
Performance Evaluation of the Parallel Polytree Approximation
Distribution Algorithm on Three Network Technologies∗

Julio Madera
Department of Computing, University of Camagüey

Camagüey, Cuba
jmadera@inf.reduc.edu.cu

and

Enrique Alba, Gabriel Luque
Departamento de Lenguajes y Ciencias de la Computación

E.T.S.I. Infomática, University of Málaga, Spain
{eat, gabriel}@lcc.uma.es

Abstract
This paper proposes two parallel variants of an Estimation of Distribution Algorithm (EDA) that represents the
probability distribution by means of a single connected graphical model based on a polytree structure. The
main goal is to design a new and more ef�cient EDA. Our algorithm is based on the master/slave model that
allows to perform the estimation of the probability distribution (the most time-consuming phase in EDAs) in
a parallel way. The aim of our experimental studies is manifold. Firstly, we show that our parallel versions
achieve a notable reduction of the total execution time with respect to existing algorithms. Secondly, we study
the behavior of the algorithm from the numerical point of view, analyzing the different versions. Finally, our
methods are evaluated over three interconnection networks (Fast Ethernet, Gigabit Ethernet, and Myrinet) and
a study on the in�uence of the parallel platform in the communication is performed.

Keywords: Parallel Estimation of Distribution Algorithms, Bayesian Networks, Polytree Approximation
Distribution Algorithm

1 INTRODUCTION

Evolutionary Algorithms (EAs) are non deterministic search techniques designed as an attempt to
solve adaptive and hard optimization tasks on computers [2]. In fact, it is possible to �nd this kind
of algorithms applied for solving complex problems in economy, telecommunications, bioinformat-
ics, etc. The landscape of these problems often shows multiple optima, noisy regions, and a large
dimensionality. These algorithms work over a set (population) of potential solutions (individuals)
by applying some stochastic operators on them, called variation operators (e.g., natural selection,
recombination, or mutation), in order to search for the best solutions.

In the last years a new family of EAs known as Estimation of Distribution Algorithms (EDAs)
[3, 8] has deserved a large attention in the scienti�c community related to optimization, evolution-
ary computation, and probabilistic models. These algorithms have arisen as an alternative to other

∗The two last authors acknowledge founds from the Spanish Ministry of Education and European FEDER under
contract TIN2005-08818-C04-01 (the OPLINK project, http://oplink.lcc.uma.es).

1307

methods where it is necessary to �t a high number of parameters. EDAs have been motivated by
the need to identify the interrelations between the variables, a key issue to solve complex problems.
In EDAs, a different kind of variation operators is used. The successive generations of individuals
are created by using estimations of the probability distributions observed in the current population,
instead of evolving the population with the typical variation operators (like crossover and mutation)
used in other EAs. Hence, the main feature distinguishing EDAs from other more classical EAs is
that EDAs learn the interactions among variables (building blocks) in the problem. At the same time,
this is the principal �aw of EDAs due to the computational complexity of this learning and simulation
task. EDAs are classi�ed according to the used learning model, and range from those that assume
total independency of the variables to those that assume pairwise interactions; some EDA families
also consider unrestricted general models of interaction between variables. In Algorithm 1, we show
the pseudocode for an EDA.

Algorithm 1 EDA
Set t ← 1;
Generate N >> 0 points randomly;
while termination criteria are not met do

Select M ≤ N points according to a selection method;
Estimate the distribution ps(x, t) of the selected set;
Generate N new points according to the distribution ps(x, t);
Set t ← t + 1;

end while

Apart from the computation time of the objective function, the main computational cost of these
algorithms is the time consumed in learning the probabilistic graphical model at each step. One
obvious approach to deal with this problem is the parallelization and/or distribution of the algorithms.

The current focus of the research in the development of parallel EDAs has been concentrated
on two main approaches: evolution of parallel populations and distribution of procedures acting on
sequentially evolving populations. Although this �eld is quite new, parallel EDAs have deserved
interest in the recent past, e.g., a good review can be found in [5]. We only concentrate in works that
make use of the second approach.

Lozano et. al. [4] proposed two parallel versions for an algorithm that uses Probabilistic Graphical
Models in combinatorial optimization (EBNABIC). Extending the preceding work, Mendiburu et.
al. [6] proposed several parallel implementations of EDA algorithms, not only for discrete domains
but also for continuous ones. To learn the Bayesian network a manager/worker model is employed.
In [7] is proposed an extension of pEBNABIC that was presented in the previous work.

Ocenasek and Schwarz [9, 10] proposed two methods of parallelization for the Bayesian Opti-
mization Algorithm (BOA) [11]. The main idea of the pBOA [9] is to parallelize the learning of the
Bayesian network step. To do that, each processor introduces arcs in the tentative network irrespective
of other processors. In this algorithm, the authors used explicit topological ordering of the variables
to keep the model acyclic.

In this work, our effort focuses on the parallelization of this learning process. We propose two
parallel solutions for a special EDA that represents the joint probability distribution by means of a
single connected Bayesian network. The algorithm is named Polytree Approximation Distribution
Algorithm (PADA) [12]. Our approach takes advantage of the detection of independencies to con-
struct the Bayesian network (see Eq. 2 and 3). Previos models in the literature [4,9,10] do not include
this feature. We also extend the works of Ocenasek and Schwarz [9, 10], performing the learning

1308

phase without taking into account restrictions in the order of the variables. Parallel EBNAPC algo-
rithm [6,7] have an approach similar to our proposed method but it starts from a completely undirected
graph, and it also uses the χ2 to perform the independence tests while our algorithm creates the net-
work from scratch and it uses a threshold (ε) in the independence tests. Another important difference
is that our proposal considers the balance of the computations carried out by the processors. Finally,
we also test our parallel methods with different communication networks to give relative advantages
of modern networks.

The outline of the paper is as follows. In the next section, we present the sequential version of
the PADA algorithm. In Section 3 we discuss the details of two new parallel algorithms. Section 4
shows the computational experiments and the evaluation of the results using the two parallel versions
on the selected problem benchmark. Finally, conclusions and some future directions are outlined.

2 POLYTREE APPROXIMATION DISTRIBUTION ALGORITHM

In this section we present the sequential PADA algorithm and its principal features. As an EDA,
PADA executes the main loop of a canonical EDA. The main difference with respect to other EDAs
lies in how it estimates the probability distribution of the selected set of tentative solutions. In this
technique, the probability model is a single connected Bayesian network known as polytree.

Formally, we can de�ne a Bayesian network over the set of random variables X =
{X1, X2, . . . , Xn}. The factorization of the joint probability distribution can be expressed as:

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|πXi) (1)

where, πXi
is the set of parents of Xi (i.e., exists an arc from each πXi

to Xi).
In this paper we concentrate in the simple connected Bayesian networks, specially in polytree

structures. Basically, a polytree is a type of graph in which there is at most one undirected path be-
tween any two vertices. In other words, a polytree is a DAG for which there are no undirected cycles.
Networks with tree structure capture the main features of causality among the variables (dependency
among their values) and provide a good computational environment for optimization purposes. In the
other hand, polytrees allow to describe high order interactions and exhibit many of the computational
advantages of simple trees.

The dependence relations are extracted from databases and this process is known as Bayesian net-
work structure learning. There are two different ways to classify structure learning algorithms. One
kind of algorithms for structure learning uses a score+search procedure. These methods de�ne a met-
ric (cost function) that measures the suitability of every candidate Bayesian network to a database of
cases. Other approaches perform (in)dependence tests to obtain a list of (in)dependence weighted as-
sertions. These algorithms construct the graph structure satisfying as much as possible the assertions
on the list. The algorithms presented in this paper belong to this last class.

As we stated at the beginning of this section, our algorithm uses a Bayesian network to represent
the probability distribution. We propose the parallelization of the learning phase in the PADA al-
gorithm. We use a structure learning that applies (in)dependence tests. For our work, the following
standard de�nitions are needed:

The mutual information I(Xi, Xj) = Dep(Xi, Xj) of the random variables Xi and Xj is:

I(Xi, Xj) =
∑
xi,xj

p(xi, xj) · log
p(xi, xj)

p(xi)· (xj)
(2)

1309

The conditional mutual information I(Xi, Xj|Xk) = Dep(Xi, Xj|Xk) of the random variables
Xi and Xj given Xk is de�ned as:

I(Xi, Xj |Xk) =
∑

xi,xj ,xk

p(xi, xj , xk) · log
p(xi, xj , xk)

p(xi, xk)· (xj , xk)
(3)

The measure of global dependency Depg(Xi, Xj) of the random variables Xi and Xj given Xk is
de�ned as:

Depg(Xi, Xj) = min
{Xk}

(Dep(Xi, Xj), I(Xi, Xj |Xk)) (4)

2.1 Learning Polytree Approximation Algorithm

This algorithm takes as a starting point the Polytree Approximation Algorithm (PA) developed by
Acid and de Campos [1]. The basic idea of the PA consists of preserving the edges with larger
weights. The weight of an edge is given by the global dependency Depg(Xi, Xj) (see Eq. 4), that
represents the lowest value between the marginal dependency value Dep(Xi, Xj) = I(Xi, Xj) and
the value of mutual conditional information for each of the others variables (I(Xi, Xj|Xk)). The
calculation of the marginal dependency is the most complex step (O(n3)) of this algorithm.

The method employed to learn the polytree is a modi�ed version of the PA algorithm. It is shown
in the Algorithm 2 and it is called LPA. This algorithm uses two different thresholds for independency:
εo and ε1. Also, it performs changes with respect to the orientation of the edges.

This algorithm produces the �ttest polytree to the data during the learning phase. Our goal is to
parallelize the LPA method. Now let us detail the main steps of this technique.

The LPA algorithm starts with an empty graph (G) and an empty list (L) to store the dependence
relations among the variables detected in the data (line 1). For each pair of variables 〈Xi, Xj〉 the
algorithm computes the marginal dependency (Eq. 2) and arcs with Dep(Xi, Xj) > ε0 are stored in
the list L (lines 2-7). With the resulting arcs in L, LPA computes the mutual conditional information
(Eq. 3), removing the arcs with Dep(Xi, Xj|Xk) < ε1 (lines 8-16). For all the edges 〈Xi, Xj〉 in L,
the algorithm calculates the value of Depg(Xi, Xj) (Eq. 4), using this value to sort the list L (lines
17-20). Now we construct the skeleton of the polytree (lines 21-26). As it can be seen, the edges
are inserted in the graph traversing the list L, taking into account the restriction that the insertion
of the arc < Xi, Xj > does not create an undirected cycle in G. With the resulting skeleton, the
algorithm proceeds to set up the direction of the edges in G (lines 28-31). To do this, for each
connection Xi −Xk −Xj if I(Xi, Xj|Xk) > I(Xi, Xj) then it creates a head − to − head pattern.
The remaining edges are oriented applying a cost function based on the BIC metric or at random,
without introducing new head− to− head patterns.

3 PARALLEL PROPOSALS

A detailed study of the Algorithm 2 concludes that computing the marginal dependency and the mu-
tual conditional information are the most costly steps: O(n2) and O(n3), respectively. This computa-
tion is easily separable and can be executed in parallel. Our approaches exploit these facts: complexity
and separability. To do these parallel computations, the algorithms take advantage of the well-known
master/slave model.

1310

Algorithm 2 LPA algorithm
1: Start with an empty graph G and an empty list L
2: for all Xi, Xj ∈ X do
3: Compute Dep(Xi, Xj)
4: if Dep(Xi, Xj) ≥ ε0 then
5: Insert the edge < Xi, Xj > in L
6: end if
7: end for
8: for all < Xi, Xj > in L do
9: for all Xk ∈ X, Xk 6= Xi, Xj do
10: Compute I(Xi, Xj |Xk)
11: if I(Xi, Xj |Xk) < ε1 then
12: Delete the edge < Xi, Xj > from L
13: Select the next edge < Xi, Xj > in L
14: end if
15: end for
16: end for
17: for all < Xi, Xj > in L do
18: Compute Depg(Xi, Xj)
19: end for
20: Sort L in decreasing order by Depg(Xi, Xj)
21: repeat
22: Select the next edge < Xi, Xj > in L
23: if < Xi, Xj > does not create a cycle in G then
24: Add < Xi, Xj > to G
25: end if
26: until n− 1 edges have been added
27: for all Xi −Xk −Xj ∈ G do
28: if I(Xi, Xj |Xk) > Dep(Xi, Xj) then
29: Make head-to-head pattern Xi → Xk ← Xj

30: end if
31: end for
32: Direct the remaining edges applying some cost function
33: Compute p(x) =

nQ
i=1

p(xj1(i), . . . , xjr(i))

3.1 The First Proposal: pPADABAL

This algorithm is based on the separability of the marginal dependency and the mutual conditional
information computation. When we have n variables, the total number of marginal dependence tests
performed is n·(n−1)

2
. Therefore, this computation can be divided among the master and the slaves

processors. To do that, each processor maintains a copy of the data set (selected individuals). After
this, the next step in the sequential version is the computation of the mutual conditional information.
This step performs n·(n−1)·(n−2)

6
tests. As we did before, we can divide the computation among all the

processors. When each processor computes the marginal dependencies the number of edges obtained
in each processor can be different. This can lead to assigning to each processor a different workload,
and therefore, its execution time can vary among the processors. To avoid this uneven workload,
our �rst proposed parallel version implements a mechanism to redistribute the work. Firstly, the
calculation of the marginal dependencies among the variables is performed in parallel, then the results
of this step are sent to the master, and �nally this process redistributes the computation of the mutual
conditional information among all the processors.

The scheme of this technique is shown in the left diagram of the Figure 1. It must be clear that
master also plays the slave role. We can distinguish four phases in this algorithm: an initialization
step, the calculation of dependency information, the construction of the graph, and �nally, the orien-
tation of the edges in the resulting graph. During the initialization, the master process sends some
information to the slaves. In the second phase, the master and the slaves compute the marginal and the
conditional mutual information in a parallel and asynchronous way. Also, in this phase, the master
redistributes the workload among all the processes in an intermediate step between these two calcu-

1311

Figure 1: Functioning scheme for pPADABAL and pPADAUNB algorithms.

lations. Once the master has received all the information from the slaves, it arranges the edges in
decreasing order by the global dependency and constructs the polytree skeleton, inserting the arcs one
by one, according to the established order, and avoiding the creation of cycles (third phase). In the last
phase, the master sends the subgraphs to the slaves to perform a parallel computation of the difference
between the mutual conditional dependency and the mutual marginal dependency. Finally, using this
information, the master process proceeds to orient the edges and it calculates the joint probability
distribution according to Eq. 1.

1312

3.2 The Second Proposal: pPADAUNB

This second variant is similar to the previous one but it does not implement any balance of the work-
load among the processors after the calculation of the marginal dependency (see right diagram of
Figure 1). This obeys to the fact that there could exist some situations where the number of edges in
each sublists does not differ substantially from one process to another and therefore a new balance of
the load would unnecessarily increase the Communication time.

4 EXPERIMENTAL RESULTS

This section presents the experiments carried out to test our parallel algorithms. Our objective is to
compare the performance and the communication load in three different network technologies: Fast
Ethernet, Gigabit Ethernet, and Myrinet. Since the master/slave model does not change the dynamics
of the canonical method, we want also to prove that there is no a signi�cant numerical difference
among the different versions of the method, although the parallel version is considerably faster.

Our parallel platform is composed of a cluster of eight nodes, where each node has a Intel P-IV
processor (CPU 2.8GHz), 512KB of cache memory and 512MB of main memory. The operating
system is RedHat Linux, version 7.2. The MPI implementation is LAM (version 7.1.1). All the ma-
chines are interconnected using three kinds of networks: Fast Ethernet (102 Mbps), Gigabit Ethernet
(103 Mbps), and Myrinet (2 · 103 Mbps). Next subsection details the three optimization problems that
we use in our experimental benchmark.

4.1 Problems
Since we focus on the learning phase and the in�uence of the network technology in the algorithm, we
have selected three standard problems in the EDA �eld. Our study includes the well-known OneMax,
Plateau and Muehlenbein functions. In Table 1 we present, for each of these problems, its name,
its �tness function (to be maximized), the size of the studied instance, the chromosome representing
the optimal solution to the problem, and the value of this optimum. In all the cases, n represents the
dimension of the problem, and a binary genotype is used (xi ∈ {0, 1}).

The Onemax problem simply consists in maximizing the number of ones in a bit-string. In the
Plateau function, the chromosome is divided into groups of three genes, and the �tness value is the
number of sets containing three ones. Finally, in Muehlenbein function the chromosome is divided
into groups of �ve genes, and the subfunction �tness value oscillate between zero and four, it is a
deceptive problem.

Table 1: Benchmark problems.
Problem Fitness function Size (n) Solution chromosome Optimum

Onemax fOneMax(~x) =
nP

i=1
xi 300 (1,1,1,1,...,1,1) 300

Plateau

fPlateau(~x) =
mP

i=1
g(~si)

where ~si = (x3i−2, x3i−1, x3i), and m = n
3

300 (1,1,1,1,...,1,1) 100

g(x1, x2, x3) =

�
1, if x1 = x2 = x3 = 1
0, otherwise

Muehlenbein

fMuehl(~x) =
mP

i=1
f5

Muehl(~si)

where ~si = (x5i−4, x5i−3, x5i−2, x5i−1, x5i), and m = n
5

300 (0,0,0,0,...,0,0) 240

f5
Muehl(x1, x2, x3, x4, x5) =

8>>>>><>>>>>:
3.0, for x = (0, 0, 0, 0, 1)
2.0, for x = (0, 0, 0, 1, 1)
1.0, for x = (0, 0, 1, 1, 1)
3.5, for x = (1, 1, 1, 1, 1)
4.0, for x = (0, 0, 0, 0, 0)
0, otherwise

1313

4.2 Computational Results
In this section we analyze the behavior of our two parallel methods when they are executed over the
three communication networks. First, we describe the parameter setting of the experiments, and later
we analyze the results.

Several preliminary experiments were performed to analyze how the parameters affect to the per-
formance of the algorithms. From these previous analyses, we conclude that the best con�guration
for our problem instances is the parameter setting showed in Table 2.

For each combination of the algorithm, network, and problem we perform 100 independent runs
to gather statistical meaningful experimental data. To allow a fair comparison among the results of
these algorithms, we have con�gured them to perform a similar computational effort (a prede�ned
maximum number of generations). In concrete, the algorithm execution is stopped when the 20th
generation is reached. This termination condition also allows to evaluate the parallel model and their
execution time and can also be found in other relevant works like [6].

Table 2: Parameter setting.
Parameter FOneMax FPlateau FMuehl

Population size 450 450 1400
Truncation threshold 0.3 0.3 0.3
Elitism 1 1 1
ε0 0.0029 0.0029 0.0025
ε1 0.0019 0.0019 0.0015

To analyze the performance of the parallel technique we have used two metrics. The most impor-
tant metric to study parallel techniques is the speedup. This measure compares two times: the ratio
between the sequential time and the parallel one. Ef�ciency is also usually reported, i.e., the speedup
divided into the number of processors (normalization).

Due to space limitation we do not show tables with the total execution time, but we brie�y sum-
marize them in this paragraph. For each function, we show the sequential time and the parallel
time for eight processors in the following order: balanced Fast Eth., balanced Gigabit Eth., balanced
Myrinet, unbalanced Fast Eth., unbalanced Gigabit Eth. and, unbalanced Myrinet. For the FOneMax

function the sequential time is approximately 384.27 seconds and for eight processors 57.13, 53.66,
53.46, 56.77, 54.42 and, 54.48 seconds. For the FPlateau function the sequential time is approximately
458.48 seconds and for eight processors 61.35, 57.76, 57.75, 61.14, 58.51 and, 58.35 seconds. Finally,
for the FMuehl function the sequential time is approximately 437.16 seconds and for eight processors
84.84, 80.26, 80.51, 85.09, 82.55 and, 82.56 seconds.

Figure 2 shows the speedup (�rst column) and the ef�ciency (second column) for all the networks.
Several conclusions can be extracted of these �gures. First, Gigabit Ethernet and Myrinet networks
obtain a very similar value, and the Fast Ethernet gets always a slightly worse speed-up and ef�ciency.
This means that the Fast Ethernet loses more time in the exchange of data packets than the other
networks. This is evident especially when the number of processors is increased, since a higher
number of processes provokes a more intense utilization of the network, causing more con�icts and
producing a moderate loss of ef�ciency.

Second, the balanced version of the algorithm has better results than the unbalanced approach.
This means that the number of edges resulting of the marginal dependency computation is slightly
different in every processor and the mechanism to redistribute the workload is bene�cial.

Finally, other important conclusion is that for FOneMax and FPlateau problems pPADABAL is very
ef�cient. In concrete, it achieves an ef�ciency value of 0.85 with eight processors, and super-linear
speedup (the ef�ciency is higher than 1.0) for any con�guration with less than four processors. This
superlinear value can be due to the fact that the necessary data (selected population) can be completely

1314

Figure 2: Speedup and ef�ciency for the three problems (average over 100 runs).
stored in the cache of the processors (512 KB), while the sequential version needs to use the (slower)
main memory to store the population and the auxiliary data structures.

The FMuehl problem is quite more complex than the rest. It needs a larger population to obtain
accurate results. The increase of the population size provokes a higher communication overhead
and consequently the speedup and ef�ciency are worse than in the other problems. In addition, this
problem converges slowly, and in fact, our methods do not �nd the optimal solution since the search
is limited to only 20 generations. The PADA method initially generates polytrees with a high number
of edges and iteratively decreases this number. Since our algorithm only executes 20 generations,

1315

all the generated polytrees in this problem have a considerably large number of edges, and therefore
the exchange of edges among the processes increases the utilization of the network. In spite of these
drawbacks, parallel versions allow an important reduction of the execution time with respect to the
sequential algorithm (from 39.38% to 81.64%).

Figure 3: Communication overhead for the three problems.
Now we turn on the communication cost analysis. These values are shown in Figure 3. This

�gure shows the time spent in communication and synchronization (Comm. & Sync.) for master (left
column) and the slaves (right column). For all the tested problems the time spent in communication

1316

is small, and hence this implies that our two approaches are suitable for optimization problems. In
the case of the FOneMax and FPlateau problems the highest overhead is provoked by the con�guration
using the Fast Ethernet network with eight processors. FMuehl problem is the one that wastes more
time in communication. As we said before, this is due to the fact that the size of the population is
larger than in the other problems, and therefore, the quantity of information exchanged is also higher.

We also observe that the unbalanced version produces a higher communication cost than the bal-
anced one. This is quite surprising because the unbalanced version is expected to perform a lower
number of exchanges. The reason of this result is that the time that the balanced version loses in the
last step of communication (sending the �nal results to the master) compensates the fact of doing the
intermediate communication phase when the information is evenly distributed among the processors.

Another interesting issue is that the communication time is in general small and it does not in-
crease signi�cantly when we use a higher number of processors. This demonstrates that our two
proposals have a very good scalability, although it is necessary to check this result in a parallel plat-
form with a larger number of processes (work in progress). Scalability is a very important feature of
any algorithm if it is expected to be actually useful for the research community.

Our last interesting observations come from comparing the �nal �tness value obtained by our
approaches. We have con�gured the algorithms to stop when they reach a prede�ned number of
generations (20 generations). Our aim however is to also prove that there are no signi�cant differences
between the algorithms, number of processors and network technologies. Due to space limitation we
not show tables with the numerical results. The results show a similar behavior for all the methods.
This is an expected result since our algorithms follows a master/slave model that does not change
the search dynamics of the sequential algorithm. For the two simplest problems, FOneMax (values
between 298.12 and 299.66) and FPlateau (values between 85.04 and 87.92), our algorithms �nd the
optimum quickly, and therefore the results are very good (best solution near to the optimum). On
the other hand, the FMuehl problem is a more complex one and the algorithms can not achieve the
optimal solution (values between 174.02 and 176.97) due to the small number of generations used,
but it is expected the algorithm reached the optimum with a slightly larger number of generations.
The statistical tests throw negative results (p-value is larger than 0.05) in all the cases, indicating that
the differences are not statistically signi�cative. This statistical analysis includes all the algorithm
versus algorithm tests, and all the six combination of algorithms and network technology tests (two
algorithms times three networks).

5 CONCLUSIONS

In this paper we analyze the behavior of two parallel versions of the PADA algorithm over different
network technologies. Also, we study the effects of these network and the number of processors in
the behavior of pPADA. We also study the numerical behavior of the algorithms.

In general, we have observed that the parallel model allows a considerably reduction in the execu-
tion time with respect to the sequential version (percentages between 39.38% and 87.40%), obtaining
a very good ef�ciency (even superlinear in some cases). The parallel PADA algorithms also show a
good scalability, a promising feature appreciated in actual applications. Also, the balanced version of
pPADA shows a better speedup/ef�ciency than the unbalanced one.

Analyzing the effect of the communication networks, we have observed that the executions times
using Myrinet and Gigabit Ethernet are very similar each other and both technologies are faster than
the Fast Ethernet one. Also, we noticed that the communication time is in general very low, allowing
high speedups of our parallel methods. The Myrinet should have been performed better than Gigabit
Ethernet, but its superior performance is not evident here since a small latency is not important in the
algorithms studied. We are looking for more intense communication by adding other parallel EDAs

1317

and other settings (like island EDAs with tight migration between islands).
From the numerical point of view we have observed that the best solutions found in the last

generation are very similar in all the algorithms. In fact, statistical tests demonstrate that signi�cant
differences do not exist. This result was expected since the master/slave parallel model does not
modify the dynamics of the method.

As a future work we plan to extend this paper to study the scalability of the algorithms in real world
problems. We are also working to extend these algorithms to continuous domains and to include new
operators and methods for sampling individuals.

REFERENCES

[1] S. Acid and L. M. de Campos. Approximation of causal networks by polytrees: an empirical
study. In B. Bouchon-Meunier, R. R. yager, and L. A. Zadeh, editors, Advances in Intelligent
Computing, LNCS 945, pages 149�158, 1995. Springer-Verlag, Berlin, 1995.

[2] T. Bäck, D.B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. Oxford
University Press, 1997.

[3] P. Larra�naga and J. A. Lozano. Estimation of Distribution Algorithms. A New Tool for Evolu-
tionary Computation. Kluwer Academic Publishers, 2002.

[4] J. A. Lozano, R. Sagarna, and P. Larra�naga. Parallel Estimation of Distribution Algorithms. In
P. Larra�naga and J. A. Lozano, editors, Estimation of Distribution Algorithms. A New Tool for
Evolutionary Computation. Kluwer Academis Publishers, 2002.

[5] J. Madera, E. Alba, and A. Ochoa. Parallel estimation of distribution algorithms. In E. Alba,
editor, Parallel Metaheuristics: A New Class of Algorithms. John Wiley & Sons, Inc., 2005.

[6] A. Mendiburu, J.A. Lozano, and J. Miguel-Alonso. Parallel estimation of distribution algo-
rithms: New approaches. Technical Report EHU-KAT-IK-1-3, Department of Computer Archi-
tecture and Technology, The University of the Basque Country, 2003.

[7] A. Mendiburu, J. Miguel-Alonso, and J.A. Lozano. Implementation and performance evaluation
of a parallelization of estimation of bayesian networks algorithms. Parallel Processing Letters,
16(1):133�148, 2006.

[8] H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of distributions I.
Binary parameters. In LNCS 1411: PPSN IV, pages 178�187, 1996.

[9] J. Ocenásek and J. Schwarz. The parallel bayesian optimization algorithm. In In Proceedings of
the European Symposium on Computational Inteligence, pages 61�67, 2000. Slovak Republic.

[10] J. Ocenásek and J. Schwarz. The distributed bayesian optimization algorithm for combinatorial
optimization. In In EUROGEN 2001 - Evolutionary Methods for Design, Optimisation and
Control, pages 115�120, 2001. Athens, Greece.

[11] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian optimization algorithm. In
GECCO-99, volume 1, pages 525�532. Morgan Kaufmann Publishers, 1999. Orlando, FL.

[12] M. Soto, A. Ochoa, S. Acid, and L. M. de Campos. Introducing the polytree aproximation
of distribution algorithm. In Second Symposium on Arti�cial Intelligence. Adaptive Systems.
CIMAF 99, pages 360�367, 1999. La Habana.

1318

