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Abstract

In this paper, we establish a relation between an argumentation based system: Defeasible Logic Programming
(DELP), and a nonmonotonic system: Reiter’s Default Logic. This relation is achieved by introducing a variant
of DELP and a transformation that maps default theories to defeasible logic programs. The transformation
allows to associate the answers of a DELP Interpreter with the consequences, credulous and skeptical, of the
default theory. Thus, this work establishes a link between a well understood nonmonotonic system and a
argumentation based system. This link could be studied separately and could be exploited for the development
of the latter system.

Keywords: Knowledge Representation, Nonmonotonic Reasoning, Argumentative Reasoning, Default Logic,
Defeasible Logic Programming.

1 INTRODUCTION AND MOTIVATION

In general, it is interesting and important to compare, analyze and assess the alternative tools that
could be used to confront a specific problem. In particular, in the area of Artificial Intelligence there
are several research lines dedicated to the development of formalisms and tools regarding Knowledge
Representation. These formalisms are so diverse that many times it is difficult to recognize their ad-
vantages, disadvantages and differences in order to make a plausible use of them. For this reason, it is
interesting to analyze the relation among knowledge representation formalisms to evaluate their dif-
ferences and similarities. Several works relating diverse approaches of defeasible and non-monotonic
reasoning have been developed [8, 7, 5, 6, 2, 3].

In this paper, we analyze the relation between an argumentation based system like Defeasible
Logic Programming (DELP), and a nonmonotonic system like Reiter’s Default Logic. In order to
establish this relation we introduce (Seccion 3) a variant of DELP, called DELP∅, and a number
of properties it verifies. Then, we define a transformation (Seccion 5) that allows to map default
theories to defeasible logic programs. The transformation allows to associate the answers of a DELP∅

interpreter with the consequences, credulous and skeptical, of the original default theory. Finally, we
relate the results of this work with the Dung’s argumentative framework for Default Logic defined in
[9], and we briefly discuss how the relation established between Default Logic an DELP can be used
to relate DELP to other meaningful non-monotonic formalisms.

This work is partially supported by Conicet (PIP 5050), Agencia de Investigación Cientı́fica y Tecnol´ogica (PICT
13096,15043 and PAV 076) and SCyT-UNS (24/N016). Telma Delladio is partially supported by CONICET.
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2 DELP

Defeasible Logic Programming (DELP) is a formalism that combines Logic Programming and De-
feasible Argumentation. In DELP, knowledge is represented using facts, strict rules or defeasible
rules:

• Factsare ground literals representing atomic information or the negation of atomic information
using the strong negation “¬ ” (e.g. ¬ rain).

• Strict Rulesare denotedL0 ← L1, . . . , Ln, where theheadL0 is a ground literal and thebody
{Li}i>0 is a set of ground literals (e.g.¬ day ← night).

• Defeasible Rulesare denotedL0 —≺ L1, . . . , Ln, where theheadL0 is a ground literal and the
body{Li}i>0 is a set of ground literals. (e.g. cold —≺ winter).

Syntactically, the symbol “—≺” is all that distinguishes a defeasible rule from a strict one. Pragmat-
ically, a defeasible rule is used to represent defeasible knowledge,i.e. tentative information that may
be used if nothing could be posed against it. A defeasible rule “Head—≺ Body.” is understood as ex-
pressing that “reasons to believe in the antecedentBodyprovide reasons to believe in the consequent
Head” [14].

A Defeasible Logic Program (de.l.p.)P is a set of facts, strict rules and defeasible rules. When
required,P is denoted(Π,∆) distinguishing the subsetΠ of facts and strict rules, and the subset∆of
defeasible rules. Observe that strict and defeasible rules are ground.

Strong negationis allowed in the head of program rules, and hence may be used to represent con-
tradictory knowledge. From a program(Π,∆) contradictory literals could be derived, however, the
setΠ (which is used to represent non-defeasible information) must possess certain internal coherence.
Therefore,Π has to be non-contradictory,i.e. no pair of contradictory literals can be derived fromΠ.
Given a literalL the complement with respect to strong negation will be denotedL (i.e. a = ¬ a and
¬ a = a).

DELP incorporates an argumentation formalism for the treatment of the contradictory knowledge
that can be derived from(Π,∆) This formalism allows the identification of the pieces of knowledge
that are in contradiction. A dialectical process is used for deciding which information prevails. In
particular, the argumentation-based definition of the inference relation makes it possible to incorporate
a treatment of preferences in an elegant way.

In DELP a literalL iswarrantedfrom (Π,∆) if there exists a non-defeated argumentA supporting
L. In short, anargumentfor a literalL, denoted〈A, L〉, is a minimal set of defeasible rulesA⊆∆
such thatA∪Π is non-contradictory and there is a derivation forL fromA∪Π. In order to establish if
〈A, L〉 is a non-defeated argument,argument rebuttalsor counter-argumentsthat could bedefeaters
for 〈A, L〉 are considered,i.e., counter-arguments that by some criterion are preferred to〈A, L〉. An
argument〈A1, L1〉 counter-argues orattacks〈A2, L2〉 at some literalh, if and only if there exists a
subargument〈A, h〉 of 〈A2, L2〉 (i.e. A ⊆ A2) such thath andL2 disagree; that is,Π ∪ {h,L2} is
contradictory.

Since counter-arguments are arguments, there may exist defeaters for them, and defeaters for these
defeaters, and so on. Thus, a sequence of arguments calledargumentation lineis constructed, where
each argument defeats its predecessor in the line. Some restrictions are imposed over these lines to
be consideredacceptable argumentation lines.

• Non circularity: circular argumentation lines are not permitted
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• Concordance: the set of supporting arguments must be non contradictory and the same is re-
quired for interfering arguments.

• Blocking-Blocking situations: if a blocking defeaterAi occurs in the line[A1, . . . , Ak], Ai+1

cannot be a blocking defeater forAi

Usually, each argument has more than one defeater and more than one argumentation line exists.
Therefore, a tree of arguments calleddialectical treeis constructed, where the root is〈A, h〉 and
each path from the root to a leaf is an argumentation line. Adialectical analysisof this tree is used
for deciding whetherh is warranted. This dialectical analysis is carried out labelling the arguments
conforming the dialectical tree. The arguments in the leaves of the tree are considered undefeated.
Every inner node with at least a child marked as undefeated, is considered and marked as a defeated
argument. In the other case, it is undefeated. Following this analysis, a literalh is said warranted if
there is a dialectical tree where the root is an argument forh that has been marked as undefeated (for
a detailed explanation of this dialectical process see [10]).

In DELP, given a queryQ there are four possible answers:YES, if Q is warranted;NO, if the
complement ofQ is warranted;UNDECIDED, if neither Q nor its complement is warranted; and
UNKNOWN, if Q is not in the language of the program.

3 DELP∅ VARIANT

In DELP, several elements can be adjusted thus defining a number of variants of DELP; for instance,
the notions of attack and defeat, as well as the conditions required for acceptable argumentation lines.
We will consider a DELP variant, that we call DELP∅ , observing the following condition:

• The relation defining the comparison criterion is the empty set.

In general, given two conflicting arguments A and B, they can be compared using some criterion.
In that case, if A is better than B, A is aproper defeaterfor B. But, if neither of the two is better than
the other, A is ablocking defeaterfor B, and vice versa. Note that, in DELP∅, since the comparison
criterion is empty, every attack is a blocking defeat and since there are no proper defeaters, this
criterion turns attack into defeat.

Remark 3.1
Every argumentation line in DELP∅ contains two arguments at most.

Suppose there is an acceptable argumentation lineΓ = [A1, . . . , An], n > 2. In such case, there
is a subsequence of arguments[Ai, Ai+1, Ai+2] in Γ. Since every defeater in DELP∅ is a blocking
defeater,Ai+2 is a blocking defeater forAi+1 and,Ai+1 is a blocking defeater forAi. But, in this
case,Γ would not be an acceptable argumentation line, because there cannot be two consecutive
blocking attacks (see the third condition of an acceptable argumentation line).

Remark 3.2
Every dialectical tree in DELP∅ has, at most, two levels.

Since every path of a dialectical tree is an acceptable argumentation line, and in DELP∅, argu-
mentation lines are composed by one or two arguments, every path contains, at most, two arguments.
Thus, every dialectical tree has, at most, two levels.

Remark 3.3
Every dialectical tree whose root is marked asundefeatedis a tree with just one node.

If the argument of the root has a child, this means that the root has a defeater and the root is then
defeated (since, from remark 3.1: there are no defeaters for the defeaters)
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Remark 3.4
In DELP∅, a literall is warrantediff any argument forl is not attacked.

If a literal l is warrantedthere is a dialectical tree, for an argumentA supportingl, whose root
is marked asundefeated(from the definition of warranted literal in DELP). This dialectical tree has
a single node (from remark 3.3 ) and this means that there is no argument attacking it. If there is
some argument that attacks the rootA, it has to be in the tree and then the root would be marked as
defeated.

Remark 3.5
In DELP∅ an argumentA is warranted iff every literal present inA is warranted.

This condition establishes that all literals contained in the defeasible derivation that constitutes a
warranted argument are also warranted. Suppose this is not true, then exists a warranted argumentA
such that a literalLi present inA is not warranted. In this case, every argument forLi is defeated
andLi is an attack point in the argumentA. Therefore,A is attacked and defeated (from remark 3.4),
which cannot happen, since we assumed thatA is a warranted argument.

As mentioned, in DELP, two literalsp andq disagree ifΠ∪ {p, q} is a contradictory set (Π is the
set of strict rules). IfΠ is empty,p andq must be complementary literals.

Remark 3.6
Let A be an argument in DELP∅, if a literal p is present inA and there is an argumentB for q such
thatp andq disagree thenA is not warranted.

In this case,B attacksA in p, for this reasonA is defeated.

Remark 3.7 (Valid for general de.l.p.)
If there are no strict rules,p andq disagree iffp ≡ q.

4 DEFAULT LOGIC

A Default TheoryT = 〈W,D〉 consists of a set of factsW of ground sentences. Each default rule in
D has the forma : b1 ,...,bn

c
(sometimes writtena : b1, . . . , bn/c), wherea is called the prerequisite,bi

are the justifications andc is the consequent of the default. When the justification and the consequent
of a default rule are the same,a : c

c
, the default rule is called anormal default rule. In generaljust(δ)

denotes the set of justifications present in the ruleδ, and given a set of default rulesR, just(R) is
used to denote all the justifications present in the default rules ofR.

The intuitive meaning of a default is: ifa can be derived and it is possible to consistently assume
eachbi, then concludec. Given a default theoryT = 〈W,D〉 an extensionE (or a Reiter extension)
is a theoryE satisfying that

E =
⋃{Wi | i is a natural number}

W0 = W

Wi+1 = Th(Wi) ∪ {γ | (∃α : β1,...,βn

γ
∈ D) ∧ ({βi} ∪ E 6` ⊥,∀i, 1 ≤ i ≤ n) ∧ (α ∈ Wi)}

Another way to characterize extensions in Default Logic is through an operational semantics [1].
In this characterization each extension is defined by a setIn(Π), whereΠ is a closed and successful
process. Given a sequence of default rulesS = 〈δ0, . . . , δn〉 the setIn(S) collects the information
obtained by the application of the defaults inS; that is,In(S) = Th(W ∪ {γ | α :β

γ
occurs inS)})

Then, a process is a special kind of sequence of default rules〈δ0, . . . , δn〉 where each defaultδk is
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applicable toIn(〈δ0, . . . , δk−1〉). A processΠ is closed if there is no applicable default ruleδ in
D such thatδ does not occur inΠ, and a processΠ is successful ifIn(Π) 6` β for all β that is a
justification of some default rule inΠ. Given a default theoryT = 〈W,D〉, a literall is a skeptical
consequence ofT if l belongs to every extension ofT , andl is a credulous consequence ofT if l is
present in some extension but not in each extension. A default theory that has at least one extension
is calledcoherent.

In this work, we will consider finite propositional default theories with the following restrictions1:

1. The theoryT = 〈W,D〉 is coherent.

2. The set of factsW is empty.

3. For every defaultα : β/γ, formulasβ andγ are single literals.

We are interested, at this stage, in default theories that verify the condition:W = ∅, since working
with these theories enable us to establish an indirect relation between DELP an another nonmonotonic
formalisms. In particular, it is well known the works that study the relation between Normal Logic
Programming and Default Logic. This connection is achieved through a link between stable models
for normal logic programs [11] and skeptical consequences of default theories [4]. Normal logic
programs are translated into a default theory composed by an empty set of facts, and a set of default
rules obtained as follows. Each rule of the form:

c← a1 . . . , an, not b1, . . . , not bm

is translated into a default rule of the form:

a1, . . . , an : ¬ b1, . . . ,¬ bm/c

In this way, a relation between DELP and this type of default theories (with an empty set of facts)
establishes a indirect link between DELP and Normal Logic Programming. However, this relation
deserves a particular analysis.

5 TRANSLATING DEFAULT THEORIES INTO
DELP∅ PROGRAMS

In this section, we present a transformation that allows to map default theories to defeasible logic
programs. The transformation is defined for default theories that follow the restrictions given in
section 4.

Given a default theoryT = 〈∅,D〉, we transformT into a de.l.p.P = (∅,∆) as follows:

1. For each defaultδi = α : β/γ ∈ D, the set∆ in the de.l.p.P includes the followingdefeasible
rules:

(i) γ —≺ α, pi

(ii) ¬ pi —≺ β
(iii) pi —≺

wherepi is a new literal and rules (ii) and (iii) are calledguard rules, andβ is the complement
of β.

1Some of these restrictions could be dropped. We analyse this situation later.
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When necessary, we denote the de.l.p.P asT DL
delp (T )

The first defeasible rule (i), indicates that if the prerequisiteα is given, then the consequentγ could
be derived. However, this is only allowed if it is possible to consistently assume the justification,β,
and this restriction is verified when the second rule does not apply (ii). If the complement of the
justification, (i.e. ¬ β), is derived, there exists a derivation (and an argument) for¬ pi and this
constitutes an attack to the argument forα. The last rule introduced by the translation (iii) is simply
used to enable, by default, the new literalpi.

The translation for a default ruleδ = α : β/γ introduces a new literalpi to block the derivation
of γ. That is, in case that the complement of the justification is derived, literalpi turns into an attack
point, and the argument for the consequence will be attacked. Therefore, this argument is defeated
classifying the literalγ asUNDECIDED.

Note that default rules with an empty prerequisite are writtentrue : β/γ. These rules are trans-
lated, in the same way, to the following defeasible rules:

(i) γ —≺ pi (ii) ¬ pi —≺ ¬ β (iii) pi —≺

Then, we will show that normal default rules can be translated in a simpler, reduced form.

Example 1
Consider the default theoryT1 = 〈∅,D1〉, where

D1 = {(true : a/a), (a : ¬ x/y), (a : ¬ y/x), (a : d/d)}
The corresponding de.l.p. will bePT1 = (∅,∆1), where∆1 has the rules:

true : a/a a —≺ p1 ¬ p1 —≺ ¬ a p1 —≺

a : ¬ x/y y —≺ a, p2 ¬ p2 —≺ x p2 —≺

a : ¬ y/x x —≺ a, p3 ¬ p3 —≺ y p3 —≺

a : d/d d —≺ a, p4 ¬ p4 —≺ ¬ d p4 —≺

Each default rule is translated into a defeasible rule, using an extra literal (pi) acting as a guard. A
derivation for¬ pi implies that the justification (from the original default rule) cannot be assumed con-
sistently. In this way, the transformation captures, through these three defeasible rules, the behavior
of the original default rule.

Example 2
Consider a de.l.p.PT2 = (∅,∆2), obtained from a default theoryT2 = 〈∅,D2〉, where∆2 has the
rules:

b —≺ x, p1 ¬ p1 —≺ ¬ a p1 —≺

c —≺ y, p2 ¬ p2 —≺ b p2 —≺

x —≺ p3 ¬ p3 —≺ ¬ x p3 —≺

y —≺ p4 ¬ p4 —≺ ¬ y p4 —≺

This example shows the use given to the new literalspi introduced in the translation. Literalp2

determines an attack point in the argument for the literalc and this argument is defeated (see remark
3.5 and figure 1). For this reason, literalc is not warranted in DELP∅, it is an UNDECIDED literal.
This attack reflects the incompatibility between the original default rulesy : ¬ b/c andx : a/b. In the
original default theory, literalc is a credulous consequence, since no successful process includes both
default rules. There is only a successful process includingx : a/b.
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x p1

b!
!!

p3! p4!

y p2

c!
!!

x p1

b!
!!

:p2!

Figure 1: Arguments inPT2

It is possible to identify in the de.l.p.P obtained by the translation, two kind of attacks. Note that,
every attack inP reflects the existence of two incompatible default rules2. This incompatibility arises
for one of the following reasons:

• the consequences of both default rules are contradictory, or

• the consequence of one of them is contradictory with the justification of the other

Figure 2(a) depicts an attack that arise from contradition between the consequences of two default
rules, and figure 2(b), an attack over a justification. In this case the (artificial) attack point is the new
literal introduced by the translation.

...

x pnc

:c!
! !

...
a pc

c!
!!

ba
c
: yx

:c
:

(a) Consequence attack

...

a pc

c!
!!

...

x pnb

:b!
! !

:pc!

ba
c
: yx

:b
:

(b) Justification attack

Figure 2: Types of default attacks

It is interesting to note, that normal default rules could be translated in a more concise manner.
The translation of a general default ruleα : β/γ has to model the two main characteristics captured
by a default rule:

- the antecedentα is needed to derive the consequentγ (i).

- there is no knowledge against the justificationβ (ii).

The translation is required to model, in DELP∅, the interaction between conflicting information
in the same way it is done in Default Logic. Direct conflicts between default rules arise when their
consequents are contradictory or the consequent of one default is contradictory with the justification
of the other. For normal default theories justifications and consequents are the same, therefore, a direct
conflict between default rules arises when it is possible to derive information against the consequent
of a default rule. For this reason it is possible to give a reduced translation for normal default rules.

2We are considering twoapplicabledefault rules
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Remark 5.1 (Reduced transformation)
If the variant considered is DELP∅, the translation of anormaldefault ruleα : γ/γ can be reduced to
a single defeasible rule:γ —≺ α.

That is, in the reduced transformation any argument for¬ γ attacks the argument forγ (see
figure 3). This attack establishes a defeat, because in DELP∅, attack determines defeat. In the initial
transformation, any argument for¬ γ allows the formation of an argument for the literal¬ pi that
attacks (block), in the same way, the argument forγ. In this way, both transformations reflect, in the
obtained DELP∅ program, the same pretended behaviour of the original default logic.

Hence, in what follows, normal default rules will be translated using the reduced form

® pi

°!
!...

®

°

!
...

:pi!
:°

:°

Figure 3: Reduced transformation for normal defaults

In this way, a DELP∅ program obtained by translating the normal default rules into the general
form or into the reduced form, models in the same way the original default theory. The dialectical
analysis that could be carried out in any of these translations is equivalent, and this is because of the
comparison criterion. The only kind of defeaters present in DELP∅ are blocking defeaters. For this
reason, if an argument has two defeaters both are blocking defeaters. The elimination or addition of
defeaters does not change the scenario: the main argument remains defeated. These characteristics
are proper of DELP∅, since using a different comparison criterion proper defeats can arise and, in
these situations, the elimination of one defeater could provoke others defeaters to change their status
(see figures 4(b) and 4(a)).

a pi

b
 blocking

defeat  blocking
defeat

!
!

:b :pi!

:b

 blocking
defeat

a

b!

:b

DefeatedDefeated

(a)

a pi

b
 Blocking

defeat
 Proper

defeat? Blocking
defeat

!
!

:b :pi!

:b

:b

a

b!

UndefeatedDefeated

(b)

Figure 4: Defeats in DELP∅and general DELP

Remark 5.2 (Relation between DL andDELP∅)
Let T = (W,D) be a default theory, such thatW = ∅, P the de.l.p. obtained by the translation
proposed, andl a literal.
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- Literal l is a skeptical consequence ofT iff l is warranted fromP 3.

- Literal l is a credulous consequence ofT iff l is undecided inP

In order to understand this relation, we can analyze the relation between the processes determining
the extensions of the default theory, and the arguments that can be constructed using the defeasible
rules obtained by the translation.

Given a default ruleδi = α : β/γ we definet(δi) as the set of defeasible rules obtained by the
translation of a default ruleδi. Thus, in the general caset(δi) = {(γ —≺ α, pi), (¬ pi —≺ β), (pi —≺ )}.
In the same way, we define the set of defeasible rules obtained by the entire set of default rulesD
as t(D) =

⋃
t(δi),∀δi ∈ D. Finally, given a de.l.p.P = (Π,∆) and a setR ⊆ ∆ we denote

argsP (R) = {A : 〈A,h〉 is an argument structure inP andA ⊆ R}.
Now, let Γ be a closed and successful process of a default theoryT = 〈∅,D〉, E = In(Γ) be

the corresponding extension,Γs be the set of defaults rules inΓ (i.e. Γs = {δ | δ occurs inΓ}), and
P = T DL

delp (T ) be the de.l.p. obtained by the translation proposed. Note that arguments inargsP (t(Γs))
are conflict free; that is, for all argumentA in argsP (t(Γs)) there is no other argumentB attackingA.
Otherwise, conflicting default rules would belong toΓ, and this is not possible sinceΓ is a successful
process. Moreover,argsP (t(Γs)) is a maximal set of non-conflicting arguments since every argument
B that does not attack an argument inargsP (t(Γs)) comes from default rules that are not in conflict
with the rules inΓ. If such argumentB exists,Γ would not be closed.

In this way, if a literalw is warranted fromP there exists a non attacked argument〈Aw, w〉 that is
in every maximal conflict-free set of arguments. Then, literalw will be in every extension ofT and
it is a skeptical consequence ofT . On the other hand, given a literalu if every supporting argument
〈Au, u〉 is attacked by other argument〈Bu′ , u′〉 both arguments have to be in different conflict-free
sets of arguments. Therefore, two or more extensions exists and literalu cannot be present in all of
them. For this reason,u will be a credulous consequence ofT . Note that,u is undecided inT DL

delp(T ).

5.1 Dung’s argumentation framework for DL

The relation established between Default Logic and DELP is, in some aspects, similar to the one
established in Dung’s work [9] which considers a default theory as an argumentation framework.
There, an argumentation frameworkAF (T ) = 〈ART , attacksT〉 is defined for a default theoryT =
〈W,D〉, where:

- ART = {(K, k) | K ⊆ just(D) : K is a support fork}

- (K, k) attacksT (K ′, k′) iff k ∈ K ′

A set K is said to be a support fork with respect toT if there exists adefault derivation
k1, k2 . . . , km with km = k such that for eachki , eitherki ∈ W , orki is consequence of the preceding
elements in the sequence orki = γ for a default ruleα : β1,...,βn

γ
such thatα is a previous element in the

sequence and everyβi is in K.
Defining this framework, Reiter’s extensions of a default theoryT = 〈W,D〉 can be associated to

the stable extensions ofART . Remember that in Dung’s framework a set of argumentsS is a stable
extension iffS = {A | A is not attacked by any argument inS}. On the one hand, given a set of
argumentsA in ART the set of consequences it supports are defined:flat(A) = {k | ∃(K, k) ∈ A}.
On the other hand, given a set of consequencesE, the set of arguments that are consistent with it, is

3We are considering just the original literals in the theory, not thepi literals added by the translation
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also defined:ARGS(E) = {(K, k) ∈ ART | ∀j ∈ K, {j} ∪ E 6` ⊥}. Therefore,E is a Reiter’s
extension ofT = 〈W,D〉 iff E = flat(ARGS(E)).

Considering the transformation proposed, we can see that arguments fromT DL
delp (T ) can be used

to identify the arguments of this argumentative framework. Suppose that〈A, t〉 is an argument in the
de.l.p.T DL

delp (T ), we can define the following set of literals:

KA = {l : (¬ pi —≺ ¬ l) ∈ T DL
delp (T ) and(pi —≺ ) ∈ A}

This setKA constitutes a support for literall with respect toT . That is,(KA, l) ∈ ART in Dung’s
framework. Observe that every argument〈A, l〉 in T DL

delp (T ) is constructed using the defeasible rules
obtained by the translation. However, the existence of a supporting argument forl is because of the
presence of a set of default rules (in the original default theory) that allows adefault derivation S
for l. The default rules that could be used inT = 〈W,D〉 for constructingS are identified by the
literalspi mentioned inA. If a defeasible rulepi —≺ is present inA, the default ruleδi is used for the
construction ofS, and this means that its justifications,just(δi), can be consistently assumed.

5.2 Dropping some restrictions

In section 4 we establish some restrictions for the default theories considered. On the one hand, we
are considering default rules such that their justification are single literals. This restriction can be
dropped, since given a default rule of the formα : β/γ whereβ = β1, . . . , βn with eachβi is a single
literal, the translation is given by the rules

(i) γ —≺ α, pi1 , . . . , pin

(ii) ¬ pik
—≺ βk for all 1 ≤ k ≤ n

(iii) pik
—≺ for all 1 ≤ k ≤ n

On the other hand, we are considering only default theories with an empty set of facts. This
condition could be dropped translating all clauses inW as strict rules in the de.l.p.. In this case,W
has to be consistent and each formula is translated as a set of contrapositive rules as strict rules in the
de.l.p.. For each clauseC = (c1 ∨ . . . ∨ cn) in W we include, for alli (1 ≤ i ≤ n), thestrict rulesin
the de.l.p.:

ci ← ¬ c1, . . . ,¬ ci−1,¬ ci+1, . . . ,¬ cn

Example 3
Given the theoryT3 = 〈W3,D3〉 whereW3 = {(x), (w), (t → ¬ b)} andD3 = {(x : b/b), (w :
t, r/q)}. The associated de.l.p.P3 has the rules:

x← b —≺ x ¬ pt —≺ ¬ t pt —≺

w← q —≺ w, pt, pr ¬ pr —≺ r pr —≺

¬ b← t
¬ t← b

Finally, note that we are consideringcoherentdefault theories (i.e. the existence of extensions are
guaranteed). As mentioned in [9] having default theories with default rules of the formα : β/¬ β
prevents to conclude any literal, since this kind of defaults collapse the theory, and none extension can
be obtained. Under the preferred semantics (instead of the stable ones), this non intuitive behavior is
avoided because this paradoxical default does not interfere with the others. In case of DELP∅ and the
translation proposed, the behavior will be similar in the case of non coherent default theories. The
defeasible rules obtained by the translation of this conflicting kind of defaults will not interfere with
the arguments supported by meaningful defaults.
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5.3 Answers and Extensions

It is interesting to note that the relation established in this work associates types of consequences
(skeptical or credulous) from a Default theory with the answers (YES,NO, UNDECIDED) given by
a DELP∅ interpreter. However, the concept of extension, present in Default Logic, is not clearly
recognizable in DELP∅ and for this reason it is not possible, without an extra analysis, to identify the
notion of extension in the defeasible program obtained by the translation. For instance, if two literals
areUNDECIDED in a T DL

delp (T ), they could belong to the same extension ofT , or they could belong
to differents extensions. Hence, the match between literals and extensions cannot be recognized by
DELP∅ by considering just the answer given by the interpreter. An external mechanism should be
provided.

6 CONCLUSIONS AND FUTURE WORK

There are several works, in the field of Knowledge Representation dedicated to relate different for-
malisms and semantics of nonmonotonic reasoning formalisms [3, 5, 9, 7, 12, 13, 2, 8]. We think that
it is significant to carry out this work since, as mentioned before, it is important to asses the differ-
ent alternatives present in the area. There are very different approaches for nonmonotonic reasoning
and is useful to clarify the relationship among them. However, this task is not easy mainly because
several dissimilar approaches have been developed. This work presents a first analysis on the relation
between a well understood nonmonotonic system as Reiter Default Logic, and a argumentation based
system like DELP. Many works have been developed relating Default Logic, or some of its variants,
to other nonmonotonic formalisms [9, 7, 12].

The transformation presented in this work allows to map Default Theories to a special variant of
DELP (the simplest variant). In this way, default theories can be modeled by simple de.l.p.’s and this
result allow us to extend this work to other formalisms, mainly over those whose correspondence with
Default Logic (of some of its variants) have been already defined.
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