
Combining a Causal Language with Argumentation: A First Approach

Mar ı́a Laura Cobo∗ Guillermo Ricardo Simari
Artificial Intelligence Research and Development Laboratory (LIDIA)

Universidad Nacional del Sur
Bah́ıa Blanca, B8000CPB, Argentina

[mlc,grs]@cs.uns.edu.ar

Abstract

The development of systems with the ability to reason about change notion and actions has been of great
importance for the artificial intelligence community. The definition and implementation of systems capable of
managing defeasible, incomplete, unreliable, or uncertain information has been also an area of much interest.
With a few exceptions research on these two ways of reasoning was independently pursued. Nevertheless,
they are complementary and closely related, since many applications that deal with defeasible information also
depends on the occurrence of events and time.

DeLP is an argumentative system appropriate for commonsense reasoning. It is interesting to extend
this system adding mechanisms to manage events and time. Here we analyze some of the consequences of
changingDeLP representation language introducingEvent Calculussyntax, particularly the role played by the
commonsense rules of inertia.

Keywords: Argumentative Systems, Knowledge Representation, Defeasible Reasoning, Commonsense Rea-
soning, Temporal Reasoning, Reasoning about change notion and actions.

1 INTRODUCTION

The development of systems with the ability to reason about causal information (information inferred
from events occurrence), has been of great importance for the artificial intelligence community. Re-
search in this area has been interested on this issue as a way to find a solution for a wider variety of
problems where the occurrence of actions and the moment they occur makes a difference [5].

Argumentation Systems [2, 16], were developed in order to deal with incomplete or unreliable
information. In real scenarios this situation is quite common, specially when we deal with dynamic
systems,i.e., systems where the knowledge available to reason with changes frequently (new infor-
mation become available or information that used to be available became unavailable or invalid).
Usually, since it is very difficult to represent all the information related to the objects under consid-
eration, the information that appears as supporting our reasoning is incomplete. As a matter of fact,
there are formalisms such as theSituation Calculus[19] where this problem is quite relevant. When
new information about an entity becomes available,i.e., knowledge changes, we must revise all the
representation.

In order to improve on this problem we will follow anargumentativeapproach.DeLP [4] is an
argumentation system, which combines results from Logic Programming and Defeasible reasoning

∗Partially supported by Agencia de Promoción Cient́ıfica y Tecnoĺogica (PICT 13096, PICT 15043, PAV 2003 Nro.
076) and the Universidad Nacional del Sur

1231

providing tools for knowledge representation and commonsense reasoning. We are interested in the
development of an argumentative system based onDeLP that can deal with causal information.
At the same time we intend to define an enhanced system by adding toDeLP more capabilities.
Following [15], a system that performs commonsense reasoning should include a way of dealing with
fundamental concepts such as:

• Representation:The language must be able to build a representation of world scenarios and
also must represent commonsense knowledge about that world. The representation can be made
through some data structure and should facilitate automated reasoning.

Commonsense knowledge is usually represented through rules known as“commonsense laws
of inertia” , with the purpose of, among other things, solving theframe problem, i.e., represent
the knowledge that remains unchanged after the execution of an action.

• Commonsense Entities:The system must represent objects, agents, time-varying properties,
events, and time. These last two entities are crucial because they establish“how” the informa-
tion changes.

• Commonsense Domains:The system must represent and reason about time, space, and mental
states. It must also deal with object identity,i.e., it should be able to determine references to a
specific object.

• Commonsense Phenomena:The system must address the common sense law of inertia, the re-
lease from the commonsense law of inertia, concurrent events with cumulative and canceling
effects, context-sensitive effects, continuous change, delayed effects, indirect effects, nondeter-
ministic effects, preconditions and triggered events.

• Reasoning:The system must specify a process for reasoning by using representation of scenar-
ios and representations of commonsense knowledge. The system must support some kind of
default reasoning, temporal projection, abduction, and postdiction (or explanation).

We will extendDeLP taking these concepts on consideration, introducing the possibility of in-
cluding causal information, depending oneventsand time. Some representative languages such as
the Event Calculusand theSituation Calculusdeal with incomplete information through the use of
circumscriptionto minimize the extension of certain predicates used in the representation. The ad-
vantage of the argumentative approach is that it makes possible to reach an answer after a dialectical
analysis.

This work analyzes some of the consequences of changingDeLP representation language by
introducing part of theEvent Calculusprimitives, focusing on the role played by thecommonsense
rules of inertia. The analysis performed here will lead us to the basic definition of the new system
CausalDeLP , denotedCDeLP .

he paper is structured as follows, on Section 2 the basics on defeasible reasoning are presented,
particularly the argumentative systemDeLP . In this section, the justification ofDeLP ’s extension
is also presented. Causal languages, such asevent calculusare presented on Section 3. The first step
in order to get causal argumentation is provided on Section 4, particularly how inertial rules affect
arguments construction. The last section presents the conclusions.

2 ARGUMENTATION AS DEFAULT REASONING

Non-monotonic reasoning provides a way to reason extracting conclusions over an incomplete infor-
mation scenario. If we obtain new information, then previous conclusions may be retracted. Com-

1232

monsense reasoning must have always a non-monotonic component, since most commonsense infer-
ences could become unsupported and therefore should be retracted. One of the first attempts to a
formalization of non-monotonic reasoning was made by John McCarthy [7] in the 1970’s. In early
1980’s several non-monotonic formalisms were developed: Circumscription [8], Default Logic [18],
and a modal approach to non-monotonic logics [12]. Argumentation formalisms were developed
during the 1980’s (see [16, 2].)

In general, an argumentative system deals with five elements, at least in the abstract layer:an
underlying logical language(for our purpose we need a temporal-logic language, we will use the
Event Calculussyntaxs),a definition of argument, a conflict and rebuttal among arguments definition,
a form of argument evaluation, anda notion of defeasible logic consequence(again in this case it must
bedefeasible temporal-logic consequence.)

In many cases, the five above mentioned elements are not explicitly defined because they are
clearly not independent. In fact, dependencies among them allow the identification of four fundamen-
tal layers in argumentative systems [16]:The Logical Layerthat comprises the language definition,
the inference rules, and the argument construction;The Dialectic Layerthat both involves the defi-
nition of conflict between arguments and formalizes the way of solving those possible conflicts;the
Procedural Layerwhich defines the interchange of arguments; and theStrategic Layerthat presents
heuristics for argument comparison during a debate based on maximizing success possibilities. Since
our work is based onDeLP ’s language we will introduce brief account below. For a complete pre-
sentation see [4].

2.1 Defeasible Logic Programming (DeLP)

Defeasible Logic Programming (DeLP) is an argumentation formalism that implements the layers
expressed above. Information can be represented in the form of weak rules in a declarative manner,
and a defeasible argumentation inference mechanism is used for finding the entailed conclusions. In
DeLP an argumentation formalism will be used for deciding between contradictory goals. Queries
will be supported by arguments that could be defeated by other arguments. A queryQ will succeed
when there is an argumentA for Q that iswarranted, i.e., the argumentA that supportsQ is found
undefeated by the procedure that implements a dialectical analysis. The defeasible argumentation
basis ofDeLP allows to build applications that deal with incomplete and contradictory information
in dynamic domains. Thus, the resulting approach is suitable for representing agent’s knowledge and
for providing an argumentation based reasoning mechanism for that agent (see for example [3, 1].)

In DeLP weak rules represent a key element for introducing defeasibility and they are used to
represent a defeasible relationship between pieces of knowledge. This connection among knowl-
edge could be defeated after all things are considered. General common sense reasoning should be
defeasible in a way that is not explicitly programmed. Rejection should be the result of the global con-
sideration of the available knowledge that the agent, performing such reasoning, has at his disposal,
Defeasible Argumentation provides a way of doing that.

DeLP language is defined in terms of three disjoint sets: a set of facts, a set of strict rules and a
set of defeasible rules. InDeLP ’s language a literal “L” is a ground atom “A” or a negated ground
atom “∼A”, where “∼” represents the strong negation.

DEFINITION 1 (DeLP [4])
A DeLP program is defined in term of two disjoint sets: a set offactsandstrict rules(Π) and

finally one ofdefeasible rules(∆), where

• A fact is a literal,i.e., a ground atom, o a negated ground atom.

1233

• A strict rule is a rule denoted as “Head← Body”, whereHead is a literal and,Body, is finite
set of literals. A strict rule can also be written as:

L0 ← L1, . . . , Ln(n > 0)

whereL0 is rule’sHead and eachLi, i ≥ 0 is a literal.

• A defeasible ruleis a rule noted asL0 —≺L1, . . . , Ln. AgainLi is a literal andi ≥ 0

Notice that strict negation may affect any literal, in particular may affectL0. At first sight the only
difference between strict and defeasible rules is the way they are denoted, although their meaning is
clearly different. In the first kind of rule there are no doubts about the conclusion expressed on the
rule, while in the other we only assure that“reasons to believe in the body of the rule are reasons
to believe in the consequent”. We require the definitions ofDefeasible derivationand Argument
Structure.

DEFINITION 2 Defeasible DerivationA defeasible derivation for a ground literal,L, is a finite se-
quence of ground literals, where each literal is in the sequence becauseL is a fact in setΠ of the
program, or there is a rule (strict or defeasible) in the program, whose head is literalL and all the
literals in theBodyappears in the sequence before.

DEFINITION 3 Argument StructureLet L be a literal and(P) = (Π, ∆) a DeLP program. We say
that〈A, L〉 is an argument structure forL, if A is a set of defeasible rules from∆, such that:

1. there is a defeasible derivation forL from Π ∪ A,

2. the setΠ ∪ A is non-contradictory, and

3. A is minimal (there is not a subset ofA such that satisfies the previous conditions)

Let see a classic example of the non-monotonic reasoning literature.

EXAMPLE 1 (extracted from [4]) LetP1 be aDeLP program defined as:P1 = (Π1, ∆2), where:

Π1 =

bird(X)← chicken(X),
bird(X)← penguin(X),
∼flies(X)← penguin(X),
chicken(tina),
penguin(tweety),
scared(tina)

∆1 =

flies(X) —≺ bird(X),
∼flies(X) —≺ chicken(X),
f lies(X) —≺ chicken(X), scared(X),
nestsintrees(X) —≺ flies(X)

From this program we can infer that, the answer forflies(tina) will be yes , whereas the answer

for ∼ flies(tina) will be no . The answer forflies(tweety) will be no , whereas the answer for
∼flies(tweety) will be yes . We can also get the sequence

{chicken(tina), bird(tina), f lies(tina)}

is a defeasible derivation forflies(tina), obtained for the following set of rules:

{bird(tina)← chicken(tina), f lies(tina) —≺ bird(tina)}

Note that there is also a derivation for∼ flies(tina) from the sequencechicken(tina),∼flies(tina)
obtained form this other set of rules:{∼flies(tina) —≺chicken(tina)}. Then there is an argument
〈A1, f lies(tina)〉 and there is an argument〈A2,∼flies(tina)〉where:A1 = {flies(tina) —≺ bird(tina)},
andA2 = {∼flies(tina) —≺chicken(tina)}

1234

2.2 Shortcomings inDeLP ’s Knowledge Representation Language

A fact that is not considered in argumentative systems is the dynamics of knowledge. On one hand
there is some knowledge that never changes with time, this knowledge is usually about“what things
are” . On the other hand, information that express“how things are” generally changes with time. As
an example lets take a look to theDeLP program presented on example 1. We can see that all the
literals defined inP1 are time independent. If something is abird it will always be one, since there
is no way of changing the nature things. But the definition offlies may depend on information that
changes over time. As an example, we can consider the fact that squabs (young pigeons) do not fly. If
we add this information in programP1 above we face a temporal problem since it is based on the fact
that some bird that is a squab just for some period of time will no longer be one because it will grow
up. This kind of change in the truth-value of a literal, likesquab, cannot be represented inDeLP ’s
language. Let see a program,P2 = (Π2, ∆2), that considers the predicatesquab in the representation.
ProgramP2 is an extension ofP1 from example 1, where the new rules added are boxed. Let see the
definition of the setsΠ2 and∆2:

Π2 =

bird(X)← chicken(X),
bird(X)← penguin(X),
bird(X)← squab(X) ,

∼flies(X)← penguin(X),
chicken(tina),
squab(sylvester) ,

penguin(tweety),
scared(tina)

∆2 =

flies(X) —≺ bird(X),
∼flies(X) —≺ chicken(X),
f lies(X) —≺ chicken(X), scared(X),
nestsintrees(X) —≺ flies(X),
∼flies(X) —≺ squab(X)

In P2 the truth value of the literalsquab(X) should depend on time, a bird that is a squab now in
a month will be a full grown pigeon, but in the above representation this fact is not modeled. The
lacks of temporal expressivity in the language lead us to an inadequate representation, or, better
said, to a representation that is a static snapshot of the world. We cannot represent in the rule∼
flies(X) —≺squab(X) the moment when the query is made, although this information is extremely
important for obtaining the right conclusion. Ifsylvesteris a squab now it is correct to infer that
sylvestercan not fly, but to assume thatsylvesteris still a squab after one month of its birth is not
right, and therefore it is incorrect to obtain thatsylvestercan not fly after that period of time, since
sylvesteris no longer a squab in the present moment. This change on the knowledge is not represented
in the previous program. To achieve an argumentation system capable of an appropriate manipulation
of this type of knowledge, as a first step, we should change the representation language.

3 CAUSAL LANGUAGES

During the last decades research in Logic Programming has developed in a significant manner. Logic
programming is closely related with temporal reasoning [11] but the classical logical programs, based
on Horn clauses [22], is not good enough at modeling change. An extended language is required and
as a consequence a new computational approach, suitable for the new language it is also required.
To overcome these limitations of traditional logic programming some non-logic constructors, anno-
tations or especial predicates, were introduced. These languages and their implementations represent
significant advances in the area. In this category there are very well known languages such asEvent
Calculus[10] andSituation Calculus[9, 19]. These languages are very efficient but they are based on
a non-standard logic, which means that a program could not be interpreted only by its specification.
Another way to avoid the limitations of traditional logic programming is the use of temporal logics,

1235

and for this purpose modal and intentional logics are used. As a result many languages appeared,
some are purely declarative while other have an associated operational semantics.

There are different ways to conceive time, conceptions that are borrowed from philosophy. We can
think in linear or branching time, discrete or dense time, etc. Other aspect appears when we combine
time an actions. We can think time as an entity were events take place, or we can think on events as
a entity, and thus time can be seen only as a collateral phenomenon of the events occurrence. More
precise information about different time conceptions can be found at [17, 20]. Taking this aspects
on consideration, in this kind of reasoning we can choose different languages according to what time
conception we need or how we interpret events and its relation with time.

Causality defines the law of cause an effect. If we reduce this definition to a way of determining
when the validity of which fluents end after some other fluents become valid, almost every logical
language can be seen as a causal language. Since time an actions are basic concepts on a cause and
effect scenario, then any causal language should take into consideration these concepts. Any language
considered causal has a way to represent action effects (effect axioms) and action un-effects (frame
axioms). In this sense some of the languages mentioned above, such as theEvent Calculus, are causal.

Effect axioms represent the core of any causal program, they set out what changes are performed
as a consequence of an action; but what remains unchanged is not modeled by them. That is why we
could say that effect axioms lead only to a partial set of the consequences we intuitively like to have.

We will need other type of axioms to deal with the frame problem. Since frame information
is default, then default reasoning becomes an essential part of any causal language. This form of
reasoning gives to us the means to reason with this other important type of information.

Languages that implement this kind of axioms can choose among several implementations of
default reasoning, the best known are: Default Logic [18], Circumscription [8], Argumentation Sys-
tems [16]. However, they usually use circumscription because it is a mechanism closer to logic
programming than the others mentioned. Recall that circumscription is a form of non-monotonic rea-
soning developed by John McCarthy [6, 7], that augments standard first-order predicate calculus with
a second-order axiom.

DEFINITION 4 [6, 7] Let φ be a formula, in which predicateρ appears. Thecircumscriptionof φ
minimizingρ, noted asCIRC[φ; ρ], is the second order formula,

φ ∧ ∼∃ q [φ(q) ∧ q < ρ]

Its basic idea is to minimize the extension of certain predicates. This process is usually referred to as
minimizingthe predicate.

Event Calculus

TheEvent Calculus(EC) was introduced in the 1980’s by Kowalski and Sergot as a logic programming
formalism to represent events and their effects [10]. Many dialects have been developed since then,
e.g., see [21, 13]. In the original language events initiates time periods during which properties hold.
Once a property or“fluent” is initiated, it holds unless it is terminated by the occurrence of an event.
In Kowalski and Sergot version, discrete time ontology was chosen to indicate changes. A particular
extension of the language is required in order to represent continuous characteristics. Most known
extensions of this calculus were developed by Shanahan [21].

In generalEC is a logical mechanism capable of making inferences to determinewhat is true
whenfrom what happens when(knowledge about the state of the world) andwhat actions do(effect
of an action on the world). The logical machinery includes arithmetic to set a relation between time
references. The kind of arithmetic involved depends on the selected temporal ontology. The basic

1236

ontology of the calculus areactions, also calledevents, fluentandtime points. A fluent is anything
whose truth value is subject to change over time. It could be a quantity such as“temperature in a
room” or “amount of liquid in a bottle”whose numerical value is subject to variation, or a proposition
such as“it is sunny” whose truth value change from time to time. The predicate deals basically with
propositional fluents although the other ones are allowed in some dialects. Another important issue
in the choice of the ontology is the choice of the predicates. The main predicates used on a simple
version ofEvent Calculus, (SEC), are:

happens(E, T): E takes place onT .
holdsAt(F, T): F holds atT .

initiates(E,F, T): F starts to hold afterE, and is not freed onT + 1.
terminates(E,F, T): F ceases to hold afterE atT .

releases(E,F, T): F is not subject to inertia afterE atT
initiallyP (F): F holds form time zero.

whereE represents events,T time moments andF fluents. The calculus complete axiomatization
depends on the time ontology of choice. For example if we consider a discrete ontology, we can use
the ontology presented by Mueller [14], or the more complete ontology from Miller and Shanahan
research [13].

The reasoning mechanism uses circumscription to deal with default information and to solve
incompleteness. The latest versions of this calculus use as reasoning technique a first-order logic
automated theorem proving. Previous versions use propositional satisfiability or abductive logic pro-
gramming.

4 CAUSAL ARGUMENTATION

We begin the design of a causal argumentative system by choosing a representation language that al-
lows representing causal information and with this purpose we introduce the syntax ofEvent Calculus.
The implementation aspects of this calculus will be matter of future research.

In any causal language, there are rules that allow the manipulation of frame information. These
rules are known as thecommonsense rules of inertiaand they are, in certain way, considered in
non causal argumentation approaches but the role they play there is quite different. The information
available is about different moments of time. In this new context they are crucial to the construction
of arguments and we must consider how they affect the argument comparison mechanism. This issue
is important because when we use an inertial rule we are accepting that none of the actions that took
place so far, change this particular fluent status.

4.1 The Role of the Commonsense Rules of Inertia

One the mayor issues that appear under this new information scenario is the role of the commonsense
rules of inertia. These rules are responsible of a great number of conflicts among arguments. In
commonsense reasoning this kind of rule are defeasible in nature since the information obtained
through them holds only if no change occur. This kind of rule appears as a way of solving the
frame problem. The meaning attached to these rules is like the following default rule:”Normally,
given an action or event and a fluent, the action does not affect the fluent”, and at the moment they
were introduced as device for representing the situation they could not became more formal. Causal
languages, as formal frameworks, made possible their formalization through default reasoning, such
as circumscription. They usually look like this:

[Holds(fluent, Result(a, s))↔ Holds(f, s)]←∼Affects(a, f , s)

1237

but they change according to the syntax of the language and how the defaults are managed on it. Lan-
guages as theEvent Calculusdeal with these rules through the use of circumscription (see Section 4.)
This is one of the possible solutions to manage default reasoning, although it is a decision that brings
advantages and disadvantages.

Let consider an example with this kind of rules and rules withageing. A rule considers ageing
if changes the truth-value of a literal only by looking at the truth-value the same literal used to have,
at some past timet, and the amount of time span between the present moment and that particular
momentt.

EXAMPLE 2 Let us consider a flying bird scenario represented in programP3 = (Π3, ∆3), with the
predicateinjured conveniently added.

Π3 =

 holdsAt(bird(X), T + 1)← holdsAt(bird(X), T),
holdsAt(bird(tina), 0),
holdsAt(injured(tina), 0)

∆3 =

holdsAt(flies(X), T) —≺holdsAt(bird(X), T),
holdsAt(flies(X), T) —≺ ∼holdsAt(injured(X), T), holdsAt(bird(X), T)
∼holdsAt(flies(X), T) —≺holdsAt(injured(X), T)
holdsAt(injured(X), T + 1) —≺holdsAt(injured(X), T),
∼holdsAt(injured(X), T + 5) —≺holdsAt(injured(X), T),
∼holdsAt(injured(X), T + 1) —≺ ∼holdsAt(injured(X), T),

From the program above we can infer bothflies(tina) and∼flies(tina) at moment5, this hap-

pens as a consequence of inferring thattina is injured and notinjured in that moment. Let see all
the arguments for and against fluentholdsAt(flies(tina), 5), figure 1 depicts some of these argu-
ments. Supporting arguments are:〈A3, holdsAt(flies(tina), 5)〉 and〈A4, holdsAt(flies(tina), 5)〉
while 〈A5,∼holdsAt(flies(tina), 5)〉 is an argument against, where:

A3 =
{

holdsAt(flies(tina), 5) —≺holdsAt(bird(tina), 5),
}

A4 =
{

holdsAt(flies(tina), 5) —≺ ∼holdsAt(injured(tina), 5), holdsAt(bird(tina), 5)
∼holdsAt(injured(tina), 5) —≺holdsAt(injured(tina), 0)

}

A5 =

∼holdsAt(flies(tina), 5) —≺holdsAt(injured(tina), 5),
holdsAt(injured(tina), 5) —≺holdsAt(injured(tina), 4),
holdsAt(injured(tina), 4) —≺holdsAt(injured(tina), 3),
holdsAt(injured(tina), 3) —≺holdsAt(injured(tina), 2),
holdsAt(injured(tina), 2) —≺holdsAt(injured(tina), 1),
holdsAt(injured(tina), 1) —≺holdsAt(injured(tina), 0)

Argument 〈A3, holdsAt(flies(tina), 5)〉 supports thattina flies because it is a bird. Argument
〈A4, holdsAt(flies(tina), 5)〉 also supports thattina flies but in this case because it is no longer
an injured bird. Finally, argument〈A5,∼ holdsAt(flies(tina), 5)〉 says thattina cannot fly be-
cause it is stillinjured; note that the argument applies unconditionally an inertial rule. We can see
that argument〈A5,∼ holdsAt(flies(tina), 5)〉 seems to be, at first sight, the argument with most
knowledge, but this argument built upon a sub-argument that supportsholdsAt(injured(tina), 5).
This sub-argument is based on two rules, one is a common defeasible rule while the other one is
an inertial rule. On the other hand, argument〈A3,∼ flies(tina)〉 is based on a sub-argument that
supports∼holdsAt(injured(tina), 5), which is constructed by one rule that change the fluent status
through a defeasible rule that express information ageing,i.e. a rule that changes the truth-value of
the literalinjured because it has passed a considerable amount of time, during which the bird heals.

1238

 holdsAt[bird(tina),5] �

 ~ holdsAt[injured(tina),5]
 �

 holdsAt[injured(tina),0] �

 holdsAt[flies(tina),5] �

 holdsAt[injured(tina),1]
 �
 holdsAt[injured(tina),0] �

 ~ holdsAt[flies(tina),5] �

 holdsAt[injured(tina),2]
 �

 holdsAt[injured(tina),3]
 �

 holdsAt[injured(tina),4]
 �

 holdsAt[injured(tina),5]
 �

 (a) (b)

Figure 1: Arguments: (a):〈A4, holdsAt(flies(tina), 5)〉 and (b):〈A5,∼holdsAt(flies(tina), 5)〉

From an informational point of view, argument〈A5,∼ holdsAt(flies(tina), 5)〉 should be de-
feated by argument〈A3,∼flies(tina)〉. This aspect must be considered in the comparison criteria
among arguments. Clearly, in this kind of scenario the specificity criterion is not good enough as
comparison criterion among arguments. Multiple comparison criteria can be applied in this case,
specificity in the general case and a particular criterion for arguments which involve the use of inertial
rules. One of the aspects the criterion should take on consideration is that, in general, is less plausi-
ble to accept the inertial value of the fluent than the one obtained through other defeasible rules, for
example those that considers ageing.

We will consider now another example. In this case inertia is stopped due to the occurrence of an
event, instead of the natural ageing of information.

EXAMPLE 3 We add a literalfall(X) that represents thatX has fallen. The corresponding program
is P4 = (Π4, ∆4), where:

Π4 =

holdsAt(bird(X), T + 1)← holdsAt(bird(X), T),
holdsAt(bird(tina), 0),
∼holdsAt(injured(tina), 0),
happens[fall(tina), 2)

∆4 =

holdsAt(flies(X), T) —≺holdsAt(bird(X), T),
holdsAt(flies(X), T) —≺ ∼holdsAt(injured(X), T), holdsAt(bird(X), T)
∼holdsAt(flies(X), T) —≺holdsAt(injured(X), T)
holdsAt(injured(X), T + 1) —≺holdsAt(injured(X), T),
∼holdsAt(injured(X), T + 5) —≺holdsAt(injured(X), T),
∼holdsAt(injured(X), T + 1) —≺ ∼holdsAt(injured(X), T),
holdsAt(injured(X), T + 1) —≺ ∼holdsAt(injured(X), T), happens[fall(X), T)

Analogously to the situation presented on the example above, (example 2) we can infer that at moment
3 tina can fly andtina cannot fly. We can also infer thattina is injured andtina is not injured
at that moment. Lets see all the arguments for and against fluentholdsAt(flies(tina), 3). Figure
2 depicts some of these arguments. Supporting arguments are:〈A6, holdsAt(flies(tina), 3)〉 and
〈A7, holdsAt(flies(tina), 3)〉 while 〈A8,∼holdsAt(flies(tina), 3)〉 is an argument against, where:

A6 =
{

holdsAt(flies(tina), 3) —≺holdsAt(bird(tina), 3),
}

A7 =

holdsAt(flies(tina), 3) —≺ ∼holdsAt(injured(tina), 3), holdsAt(bird(tina), 3)
∼holdsAt(injured(tina), 3) —≺ ∼holdsAt(injured(tina), 2),
∼holdsAt(injured(tina), 2) —≺ ∼holdsAt(injured(tina), 1),
∼holdsAt(injured(tina), 1) —≺ ∼holdsAt(injured(tina), 0)

1239

A8 =

∼holdsAt(flies(tina), 3) —≺holdsAt(injured(tina), 3),
holdsAt(injured(tina), 3) —≺ ∼holdsAt(injured(tina), 2), happens(fall(tina), 2)
∼holdsAt(injured(tina), 2) —≺ ∼holdsAt(injured(tina), 1),
∼holdsAt(injured(tina), 1) —≺ ∼holdsAt(injured(tina), 0)

Argument〈A6, holdsAt(flies(tina), 3)〉 supports thattina flies because it is a bird, as a matter of
fact this argument is similar to〈A3, holdsAt(flies(tina), 5)〉 from the previous example. Argu-
ment〈A7, holdsAt(flies(tina), 3)〉 also supports thattina flies but in this case because it is not an
injuredbird (through the application, several times, of the same inertial rule.) Note that the argument
supports its conclusion applying unconditionally an inertial rule,i.e., the rule is applied without fur-
ther consideration of the effects of other possible events such as the occurrence offall(tina). Finally,
argument〈A8,∼holdsAt(flies(tina), 3)〉 supports thattina cannot fly because it isinjured; tina is
injured because at time 2 has occurred that itfells down. Again in this case if we compare argu-

 holdsAt[bird(tina),3] �

 ~ holdsAt[injured(tina),3]
 �

 holdsAt[flies(tina),3] �

 (a) (b)

 ~ holdsAt[injured(tina),2]
 �
 ~ holdsAt[injured(tina),1]
 �
 ~ holdsAt[injured(tina),0]
 �

 happenst[fall(tina),2] �

 holdsAt[injured(tina),3]
 �

 ~ holdsAt[flies(tina),3] �

 ~ holdsAt[injured(tina),2]
 �
 ~ holdsAt[injured(tina),1]
 �
 ~ holdsAt[injured(tina),0]
 �

Figure 2: Arguments: (a):〈A7, holdsAt(flies(tina), 3)〉 and (b):〈A8,∼holdsAt(flies(tina), 3)〉

ments〈A7,∼holdsAt(flies(tina), 3)〉 and〈A8,∼holdsAt(flies(tina), 3)〉, the second one should
be preferred. The rationale is that the argumentA8 is intuitively closer to reality from the available
knowledge. Note that although〈A8,∼holdsAt(flies(tina), 3)〉 is better we can see that it is using
inertial rules as well.

4.2 CDeLP Definition

In the analysis made on examples 2 and 3 presented in the previous subsection, we argued about a
particular argument comparison criteria. It became quite clear thatdefeasible inertial rulesmust be
separated from the set of defeasible rules. This lead us to a change in the basic definitions ofDeLP
in order to introduceCDeLP (ClausalDeLP).

DEFINITION 5 (CDeLP)
A CDeLP program is defined in terms of three disjoint sets: a setΠ of factsandstrict rules, a set

∆ of defeasible rules, and a setΥ of inertial defeasible rules, where

• A fact is a literal,i.e., a ground atom, o a negated ground atom.

• A strict rule is a rule denoted as “Head ← Body”, whereHead is a literal andBody, is finite
set of literals. A strict rule can also be written as:L0 ← L1, . . . , Ln(n > 0), where each
Li, i ≥ 0 is a literal.

• A defeasible ruleis a rule noted asL0 —≺L1, . . . , Ln. AgainLi is a literal andi ≥ 0

• A inertial defeasible ruleis adefeasible rulethat denotes some fluent inertia.

1240

Consequently, this change causes a change on the definition of argument:

DEFINITION 6 CDeLP Causal Argument Structure
Let L be a literal and(P) = (Π, ∆, Υ) a CDeLP program. We say that〈A,B, L〉 is a causal

argument structure forL, if A is a set of defeasible rules from∆ andB is a set of defeasible rules
form Υ, such thatA ∪ B verifiesDeLP argument structure definition.

Looking at example 2 the program will be defined like this:
P3 = (Π3, ∆

′
3, Υ3), whereΠ3 is the same set and∆3 = ∆′

3 ∪Υ3:

∆′
3 =

holdsAt(flies(X), T) —≺holdsAt(bird(X), T),
holdsAt(flies(X), T) —≺ ∼holdsAt(injured(X), T), holdsAt(bird(X), T)
∼holdsAt(flies(X), T) —≺holdsAt(injured(X), T)
∼holdsAt(injured(X), T + 5) —≺holdsAt(injured(X), T),

Υ3 =

{
holdsAt(injured(X), T + 1) —≺holdsAt(injured(X), T),
∼holdsAt(injured(X), T + 1) —≺ ∼holdsAt(injured(X), T),

}
and argument〈A5,∼holdsAt(flies(tina), 5)〉will be now defined as〈D, I ∼holdsAt(flies(tina), 5)〉
where:

D =
{
∼holdsAt(flies(tina), 5) —≺holdsAt(injured(tina), 5),

}

I =

holdsAt(injured(tina), 5) —≺holdsAt(injured(tina), 4),
holdsAt(injured(tina), 4) —≺holdsAt(injured(tina), 3),
holdsAt(injured(tina), 3) —≺holdsAt(injured(tina), 2),
holdsAt(injured(tina), 2) —≺holdsAt(injured(tina), 1),
holdsAt(injured(tina), 1) —≺holdsAt(injured(tina), 0)

The above examples show how difficult the definition of a comparison criteria will result (see

discussion below).

5 CONCLUSIONS AND FUTURE WORK

Argumentative systems such asDeLP have been significant for the evolution of commonsense rea-
soning area. But they fall short of covering today’s definition of this kind of reasoning. The main
shortcoming is that the selected representation language, does not consider actions and time in an
explicit way. If events and time, concepts present on any language considered as causal (based on the
cause-effect principle), would behave as any other object in the language then it would be possible to
useDeLP unchanged without any further analysis. Unfortunately, these two elements have a com-
pletely different semantics. Events and when the events take place create a significant impact on the
validity of certain properties.

In this work we changedDeLP representation language introducingEvent Calculussyntax and
obtaining CausalDeLP (CDeLP). We presented the new definition of program and argument struc-
ture. These modifications were justified through the analysis made over two examples, which show
that all defeasible rules cannot be considered with the same relevance, for example,commonsense
rules of inertiaare defeasible and important for commonsense reasoning but they are not as relevant
as rules that express effect. As part of the analysis made we found out that although the definition
of argument is similar, the comparison among them must be different. Taking on consideration the
advances shown here, a complete causal argumentation system is being investigated.

1241

A complete definition of the comparison criteria is needed. The analysis must take in consideration
how the use of inertial rules are used in the construction of arguments and counterarguments. Clearly,
an argument that uses inertial rules is weaker than an argument that uses only non-inertial defeasible
rules. Nevertheless, some questions remain. What should be the result of comparing two arguments
that use inertial rules? Is a longer chain of inertial rules weaker than a short one? What should be the
decision when several different propagations of inertial information conflict?

REFERENCES

[1] Marcela Capobianco, Carlos Iván Ches̃nevar, and Guillermo Ricardo Simari. argumentation and the dynamics of
warranted beliefs in changing environments.Autonomouns Agents and Multi-Agent Systems, 11(2):127–151, 2005.

[2] Carlos I. Ches̃nevar, Ana G. Maguitman, and Ron Loui. Logical models of argument.ACM Computing Surveys,
4(32):337–383, 2000.

[3] Carlos Iv́an Ches̃nevar, Guillermo Ricardo Simari, Lluis Godo, and Teresa Alsinet. Expansion operators for mod-
elling agent reasoning in possiblistic defeasible programming. InEUMAS, pages 474–475, 2005.

[4] Alejandro J. Garcia and Guillermo R. Simari. Defeasible logic programming: an argumentative approach.TPL,
4:95–138, 2004.

[5] Steve Hanks and Drew Mc Dermott. Nonmonotonic logic and temporal projection.Artificial Intelligence, 33:379–
412, 1987.

[6] John McCarthy. First order theories of individual concepts and propositions. In B. Meltzer and editors D. Michie,
editors,Machine Intelligence 9, pages 120–147. Edinburgh Univerity Press, Edinburgh, 1979.

[7] John McCarthy. A Form of Non-Monotonic Reasoning.Artificial Intelligence, 13:27–39, 1980.

[8] John McCarthy. Applications of Circunscription to Formalizing commonsense Knowledge.Artificial Intelligence,
28:89–116, 1986.

[9] John McCarthy and Patrick J. Hayes. Some philosophical problems from the standpoint of artificial intelliegence.
In B. Meltzer and editors D. Michie, editors,Machine Intelligence 4, pages 463–502. Edinburgh Univerity Press,
Edinburgh, 1969.

[10] Robert Kowalski and Marek Sergot. A logic-based calulus of events.New Generation Computing, 4(1):67–895,
1986.

[11] John W. Lloyd.Foundations of Logic Programming. Springer-Verlag, New York, third edition edition, 1995.

[12] D. McDermott and J. Doyle. Nonmonotonic logic 1.Artificial Intelligence, 13:41–72, 1980.

[13] R. Miller and Murray Shannahan. Some alternative formulations of the event calculus.Computational Logic: Logic
Programming and Beyond, 14:703–730, 2004.

[14] Erik T. Mueller. Event calculus reasoning through satisfiability.Journal of Logic and Computation, pages 452–490,
2002.

[15] Erik T. Mueller. Commonsense Reasoning. Morgan Kaufman an imprint of ELsevier, 2006.

[16] Henry Prakken and Gerard Vreeswijk. Logics for defeasible argumentation. In Dov Gabbay (ed.), editor,Handbook
of Philosophical Logic. Kluwer Academic Publishers, 1998.

[17] Arthur Prior. Past, Present and Future. Clarendon Press, 1967.

[18] Ray Reiter. A Logic for Default-Reasoning.Artificial Intelligence, 13:81–132, 1980.

[19] Raymond Reiter.Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems.
MIT Press, 2001.

[20] Nicholas Rescher and Alasdair Urquhart.Temporal Logic. Springer-Verlag, 1971.

[21] Murray Shanahan. Representing continuous change in the event calculus. InProceedings ECAI 90, pages 598–603,
1990.

[22] M. van Emdem and Robert Kowalski. The Semantics of Predicate Logic as a Programming Language.Journal of
the Association for Computing Machinery, 23(4):733–742, 1976.

1242

