at that time) have to be performed. As a consequence, they cannot interact with
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the environment. Besides, P- provides a priority order on urgent actions. That is, there are ur-
gent actions that are more important than others. The priority order is simply an order relation
on the sets of urgent actions.

Apart from this structure on the set of actions, P- provides an operation that changes de-
layable actions into urgent. This operation has a two folded functionality: it closes or encapsulates
a system (i.e. it is not open to interact), hence activity becomes urgent, and, at the same time, it
imposes a priority order on actions.

In this paper we introduce the syntax and semantics of P- . We give a symbolic semantics in
terms of the so-called Prioritized Stochastic Automata (PSA) [6] which, in turn, has a concrete
semantics in terms of Probabilistic Timed Transition Systems (PTTS). Hence every P- term P
has also meaning in terms of PTTS. Let us denote it by [jP j]. Besides, we de�ne some operations,
like parallel composition and the prioritizing operation, directly on PTTSs and state that they
commute with respect to P- operations, namely, that if P and Q are P- terms then [jP 
Q j]
and [jP j]
 [jQ j] are equivalent modulo probabilistic bisimulation [21, 6], where � is the operator
of interest (e.g. parallel composition).

Related Work. Priorities in process algebras were de�ned in many di�erent styles (e.g. [1, 8, 7]) and
they also appear in timed and probabilistic process algebras (e.g [25, 22, 27]). To our knowledge
priorities only appear in the Markovian version of SPAs [3, 5]. In this two works, every occurrence
of an action is associated to a natural number that represents its priority value. This is not the
approach that we follow. Our case is closely related to [1], one of the �rst works on priorities, in
which the set of actions is ordered according to a priority order relation. However, in that work,
activity is pruned according to a prioritizing operator. In our case, an operation is used to set
priorities to non-prioritized actions (namely, to transform delayable actions into urgent actions).
The activity is only pruned in the concrete semantics.

Urgency is present in several SPAs [14, 15, 4] as maximal progress, that is, time is not allowed
to progress if a � step is enabled. We follow exactly the same principle, but instead it is applied
to a family of actions rather than to a single one.

Organization of this paper. The paper is organized as follows. Section 2 introduces PSA and
its semantics is de�ned in terms of PTTS in Section 3. Section 4 introduces P- . Its symbolic
semantic is de�ned in Section 5. In Section 6 we de�ne operations on PTTS and show that they
commute with the original P- operations. An illustrating example is shown in section 7. The
paper conclusions are reported in Section 8. Proofs are omitted due to space limitations. They can
be found in [11].

2 PSA

PSA is introduced in [6] and considers the most commons ingredients presents in the model of
stochastic timed systems: clock start, clock termination, execution of actions and probabilistic
jumps. In addition, this model also considers priorities and allow to represent maximal progress
and urgency. All this ingredients are included in only one symbolic transition. This is a model for
represent timed systems with general distributions and is showed that many of the approaches in
literature can be mapped into PSA [6].
With PDF we denote the set of all probability distributions functions and with Prob(
) we
denote the set of all probability spaces with sample space in a subset of 
. We let Probd(
)
denote the subset of Prob(
) containing only discrete probability spaces. We use �; �0; �i; : : : to
denote discrete probability spaces and �; �0; �i; : : : to denote probability spaces in general. In both
cases, we overload the notation and use this letters to represent the probability measure as well.

De�nition 1. A prioritized stochastic automata (PSA) is a structure (St;Ck;Distr;Act;�!; s0)
where

{ St is a set of control states with s0 2 St being the initial control state.
{ Ck is the set of clock names. For the sake of clarity in technical manipulation, we assume

that Ck is totally ordered, and that if C � Ck, ~C is the vector induced by this order.
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{ Distr : Ck ! PDF assigns a probability distribution function to each clock. If f 2 PDF, we
usually name a clock cf 2 Ck to indicate that Distr(cf ) = f .

{ Act is set of actions partitioned in the following two sets:
� Actd, the set of delayable actions and
� Actu, the set of urgent actions

where Actu is ordered according to a priority relation � which is a strict partial order.
{ �! � St� 2Ck �Act� Probd(2

Ck � St) is the control transition relation.

We write s
C;a
���! � if (s; C; a; �) 2 �! and s

C;a
���! if there is a distribution � such that

s
C;a
���! �. To trigger a control transition like this, all clocks in set C must terminate (the clock

c is active as long as it does not reach this termination time. Otherwise we say it is terminated).
Transitions are labeled with actions. They can be delayable, meaning that they need to interact
with the environment, or they can be urgent and they would not. Urgent actions impose maximal
progress and must be executed as soon as they are enabled. If a con
ict between two enabled
urgent transitions occurs, it may be solved according to the priority relation on the actions. In
addition, when a transition is executed, a probabilistic branching will take place according to the
probability space �. �(C 0; s0) is the probability that all clocks in C 0 are started and the system
reaches the control state s0.

3 PTTS

In this section we give a brief description of PTTS as presented in [6], we also look at the so called
\residual life time semantics" of PSA in terms of PTTS and de�ne bisimulations in both models.

3.1 The PTTS model

The PTTS model [6] is an extension of Segala's simple probabilistic automata [24] with continuous
probability spaces and time labeled transitions.

De�nition 2. A probabilistic timed transition system (PTTS) is a structure (�;Act[IR�0;�!; �0)
where

{ � is a set of states;
{ Act is a set of actions like in PSA;
{ �! � � � (Act [ IR�0)� Prob(�) is the transition relation; and
{ �0 2 � is the initial state.

If (�; a; �) 2 �!, we write �
a
�! �. We also write �

a
�! if there is a probability space � such that

�
a
�! �, �

a
�!= if there is no � such that �

a
�! �, and �

a
�! �0 if �

a
�! � and � is a trivial

probability space where the atom f�0g has measure 1.
In addition, the following requirements must hold:

1. maximal progress: 8� 2 �; a 2 Actu: �
a
�! =) 6 9t 2 IR�0: �

t
�!

2. priority: 8� 2 �; fa; bg � Actu: a � b ^ �
a
�! =) �

b
�!=

3.2 Concrete semantics of PSA

The semantics of PSA is de�ned in terms of probabilistic timed transition systems. As we consider
a continuous time domain the concrete model allows us to represent the behavior of the symbolic
probabilistic automata when it is \executed". In this concrete semantics, when a clock c is started,

its termination time is sampled according to Distr(c). In this context, a control transition s
C;a
���! �

becomes enabled as soon as all clocks in C are terminated. To carry the time value and the
termination value of a clock, we use valuations. A valuation is a function v from Ck in the set
IR�0 of non-negative real numbers. Let Val be the set of all valuations on Ck.

3
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A state in the semantics is a triple (s; v; e) where s is a control state in PSA, v is the time
valuation, and e is the enabling valuation. Therefore, given a clock c, v(c) registers the time
that has passed since c was started, and e(c) registers its termination time which was sampled
when it was started. Notice that c is active if v(c) � e(c). As a consequence, a control transition

s
C;a
���! � is enabled in state (s; v; e) whenever v(c) � e(c) for all clocks in C. This is denoted by

enabled(s
C;a
���! �; v; e),

Let R(f1; : : : ; fk) be the probability space in the k-dimensional real space with the unique
probability measure induced by the probability distribution functions f1; : : : ; fk.
If C = fc1f1 ; : : : ; c

k
fk
g � Ck. R(Distr(~C)) denotes the probability space R(f1; : : : ; fk).

Besides, we use the following notation. Given a probability space � and p 2 [0; 1], p � � is the
measurable spaced obtained by multiplying p to the probability measure of �. Given a denumerable
set of probability spaces �i, i 2 I ,

P
i2I �i is the measurable space obtained by appropriately

summing the measures of the di�erent probability spaces.

De�nition 3. Let PSA = (St;Ck;Distr;Act;�!; s0). Its concrete semantics is de�ned by the
PTTS [[PSA]] = (�;Act [ IR�0;�!; �0) where:

{ �
def
= St�Val�Val

{ �! is de�ned by the following rules:

enabled(s
C;a
���! �; v; e)

a 2 Actu =) 6 9b 2 Actu: a � b ^ enabled(s
C00;b
����! �00; v; e)

(s; v; e)
a
�!

X

s0 2 St

C0 � Ck

�(C 0; s0) � samples
0;C0

v;e (R(Distr( ~C 0)))
(1)

8t0: 0 � t0 < t; 8a 2 Actu: :enabled(s
C;a
���! �; v + t0; e)

(s; v; e)
t
�! (s; v + t; e)

(2)

{ �0
def
= (s0; v0; v0); with v0

def
= 0 for all c 2 Ck

{ enabled(s
C;a
���! �; v; e)

def
() 8c 2 C: v(c) � e(c);

{ samples;Cv;e (~t)
def
= (s; v[~C=0]; e[~C=~t]); and

{ for all c 2 Ck, (v + t)(c)
def
= v(c) + t, and v[~C=~t](c)

def
= ~t(i) whenever there is an index i such

that c = ~C(i), otherwise v[~C=~t](c)
def
= v(c).

Rule (1) de�nes the execution of a control transition s
C;a
���! � requiring, therefore, that it is

enabled. Notice that if a is an urgent action, it is also necessary to check that no control transition
with higher priority is also enabled. In addition, the postcondition of the concrete transition is
a random selection of a control state together with the set of clocks to be started and a sample

terminating value for this clocks. Function samples
0;C0

v;e takes care of appropriately constructing
the next state.

Rule (2) controls the passage of time. It states that the system is allowed to stay in the control
state s as long as no urgent action becomes enabled. As a consequence, maximal progress on urgent
action is ensured.

3.3 Bisimulations

In this section we de�ne bisimulation relations both on the symbolic model and the concrete
model. We use concrete bisimulation as our correctness criteria. The de�nition of the symbolic
bisimulation introduced in [6] is a straightforward modi�cation of probabilistic bisimulation [21]
in order to �t clocks.

4
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De�nition 4. Given a PSA, a relation R � St � St is a (symbolic) bisimulation on PSA if the
following statements hold:

1. R is an equivalence relation,

2. whenever hs1; s2i 2 R and s1
C0;a
����! �1, there is a probability space �2 such that

(a) s2
C0;a
����! �2 and

(b) �1(S) = �2(S) for every equivalence class S 2 (Ck � St)=RCk induced by the relation

RCk

def
= fh(C; s1); (C; s2)i j C � Ck; hs1; s2i 2 Rg.

Two control states s1 and s2 are bisimilar, notation s1 � s2, if there is a bisimulation R such that
hs1; s2i 2 R. Two PSA, PSA1 and PSA2 are bisimilar, notation PSA1 � PSA2, if the initial
states are bisimilar in the disjoint union of PSA1 and PSA2.

The de�nition of the concrete bisimulation is more involved since it must deal with continuous
probability spaces (see e.g. [26, 9, 4]). In particular, we follow the de�nition given in [4]. We �rst
give some necessary de�nitions.

Let (
;F ; �) and (
0;F 0; �0) be two probability spaces. We say that they are equivalent (no-
tation (
;F ; �) � (
0;F 0; �0)) if (a) for all A 2 F , A \
0 2 F 0 and �(A) = �0(A \ 
0), and (b)
for all A0 2 F 0, A0 \
 2 F and �0(A0) = �(A0 \
).

Given an equivalence relation R on a set � and a set I � �, we de�ne the function ECI;R :
I ! �=R which maps each state � 2 I into the corresponding equivalence class [s]R in �.

De�nition 5. Given a PTTS, a relation R � � �� is a bisimulation on PTTS if the following
statements hold:

1. R is an equivalence relation, and

2. whenever h�1; �2i 2 R and �1
a
�! �1, there is a probability space �2 such that

(a) �2
a
�! �2 and

(b) EC�1;R(�1) � EC�2;R(�2) where �i is the sample space of �i.

Two states �1 and �2 are bisimilar, notation �1 � �2, if there is a bisimulation R such that
h�1; �2i 2 R. Two PTTS, PT1 and PT2 are bisimilar, notation PT1 � PT2, if �

1
0
� �2

0
in the

disjoint union of PT1 and PT2.

4 P-

Most of the approaches to formal speci�cations and analysis of concurrent systems whose activity
duration depends on general probabilistic functions agree in a three levels structure: process algebra
level, symbolic semantics level and concrete semantic level. PSA �ts in the symbolic semantic level,
the concretes semantics level is given by means of PTTS. However, no adequate (in the sense of
taking full advantage of expressiveness) process algebra for PSA was presented. That is the issue
we want to address with our process algebra P- . P- is based in [9], and extends a transitional
process algebra with operators for handling random clocks, prioritized actions and probabilistic

transitions. C 7! P with C � Ck is the clocks triggering operator, a:

n



X

i=1

(pi; fjCijg ; Qi) with

a 2 Act; Ci � Ck; pi 2 [0; 1];
nX

i=1

pi = 1; Qi 2 P- is the probabilistic pre�x and �f (P ) with

f : Actd �! Actu being a partial function, is the priority operator.

5
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4.1 Syntax

Let Act = Actd [Actu a set of actions, Ck a set of clocks having each one a distribution function
associated. The syntax of P- is de�ned according to the following grammar:

P ::= 0 j X j P + P j a:
n



X

i=1

(pi; fjCijg ; P ) j P jj
A
P j C 7! P j �f (P ) j P [�]

where a 2 Act is an action name,

nX

i=1

pi = 1, C;Ci 2 2Ck are sets of random clocks, A � Actd is

the set of synchronization, � : Act �! Act is a homomorphic rename function, f : Actd �! Actu
is a partial prioritizing function and X is a process variable belonging to the set V of process
variables.

5 Symbolic Semantic of P-

The rules for the semantics of P- in PSA are given in table 1, they capture the intuitive behavior
explained in the following. As usual, process 0 represents a process that cannot perform any action

but is allowed to idle inde�nitely. a:

n



X

i=1

(pi; fjCijg ; Qi), is the process that, after performing action

a, it resets clocks in Ci, and behave like Qi with probability pi. That induce a discrete probabilistic
space � such that �(Ci; Qi) = pi, and �(C;P ) = 0 if (C;P ) =2 f(C1; P1); :::; (Cn; Png. C 7! P can
perform any activity P can, but with the restriction that any delayable activity must wait until
all clocks in C are terminated. P + Q behave as P or Q but not both. The parallel composition
jj
A
executes P and Q in parallel, and they are synchronized by the set of delayable actions A. We

remark that synchronization may happen if both process are ready to do it, so we do not allow
urgent actions to synchronize. Synchronization implies one of the involved parts may have to wait,
but we do not want to delay an enabled urgent action. This can also be noticed in the rule for
C 7! P . Process �f (P ) behaves like P , except that delayable actions from P in the domain of f
are renamed to urgent actions and hence prioritized.

De�nition 6. Let �! be the least relation satisfying the rules in Table 1. For P 2 P- de�ne
PSA(P ) = (StP ;Ck;Distr;Act;�!; P ) where StP as in is the set of all P- processes reachable
from P trough �!, Ck and Distr are just like in P- , and P is the initial state.

Now, we can obtain the concrete semantic of a process by �rst obtaining its symbolic semantic in
terms of PSA as in de�nition 6 and then deriving the concrete semantic of the resulting prioritized
stochastic automaton as in de�nition 3. So, let P 2 P- we write [jP j] as the result of this two

steps semantic: [jP j]
def
= PTTS[[PSA(P )]].

6 Compositionality of P- operators

We showed in the previous section how the concrete semantic of a P- process can be obtained. In
this section we de�ne the behavior of several P- operators over arbitrary PTTS's and prove that
these operators are compositional respect of the concrete semantics. We do that for the parallel
composition, the nondeterministic sum, the priority operator and the renaming operator. Since in
an arbitrary PTTS clocks do not exists, we cannot do the same for the clock triggering operator
or the probabilistic pre�x.

So, let PT = (�;Act [ IR�0;�!; �0), PT1 = (�1;Act [ IR�0;�!1; �
1
0
),

PT2 = (�2;Act [ IR�0;�!2; �
2
0
), P 2 P- , and for � 2 � we de�ne �� as �� 2 PROB(�) such

that ��(�) = 1. We rede�ne jj
A
, +, �f and [�] to run on arbitrary PTTSs. They can be found in

6

CACIC 2003 - RedUNCI 1597



a:

X
I

(pi; fjCijg ; Qi)
;;a
���! �0

P
C1;a����! � a 2 Actd

C 7! P
C[C1;a������! �

P
C1;a����! � a 2 Actu

C 7! P
C1;a����! C 7! (�)

P
C1;a����! �1 Q

C2;a����! �2 a 2 A

P jj
A
Q

C1[C2;a������!MA(�1; �2)

P
C;a
���! � a =2 A

P jj
A
Q

C;a
���!MA;Q(�)

Q jj
A
P

C;a
���!MQ;A(�)

P
C;a
���! �

P +Q
C;a
���! �

Q+ P
C;a
���! �

P
C;a
���! � a =2 Dom(f)

�f (P )
C;a
���! �f (�)

P
C;a
���! � a 2 Dom(f)

�f (P )
C;f(a)
�����! �f (�)

P
C;a
���! �

P [�]
C;�(a)
�����! �[�]

{ �0(�;F ; P ) , � = St� 2Ck, P (Q;C) =

�
pi if Q = Qi ^ C = Ci

0 otherwise

{ MA;Q(�) is a space such that:
PMA;Q(�)(< P jj

A
Q;C >) = P�(< P;C >)

PMA;Q(�)(< R;C >) = 0 if 6 9P:R � P jj
A
Q

{ MA(�1; �2) is a space such that:
PMA(�1;�2)(< P1 jjA P2; C1 [ C2 >) = P�1 (< P1; C1 >):P�2(< P2; C2 >)
PMA(�1;�2)(< R;C >) = 0 if 6 9P1; P2:R � P1 jjA P2

{ �f (�) is a space such that
P�f (�)(�f(P ); C) = P�(< P;C >)
and P�f (�)(< R;C >) = 0 if 6 9P:R � �f (P )

{ C 7! (�) is a space such that
PC 7!(�)(< C 7! P; C >) = P�(< P;C >)
and PC 7!(�)(< R;C0 >) = 0 if 6 9P:R � C 7! P

{ � : Act �! Act is an homomorphism with respect to the priority order �

Table 1. Rules for P-

Table 2. We explain the intuitive behavior for the rules in the following. For PT1 jjA PT2 the states
of the composition are pairs of states of each PTTS. Actions not in A are executed independently,
while actions in A are required to synchronize. Urgent actions can be executed only if no other
action with higher priority is enabled. If both PTTS can idle for t time units, then the composition
can also idle t time units. Finally, actions in A impose synchronization. The non deterministic sum
behaves as one of the PTTS's but not both, the only considerations are that it can let time pass
before deciding which branch it takes (if both PTTS's can) and if the �rst action of each option
is urgent, the higher prioritized path must be chosen if it exists. The de�nitions of operators �f
and � are straightforward, only considering that the prioritizing operator can enable new urgent
transitions, that is, the common restriction for urgent actions must be checked again.

The following theorem proves compositionality for each P- operator in Table 2 respect of the
concrete semantic. We use bisimulation as our correctness criteria.

Theorem 1. Let P; P1; P2 2 P- with associated clocks sets Ck;Ck1 and Ck2 respectively:

{ [jP1 j] jjA [jP2 j] � [jP1 jjA P2 j] provided Ck1 \ Ck2 = ;
{ [jP1 j] + [jP2 j] � [jP1 + P2 j]
{ �f ([jP j]) � [j �f (P ) j]
{ [jP j][�] � [jP [�] j]

7

CACIC 2003 - RedUNCI 1598



PT1 jjA PT2
def
= (�1 ��2;Act [ IR�0;�!12; (�

1
0 ; �

2
0))

�1
a
�!1 �1 ^ (a 2 Actu =) �2

b
�!= 2 8b : b � a)

(�1; �2)
a
�!12 �1 � ��2

�2
a
�!2 �2 ^ (a 2 Actu =) �1

b
�!= 1 8b : b � a)

(�1; �2)
a
�!12 ��1 � �2

�1
t
�!1 �

0
1; �2

t
�!2 �

0
2

(�1; �2)
t
�!12 (�

0
1; �

0
2)

�1
a
�!1 �1; �2

a
�!2 �2; a 2 A

(�1; �2)
a
�!12 �1 � �2

PT1 + PT2
def
= (�1 [�2 [�1 ��2;Act [ IR�0;�!+

; (�10 ; �
2
0))

�i
a
�!i �

a 2 Act ^ (a 2 Actu =) 6 9b � a : �i0
b
�!i0 �

0; i; i0 2 f1; 2g; i 6= i0)

(�i; �i0)
a
�!+ �

�1
t
�!1 �

0
1; �2

t
�!2 �

0
2

(�1; �2)
t
�!+ (�01; �

0
2)

(�2; �1)
t
�!+ (�02; �

0
1)

�
a
�!i �

�
a
�!+ �

i 2 f1; 2g

�f (PT )
def
= (�f ;Act [ IR�0;�!f ; �f (�0)); �f = �f (�)

�
a
�! �

a =2 Dom(f) ^ (a 2 Actu =) 6 9b 2 Dom(f) : f(b) � a : �
f(b)
���!)

�f(�)
a
�!f �f (�)

�
t
�! �0 ^ 8a 2 Dom(f); t0 < t :6 9�00: �

t0

��! �00
a
�!

�f(�)
t
�!f �f (�

0)

�
a
�! �; a 2 Dom(f) ^ 6 9b � f(a) : �

b
�! ^ 6 9b 2 Dom(f) : f(b) � f(a) ^ �

b
�!

�f (�)
f(a)
���!f �f (�)

PT [�]
def
= (��;Act [ IR�0;�!�; �0[�]); �� = f�[�] : � 2 �g

�
a
�! �

�[�]
�(a)
���!� �[�]

�
t
�! �

�[�]
t
�!� �[�]

Table 2. Rules for jj
A
, +, �f and � operators

7 Modeling using P-

We will use the shorthand notations a:(fjC1jg ; S1) for a:
1



X

i=1

(pi; fjCijg ; Si) if p1 = 1, and if addition-

ally C1 = ; we use a:S1. When n is �xed we explicit the summation using � symbol. For example

we use a:((p1; fjC1jg ; P1)� (p2; fjC2jg ; P2)) for a:

2



X

i=1

(pi; fjCijg ; Pi)

In the following example we try to show how the operators we introduce can be used for
modeling, we use the probabilistic jump and the prioritizing operators. The last one have three
main functionalities. First, it allows us to make urgent a delayable action that not longer needs
to communicate, hence hiding it from the others processes (in the sense of communication). This
change in the action status also implies that, as soon as the action is enabled, it cannot let time
pass any more, this is the second functionality. The third is the ordering of delayable actions that
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become urgent, allowing us to de�ne an order relation among them. In the next example, priorities
are not required. For an integral example we refer to [11].

The alternate bit protocol [2, 12] is an algorithm for the correct transmission of a data stream
form one place to another via so called faulty channel. Here a faulty channel is a medium that can
garble, duplicate or lose data in some way. At the macroscopic level the problem can be described
as a black box such that in the left side there is an in of stream data and in the right side there is
an out. The intention is that the stream ejected be equal to the stream injected. Internally (inside
of the box), we have a sender S, sending elements a to the receiver R via the faulty channel K.
After having received a certain data element, R will send an acknowledge to S via the same channel
K. If an ack is not received by S a timeout occurs and the data must be retransmitted. In this
example we model with P- (in Table 3) a variant of the alternate bit protocol where channel K
has two ways to fail, lose the message (with a probability of 0:05) or garble it (with a probability
of 0:05). The delayable actions are a(i); b(i); c(i); d(i); b(?); c(?); in; out and the urgent ones are
a(i); b(i); c(i); d(i); b(?); c(?); � for i 2 f0; 1g.

The Sender alternates between process S(0) and S(1) as follows: when data arrive from outside
via delayable action in, S(i) sends a message to the channel appending alternating bit i (this is a
control bit, used to detect duplicate messages) with the action a(i) and resets the clock y, which
has a trivial discrete distribution function. There are three possibilities:

{ a timeout occurs; then the message is sent again,
{ the Sender receives an ack with alternating bit i, the message was successfully transmitted,
the sender waits for a new in message in process S(1� i),

{ S(i) receives an ack with alternating bit 1� i or an incorrect ack b(?) (we suppose that if the
message is corrupted by the channel we can detect it, we use the symbol ? for such corrupted
message), the message is discarded and S(i) keeps waiting for a correct ack.

The channel, for each received message, has a 5% chance of losing it, and 5% of garble it. In
any case the process takes d time units with an error of �� uniformly distributed (i.e. according
to a uniform distribution U(d� �; d+ �)) to send a message.

The Receiver alternates between process R(1) and R(0): when R(i) receives a message c(j),
with j 2 fi; 1� i;?g, if j = i, R(i) just sends and ack with alternating bit i, if j = 1 � i sends
an ack back, outputs the message, and continues with its normal execution switching to process
R(1� i). In the other case, it discards the message and waits for a new one.

Si = in:a(i):(fjyjg ; S0i)

S0i =
�
fyg 7! a(i):(fjyjg ; S0i)

�
+

�
b(i):S1�i + b(?):S0i + b(1� i):S0i

�

K =
1X
i=0

Di + Li

Di = a(i):
�
fjxjg ;

�
fxg 7! � :((0:05; ;; K)� (0:05; ;; c(?):K)� (0:9; ;; c(i):K))

��
Li = d(i):

�
fjxjg ;

�
fxg 7! � :((0:05; ;; K)� (0:05; ;; b(?):K)� (0:9; ;; b(i):K))

��
Ri = c(i):R0

i + c(?):R0
i + c(1� i):R00

i

R0
i = d(i):Ri

R00
i = d(1� i):out:R1�i

Table 3. P- speci�cation for the alternating bit protocol

The process modeling the communication protocol is

�f (S0 jjSK K jj
RK

R1)
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where SK = fa(0); a(1); b(0); b(1); b(?)g, RK = fc(0); c(1); c(?); d(0); d(1)g and f : SK [ RK !
SK [RK with f(x) = x for all x 2 SK [ RK. It is important to remark that operator �f makes
that the environment can only communicate with this process just through actions in, out. This
is the reason the entire process behave like a black box as explained above.

8 Conclusion

We introduced P- , a process algebra that extends SPAs with a framework to model priorities
and urgency and give semantics in terms of PSA. Since PSA has semantics in terms of PTTS,
every P- term has concrete meaning in a PTTS. Moreover, we de�ned several operations directly
on PTTS, namely, parallel composition, summation, the prioritizing operation, and the renaming
operation. We showed that this operations commute modulo bisimulation with their relatives in
P- . We �nally gave an example illustrating how P- can be used for system modeling.

Much work is still to be done. For instance, the �nding of an axiomatization for P- or a tool
support that allows to analyze systems modeled in this SPA. In [6] several SPA are shown to have
semantics in terms of PSA. As a corollary of this, it seems that P- is more expressive than those
algebras. A deeper study on the relation of P- and those algebras, seems to be also a reasonable
research direction.
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