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Abstract

In this paper, we establish a relation between an argumentation based system: Defeasible Logic Programming
(DELP), and a nonmonotonic system: Reiter’'s Default Logic. This relation is achieved by introducing a variant
of DELP and a transformation that maps default theories to defeasible logic programs. The transformation
allows to associate the answers of allP’ Interpreter with the consequences, credulous and skeptical, of the
default theory. Thus, this work establishes a link between a well understood nonmonotonic system and a
argumentation based system. This link could be studied separately and could be exploited for the development
of the latter system.

Keywords: Knowledge Representation, Nonmonotonic Reasoning, Argumentative Reasoning, Default Logic,
Defeasible Logic Programming.

1 INTRODUCTION AND MOTIVATION

In general, it is interesting and important to compare, analyze and assess the alternative tools that
could be used to confront a specific problem. In particular, in the area of Artificial Intelligence there
are several research lines dedicated to the development of formalisms and tools regarding Knowledge
Representation. These formalisms are so diverse that many times it is difficult to recognize their ad-
vantages, disadvantages and differences in order to make a plausible use of them. For this reason, itis
interesting to analyze the relation among knowledge representation formalisms to evaluate their dif-
ferences and similarities. Several works relating diverse approaches of defeasible and non-monotonic
reasoning have been developed [8, 7, 5, 6, 2, 3].

In this paper, we analyze the relation between an argumentation based system like Defeasible
Logic Programming ([ELP), and a nonmonotonic system like Reiter's Default Logic. In order to
establish this relation we introduce (Seccion 3) a variant af.B, called DELP?, and a number
of properties it verifies. Then, we define a transformation (Seccion 5) that allows to map default
theories to defeasible logic programs. The transformation allows to associate the answees Bfa D
interpreter with the consequences, credulous and skeptical, of the original default theory. Finally, we
relate the results of this work with the Dung’s argumentative framework for Default Logic defined in
[9], and we briefly discuss how the relation established between Default LogiehR Dan be used
to relate DELP to other meaningful non-monotonic formalisms.

This work is partially supported by Conicet (PIP 5050), Agencia de Investigacion Cientifica y dgao(PICT
13096,15043 and PAV 076) and SCyT-UNS (24/N016). Telma Delladio is partially supported by CONICET.
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2 DelLP

Defeasible Logic Programming L.P) is a formalism that combines Logic Programming and De-
feasible Argumentation. In ELP, knowledge is represented using facts, strict rules or defeasible
rules:

e Factsare ground literals representing atomic information or the negation of atomic information
using the strong negation~*" (e.g. — rain).

e Strict Rulesare denoted,, — L, ..., L,, where theheadL, is a ground literal and thieody
{L;}i>o is a set of ground literals (e.g.— day < night).

e Defeasible Ruleare denoted., — L, ..., L,, where thenead L, is a ground literal and the
body{L;}i-o is a set of ground literalse(g. cold — winter).

Syntactically, the symbol~" is all that distinguishes a defeasible rule from a strict one. Pragmat-
ically, a defeasible rule is used to represent defeasible knowledgentative information that may
be used if nothing could be posed against it. A defeasible rule “Heaglody.” is understood as ex-
pressing thatreasons to believe in the antecedBoidy provide reasons to believe in the consequent
Head” [14].

A Defeasible Logic Program (de.l.p? is a set of facts, strict rules and defeasible rules. When
required,P is denoted1I, A) distinguishing the subsét of facts and strict rules, and the subgeif
defeasible rules. Observe that strict and defeasible rules are ground.

Strong negatioms allowed in the head of program rules, and hence may be used to represent con-
tradictory knowledge. From a prograffl, A) contradictory literals could be derived, however, the
setlI (which is used to represent non-defeasible information) must possess certain internal coherence.
Therefore I1 has to be non-contradictonye. no pair of contradictory literals can be derived fraim
Given a literalL the complement with respect to strong negation will be denatéce. @ = - a and
=a=a).

DELP incorporates an argumentation formalism for the treatment of the contradictory knowledge
that can be derived frorfil, A) This formalism allows the identification of the pieces of knowledge
that are in contradiction. A dialectical process is used for deciding which information prevails. In
particular, the argumentation-based definition of the inference relation makes it possible to incorporate
a treatment of preferences in an elegant way.

In DELP a literal L iswarrantedfrom (11, A) if there exists a non-defeated argumgrgupporting
L. In short, anargumentfor a literal L, denoted(.A, L), is a minimal set of defeasible rule$CA
such thatAUII is non-contradictory and there is a derivation fofrom AUII. In order to establish if
(A, L) is a non-defeated argumeatgument rebuttal®r counter-argumentthat could bedefeaters
for (A, L) are considered,e., counter-arguments that by some criterion are preferréditd’). An
argument(A,, L,) counter-argues aattacks(A,, L,) at some literah, if and only if there exists a
subargumentA, h) of (A, Lo) (i.e. A C Ay) such thath and L, disagree; that is[I U {h, Ly} is
contradictory.

Since counter-arguments are arguments, there may exist defeaters for them, and defeaters for these
defeaters, and so on. Thus, a sequence of arguments agledentation lines constructed, where
each argument defeats its predecessor in the line. Some restrictions are imposed over these lines to
be consideredcceptable argumentation lines

e Non circularity: circular argumentation lines are not permitted
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e Concordance: the set of supporting arguments must be non contradictory and the same is re-
quired for interfering arguments.

e Blocking-Blocking situations: if a blocking defeate¥; occurs in the lindAy, ..., Ax], Ais1
cannot be a blocking defeater fdr;

Usually, each argument has more than one defeater and more than one argumentation line exists.
Therefore, a tree of arguments calldidlectical treeis constructed, where the root {31, 4) and
each path from the root to a leaf is an argumentation lineliadectical analysisof this tree is used
for deciding whether is warranted. This dialectical analysis is carried out labelling the arguments
conforming the dialectical tree. The arguments in the leaves of the tree are considered undefeated.
Every inner node with at least a child marked as undefeated, is considered and marked as a defeated
argument. In the other case, it is undefeated. Following this analysis, a litesaaid warranted if
there is a dialectical tree where the root is an argument thiat has been marked as undefeated (for
a detailed explanation of this dialectical process see [10]).

In DELP, given a query) there are four possible answersEes, if () is warrantedNo, if the
complement of() is warranted;UNDECIDED, if neither @ nor its complement is warranted; and
UNKNOWN, if @ is not in the language of the program.

3 DeLP” VARIANT

In DELP, several elements can be adjusted thus defining a number of variants Bf Bbr instance,
the notions of attack and defeat, as well as the conditions required for acceptable argumentation lines.
We will consider a [ELP variant, that we call BLP?, observing the following condition:

e The relation defining the comparison criterion is the empty set.

In general, given two conflicting arguments A and B, they can be compared using some criterion.
In that case, if A is better than B, A ismoper defeatefor B. But, if neither of the two is better than
the other, A is @locking defeatefor B, and vice versa. Note that, inEDP?, since the comparison
criterion is empty, every attack is a blocking defeat and since there are no proper defeaters, this
criterion turns attack into defeat.

Remark 3.1
Every argumentation line in ELP? contains two arguments at most.
Suppose there is an acceptable argumentatiorline[Ay, ..., A,], n > 2. In such case, there

is a subsequence of arguments, A, 1, A;.»] in T'. Since every defeater in#LP? is a blocking
defeater,A; - is a blocking defeater fod, ; and, A;,, is a blocking defeater fod,. But, in this

case,I’ would not be an acceptable argumentation line, because there cannot be two consecutive
blocking attacks (see the third condition of an acceptable argumentation line).

Remark 3.2
Every dialectical tree in BLP? has, at most, two levels.

Since every path of a dialectical tree is an acceptable argumentation line, arel #f Dargu-
mentation lines are composed by one or two arguments, every path contains, at most, two arguments.
Thus, every dialectical tree has, at most, two levels.

Remark 3.3
Every dialectical tree whose root is markedusslefeateds a tree with just one node.

If the argument of the root has a child, this means that the root has a defeater and the root is then
defeated (since, from remark 3.1: there are no defeaters for the defeaters)
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Remark 3.4
In DELP?, a literall is warrantediff any argument for is not attacked.

If a literal [ is warrantedthere is a dialectical tree, for an argumehsupporting/, whose root
is marked asindefeatedfrom the definition of warranted literal in ELP). This dialectical tree has
a single node (from remark 3.3 ) and this means that there is no argument attacking it. If there is
some argument that attacks the raftit has to be in the tree and then the root would be marked as
defeated

Remark 3.5
In DELP? an argument! is warranted iff every literal present i is warranted.

This condition establishes that all literals contained in the defeasible derivation that constitutes a
warranted argument are also warranted. Suppose this is not true, then exists a warranted atgument
such that a literal; present in4 is not warranted. In this case, every argumentfipis defeated
and/; is an attack point in the argumedAt Therefore A is attacked and defeated (from remark 3.4),
which cannot happen, since we assumed thata warranted argument.

As mentioned, in BLP, two literalsp andq disagree ifill U {p, ¢} is a contradictory sef{ is the
set of strict rules). I is empty,p andg must be complementary literals.

Remark 3.6
Let A be an argument in ELP?, if a literal p is present ind and there is an argument for ¢ such
thatp andq disagree thentl is not warranted.

In this case B attacksA in p, for this reasord is defeated.

Remark 3.7 (Valid for general de.l.p.)
If there are no strict ruleg; andq disagree iffp = 7.

4 DEFAULT LOGIC

A Default TheoryT' = (W, D) consists of a set of facid” of ground sentences. Each default rule in

are the justifications andis the consequent of the default. When the justification and the consequent
of a default rule are the same;*, the default rule is called mormal default rule In generaljust(d)
denotes the set of justifications present in the fuland given a set of default ruld®, just(R) is
used to denote all the justifications present in the default rulés of

The intuitive meaning of a default is: if can be derived and it is possible to consistently assume
eachb;, then conclude. Given a default theor§” = (W, D) an extensiorE' (or a Reiter extension)
is a theoryFE satisfying that

E =U{W; | iis anatural numbenr

Wo=W

Another way to characterize extensions in Default Logic is through an operational semantics [1].
In this characterization each extension is defined by ds@il), wherell is a closed and successful
process. Given a sequence of default riles: (do, ..., d,) the setin(S) collects the information
obtained by the application of the defaultsSnthat is,/n(S) = Th(W U {y | # occurs inS)})
Then, a process is a special kind of sequence of default (dies. ., J,,) where each defaulf; is
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applicable toIn({d,...,0,-1)). A processll is closed if there is no applicable default rulén
D such thaty does not occur ifl, and a procesH is successful iffn(I1) I/ 3 for all 3 that is a
justification of some default rule ifl. Given a default theor§” = (W, D), a literall is a skeptical
consequence df if [ belongs to every extension @f, and! is a credulous consequenceoif [ is
present in some extension but not in each extension. A default theory that has at least one extension
is calledcoherent

In this work, we will consider finite propositional default theories with the following restrictions

1. The theoryl’ = (W, D) is coherent.
2. The set of fact§l’ is empty.

3. For every defaulix : 3/, formulasg and~ are single literals.

We are interested, at this stage, in default theories that verify the conditioa:(), since working
with these theories enable us to establish an indirect relation betwdeR Bn another nonmonotonic
formalisms. In particular, it is well known the works that study the relation between Normal Logic
Programming and Default Logic. This connection is achieved through a link between stable models
for normal logic programs [11] and skeptical consequences of default theories [4]. Normal logic
programs are translated into a default theory composed by an empty set of facts, and a set of default
rules obtained as follows. Each rule of the form:

C<+—aj...,ap,N0thy,..., Noth,
is translated into a default rule of the form:
A1y ...,Qp ﬁbl,...,_'bm/c

In this way, a relation betweendDP and this type of default theories (with an empty set of facts)
establishes a indirect link betweereDP and Normal Logic Programming. However, this relation
deserves a particular analysis.

5 TRANSLATING DEFAULT THEORIES INTO
DELP? PROGRAMS

In this section, we present a transformation that allows to map default theories to defeasible logic
programs. The transformation is defined for default theories that follow the restrictions given in
section 4.

Given a default theor§” = (0, D), we transforni into a de.l.p.P = (0, A) as follows:

1. For each default; = o : /v € D, the setA in the de.l.p.P includes the followinglefeasible

rules

) v—ap
(i) —pi—p
(i) pi —

wherep; is a new literal and rules (i) and (iii) are callgmiard rules and3 is the complement

of 5.

1Some of these restrictions could be dropped. We analyse this situation later.
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When necessary, we denote the de R@as 7,5 (T)

The first defeasible rule (i), indicates that if the prerequisiie given, then the consequentould
be derived. However, this is only allowed if it is possible to consistently assume the justifigation,
and this restriction is verified when the second rule does not apply (ii). If the complement of the
justification, {.e. — (3), is derived, there exists a derivation (and an argument)-fgx and this
constitutes an attack to the argumentdorThe last rule introduced by the translation (iii) is simply
used to enable, by default, the new literal

The translation for a default rule = « : (/v introduces a new literal; to block the derivation
of v. That s, in case that the complement of the justification is derived, litgtarns into an attack
point, and the argument for the consequence will be attacked. Therefore, this argument is defeated
classifying the literaly aSUNDECIDED.

Note that default rules with an empty prerequisite are writtere : 3/~. These rules are trans-
lated, in the same way, to the following defeasible rules:

) y—=p () "p—==3 (i) p; =
Then, we will show that normal default rules can be translated in a simpler, reduced form.

Example 1
Consider the default theof®, = (0, D), where

Dy ={(true:aja),(a: ~x/y), (a: - y/z), (a:d/d)}
The corresponding de.l.p. will bBr, = (0, A,), whereA, has the rules:

true : a/a || a —p “pr—=-a | pr—
aiﬁx/y Yy—a,p2 | 7"p2 =T P2 —
a:ﬂy/x r—=a,p3| p3—=Y p3 —
a:d/d d—a,ps | 7 ps——d | py—

Each default rule is translated into a defeasible rule, using an extra lifgyaldting as a guard. A
derivation for— p; implies that the justification (from the original default rule) cannot be assumed con-
sistently. In this way, the transformation captures, through these three defeasible rules, the behavior
of the original default rule.

Example 2
Consider a de.l.pPr, = (0, A,), obtained from a default theorf, = ((}, D,), whereA, has the
rules:

b—xz,p1 | " pr—=—a|p —
C=Y,p2 | Tp2—=b | p—
T —p3 T p3—=7X | p3g—
Y — D4 P4 =Y | P4

This example shows the use given to the new litepaimtroduced in the translation. Literab
determines an attack point in the argument for the literahd this argument is defeated (see remark
3.5 and figure 1). For this reason, literals not warranted in BLP?, it is an UNDECIDED literal.

This attack reflects the incompatibility between the original default rules b/c andx : a/b. In the
original default theory, litera¢ is a credulous consequence, since no successful process includes both
default rules. There is only a successful process including/b.
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T p,
A A L A |
Dy b, r P,
A A A A

Figure 1: Arguments irPr,

It is possible to identify in the de.l.@? obtained by the translation, two kind of attacks. Note that,
every attack inP reflects the existence of two incompatible default rtild@his incompatibility arises
for one of the following reasons:

e the consequences of both default rules are contradictory, or
¢ the consequence of one of them is contradictory with the justification of the other

Figure 2(a) depicts an attack that arise from contradition between the consequences of two default
rules, and figure 2(b), an attack over a justification. In this case the (artificial) attack point is the new
literal introduced by the translation.

c TP,
[ — -c T e [
A A A \
a p,
a pc x pnc * * _‘b
A A A A A
€z pnb
AA
a:b Yy 5
“e f R E—— x:y
____________________________ C \"'---.._.._._ —|b
(a) Consequence attack (b) Justification attack

Figure 2: Types of default attacks

It is interesting to note, that normal default rules could be translated in a more concise manner.
The translation of a general default rule: 5/~ has to model the two main characteristics captured
by a default rule:

- the antecedent is needed to derive the consequertt).
- there is no knowledge against the justificati®gi).

The translation is required to model, inEDP?, the interaction between conflicting information
in the same way it is done in Default Logic. Direct conflicts between default rules arise when their
consequents are contradictory or the consequent of one default is contradictory with the justification
of the other. For normal default theories justifications and consequents are the same, therefore, a direct
conflict between default rules arises when it is possible to derive information against the consequent
of a default rule. For this reason it is possible to give a reduced translation for normal default rules.

2We are considering twapplicabledefault rules
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Remark 5.1 (Reduced transformation)

If the variant considered isELP?, the translation of aormaldefault rulea : v/~ can be reduced to

a single defeasible rulery — a.

That is, in the reduced transformation any argument-foy attacks the argument foy (see
figure 3). This attack establishes a defeat, becauseirPD), attack determines defeat. In the initial
transformation, any argument fer v allows the formation of an argument for the literalp; that
attacks (block), in the same way, the argumentffomn this way, both transformations reflect, in the
obtained ELP? program, the same pretended behaviour of the original default logic.

Hence, in what follows, normal default rules will be translated using the reduced form

y Qp— —y
Ao A
a P, (6%
A ;

Figure 3: Reduced transformation for normal defaults

In this way, a DELP? program obtained by translating the normal default rules into the general
form or into the reduced form, models in the same way the original default theory. The dialectical
analysis that could be carried out in any of these translations is equivalent, and this is because of the
comparison criterion. The only kind of defeaters present @LP’ are blocking defeaters. For this
reason, if an argument has two defeaters both are blocking defeaters. The elimination or addition of
defeaters does not change the scenario: the main argument remains defeated. These characteristics
are proper of BLP?, since using a different comparison criterion proper defeats can arise and, in
these situations, the elimination of one defeater could provoke others defeaters to change their status

(see figures 4(b) and 4(a)).

Defeated

Defeated

Defeated

Unde feated

b ) b b
bé!;? I;Z%S A e biioe;]gil r;g )\ B ég;;é‘(l;g * ----- Blocking P{lj‘g}]geea rt , *
y a p; ., defeat Y a 7 a p; ~».‘\‘de‘ feat a
i q\ )\ _| i q\ / )\ _‘ q\
—-b D; —-b ﬁb fz —|b

(@)

(b)

Figure 4: Defeats in BLP?and general BLP

Remark 5.2 (Relation between DL andDELP?)
Let T = (W, D) be a default theory, such th&t = (), P the de.l.p. obtained by the translation
proposed, anda literal.
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- Literal [ is a skeptical consequence®iff [ is warranted fromP 3.

- Literal [ is a credulous consequencelofff [ is undecided inP

In order to understand this relation, we can analyze the relation between the processes determining
the extensions of the default theory, and the arguments that can be constructed using the defeasible
rules obtained by the translation.

Given a default rule); = o : 3/y we definet(d;) as the set of defeasible rules obtained by the
translation of a default rulé;. Thus, in the general caséy;) = {(v — a, p:), (= p; —= 3), (p; —= )}

In the same way, we define the set of defeasible rules obtained by the entire set of default rules
ast(D) = Ut(4;),Vd; € D. Finally, given a de.l.pP = (II,A) and a setR C A we denote
argsp(R) = {A : (A, h) is an argument structure i and A C R}.

Now, letT" be a closed and successful process of a default tHEory (), D), E = In(T") be
the corresponding extensioli, be the set of defaults rules In(i.e. I's; = {J | ¢ occursinl'}), and
P =T/55(T)be the de.l.p. obtained by the translation proposed. Note that argumentsj(t(T';))
are conflict free; that is, for all argumentin argsp(t(T'y)) there is no other argument attackingA.
Otherwise, conflicting default rules would belongltpand this is not possible sin¢eis a successful
process. Moreovetrgsp(t(I's)) is a maximal set of non-conflicting arguments since every argument
B that does not attack an argumentirysp(t(I's)) comes from default rules that are not in conflict
with the rules inl. If such argumenB exists,I” would not be closed.

In this way, if a literako is warranted fromP there exists a non attacked argumeésy,, w) that is
in every maximal conflict-free set of arguments. Then, literadill be in every extension of" and
it is a skeptical consequencebf On the other hand, given a literalif every supporting argument
(A, u) is attacked by other argumenB,,, v’) both arguments have to be in different conflict-free
sets of arguments. Therefore, two or more extensions exists and liteeainot be present in all of
them. For this reasom, will be a credulous consequencef Note thatu is undecided irZ,J>(T').

5.1 Dung’s argumentation framework for DL

The relation established between Default Logic areLP is, in some aspects, similar to the one
established in Dung’s work [9] which considers a default theory as an argumentation framework.
There, an argumentation framewatld' (7') = (ARy, attacksy) is defined for a default theory =

(W, D), where:

- ARr = {(K,k) | K C just(D) : K is a support fork }
- (K, k) attacksy (K', k') iff k € K’

A set K is said to be a support fok with respect toT" if there exists adefault derivation
ki, ko ... kn with k,, = k such that for each; , eitherk; € W, ork; is consequence of the preceding
elements in the sequencelgr= ~ for a default ruleo‘—:%& such thaty is a previous element in the
sequence and evepyisin K.

Defining this framework, Reiter’s extensions of a default théBry (W, D) can be associated to
the stable extensions afR;. Remember that in Dung’s framework a set of argumeéhis a stable
extension iffS = {A | Ais not attacked by any argument}. On the one hand, given a set of
arguments4 in ARy the set of consequences it supports are defified(A) = {k | (K, k) € A}.

On the other hand, given a set of consequericethe set of arguments that are consistent with it, is

3We are considering just the original literals in the theory, notithiterals added by the translation
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also defined:ARGS(FE) = {(K,k) € ARy | Vj € K, {j} UFE If L}. Therefore,E is a Reiter’s
extension off’ = (W, D) iff E = flat(ARGS(FE)).

Considering the transformation proposed, we can see that argumentd fi§(f") can be used
to identify the arguments of this argumentative framework. Suppose tha} is an argument in the
de.l.pZ;5>(T'), we can define the following set of literals:

Ky={l:(-pi—~-1 e?;flf)(T) and(p; — ) € A}

This seti 4, constitutes a support for literalwith respect tdl’. That is,(K4,l) € ARy in Dung’s
framework. Observe that every argumert () in 7,5"(T) is constructed using the defeasible rules
obtained by the translation. However, the existence of a supporting argumeéns floecause of the
presence of a set of default rules (in the original default theory) that allodesfault derivation S
for . The default rules that could be used7in= (W, D) for constructingS are identified by the
literals p; mentioned inA. If a defeasible rule; — is present in4, the default rule); is used for the
construction ofS, and this means that its justifications,st(d;), can be consistently assumed.

5.2 Dropping some restrictions

In section 4 we establish some restrictions for the default theories considered. On the one hand, we
are considering default rules such that their justification are single literals. This restriction can be
dropped, since given a default rule of the fosm 3/~ wheres = 34, .. ., 5, with eachg; is a single
literal, the translation is given by the rules
M) 7 —pi,.... b
(i) - pi, =0 foralll<k<n
(i) pi, — foralll <k<n
On the other hand, we are considering only default theories with an empty set of facts. This

condition could be dropped translating all clause$linas strict rules in the de.l.p.. In this ca$g,
has to be consistent and each formula is translated as a set of contrapositive rules as strict rules in the
de.l.p.. For each clausé = (¢; V...V ¢,) in W we include, for all (1 < ¢ < n), thestrict rulesin
the de.l.p.:

Ci < 1Cly...y,7Ci—1,1Cj+15--., 1Cp

Example 3
Given the theoryl; = (W3, D3) whereWs = {(z), (w),(t — = b)} andDs = {(z : b/b), (w :
t,r/q)}. The associated de.l.p; has the rules:

T b—x app—=—t | p—
W < q —=W,PtyPr | 7 Pr =T Pr —
bt
-t b

Finally, note that we are consideriegherentdefault theoriesi(e. the existence of extensions are
guaranteed). As mentioned in [9] having default theories with default rules of thedorm/— 3
prevents to conclude any literal, since this kind of defaults collapse the theory, and none extension can
be obtained. Under the preferred semantics (instead of the stable ones), this non intuitive behavior is
avoided because this paradoxical default does not interfere with the others. In casleRSfand the
translation proposed, the behavior will be similar in the case of non coherent default theories. The
defeasible rules obtained by the translation of this conflicting kind of defaults will not interfere with
the arguments supported by meaningful defaults.
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5.3 Answers and Extensions

It is interesting to note that the relation established in this work associates types of consequences
(skeptical or credulous) from a Default theory with the answerss(NO, UNDECIDED) given by

a DELP? interpreter. However, the concept of extension, present in Default Logic, is not clearly
recognizable in BLP? and for this reason it is not possible, without an extra analysis, to identify the
notion of extension in the defeasible program obtained by the translation. For instance, if two literals
are UNDECIDED in a 7,5 (T, they could belong to the same extensioriipfor they could belong

to differents extensions. Hence, the match between literals and extensions cannot be recognized by
DELP? by considering just the answer given by the interpreter. An external mechanism should be
provided.

6 CONCLUSIONS AND FUTURE WORK

There are several works, in the field of Knowledge Representation dedicated to relate different for-
malisms and semantics of nonmonotonic reasoning formalisms [3, 5, 9, 7, 12, 13, 2, 8]. We think that
it is significant to carry out this work since, as mentioned before, it is important to asses the differ-
ent alternatives present in the area. There are very different approaches for nonmonotonic reasoning
and is useful to clarify the relationship among them. However, this task is not easy mainly because
several dissimilar approaches have been developed. This work presents a first analysis on the relation
between a well understood nonmonotonic system as Reiter Default Logic, and a argumentation based
system like ELP. Many works have been developed relating Default Logic, or some of its variants,

to other nonmonotonic formalisms [9, 7, 12].

The transformation presented in this work allows to map Default Theories to a special variant of
DELP (the simplest variant). In this way, default theories can be modeled by simple de.l.p.'s and this
result allow us to extend this work to other formalisms, mainly over those whose correspondence with
Default Logic (of some of its variants) have been already defined.
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