
A Mixed-Initiative Approach to Computer Aided Process Planning

Mart ı́n G. Marchetta ∗

Facultad de Ingenierı́a, Universidad Nacional de Cuyo
Mendoza, Centro Universitario - 5500, Argentina

mmarchetta@fing.uncu.edu.ar

and

Raymundo Q. Forradellas
Facultad de Ingenierı́a, Universidad Nacional de Cuyo

Mendoza, Centro Universitario - 5500, Argentina
kike@uncu.edu.ar

Abstract

Several approaches have been proposed in order to develop intelligent applications on Computer Aided Process
Planning (CAPP) domain. These approaches range from historic designs storage for later recovery, to genera-
tive synthesis of process plans. Although these approachespresent advantages over traditional methods, they
have several drawbacks derived specially from the under andover-automation of the decision processes. In
this paper a mixed-initiative model for CAPP systems is proposed, that integrates plan recognition of user’s
intentions, with planning techniques in the context of artificial intelligence, in order to synthesize new designs
that fulfill process planner’s inferred intentions, thus improving the usability and usefulness of such intelligent
assistants.

Keywords: Computer Aided Process Planning, Mixed-Initiative System, Planning, Intelligent Agent

1 INTRODUCTION

In the manufacturing context, process planning is the definition of manufacturing and assembly oper-
ations needed to produce the different parts, along with themachines, tools and fixturing required for
these tasks [8]. Parts need to go through a set of manufacturing processes in order to be produced.
This set of manufacturing processes is a process plan. Each manufacturing process within a process
plan can be performed by machines of some type or family, and also requires certain type of tools.
Besides, each part has its own Bill Of Materials (BOM). The BOM of a part to be manufactured
is the set of raw materials and intermediate products, needed by each manufacturing process in the
corresponding process plan in order to produce the part.

Manual process planning is an intense and time consuming activity. Besides, the quality of its
results is very dependant on process planner’s experience.The characteristics above mentioned yield
the need of computer support to process planning activities. There are basically two approaches to
CAPP, although there exist others that are special cases of these. The first one is calledvariant CAPP.
This approach makes use of the concept of Group Technology (GT), in which parts with similar

∗CONICET PhD fellow

1519



features are grouped together. Then, a standard process plan is created for each group and is stored
as a process plan template. When a manufacturing engineer iscreating a process plan for a new part,
he can retrieve the design template of the part’s group, and adapt this standard process plan to the
specific case he is working on.

The second approach for incorporating computer assistanceto process planning, is calledgener-
ative CAPP. This approach uses knowledge based systems, since the parts to be manufactured are
described as a feature model. A feature model is a formal description of a part, that contains features
and values for these features. Having an “open” descriptionof a part to be manufactured, the man-
ufacturing processes, the capabilities of machines and tools and a rule set indicating which process
should be used to produce each feature value, the automatic synthesis of new design processes can be
achieved.

The two mentioned approaches to CAPP have some drawbacks. Onthe one hand, variant CAPP
does not assist process planners while they adapt the part family process plan template, to the case of
the specific part they are working on. Besides, the manufacturing engineer must be conscious of the
existence of a process plan template for that particular part’s family, and needs to know which is the
corresponding family in order to retrieve the correct process plan template.

Another important consideration is that the number of different parts the enterprise manufactures
could make this approach unfeasible. Consider the case where the enterprise manufactures thousands
of different parts for its products. In this scenario, thereare two alternatives: many families, each
one grouping a reasonable number of parts, or few families with a big number of parts each one. The
former case has the advantage that each template needs less adaptation to special cases, since it corre-
sponds to a small group of very similar parts. However, the identification of the correct part family is
very complicated, tedious and error prone, since there exist the risk of a bad template selection. The
bad selection of the design template to use could make the adaptation process more difficult and time
consuming. On the other hand, if there are few part families,the retrieval process could be easy and
fast, but the adaptation process would be longer and more difficult than the previous case.

Finally, when parts that do not fit on previously known families must be produced, no previous
knowledge could be automatically exploited, since as we said before, there is no support for the
adaptation process.

Generative CAPP, on the other hand, requires a tight integration with CAD tools, since the feature
model of a part should be the output of the CAD system (or the output of some component that con-
verts the CAD output into a feature model). Besides, the extraction of complete feature models from
CAD data is very difficult (in most cases, either feature models or process plans must be completed
by hand).

Another problem with this approach is that a great amount of knowledge must be represented
in a formal way, since not only knowledge of manufacturing processes, machines and tools (which
constitutes the basic enterprise’s capabilities) must be represented formally, but also a set of rules
indicating which process, machine and tool should be used toproduce some value for a feature. Most
of the systems based on generative CAPP follows expert systems approach, which not only requires
the intervention of a domain expert, but also of a knowledge representation expert.

Finally, the manufacturing engineer’s experience about process planning could not be interac-
tively incorporated to each planning process, since in generative approaches the complete process is
automated, from the feature model to the complete process plan, so the process planner can modify
or adapt the process plan only when it has been completely synthesized. Each modification of the
decision rules that guide the process plan synthesis is a knowledge representation task. In [5], this
problem is pointed out by saying that, in general, if the userof one of these systems can answer the
questions “what” and “how”, probably he can not answer the question “why”.

1520



In this paper we propose a mixed-initiative approach that combines the exploitation of knowledge
acquired from previous designs, the recognition of manufacturing engineering’s design intentions, and
a generative approach to generate new designs that fulfill these inferred intentions, in an interactive
fashion, where both the user and the agent collaborates dynamically in order to produce a solution
to the problem. The rest of this paper is organized as follows. In the next section, we present our
mixed-initiative approach to CAPP, along with a brief overview of some plan recognition concepts.
Section 3 presents the proposed execution model. In section4 we summarize some related works on
CAPP. Finally, section 5 gives some conclusions and future work.

2 MIXED-INITIATIVE COMPUTER AIDED PROCESS PLANNING

As mentioned in section 1, CAPP includes tasks that are time consuming, very intensive and where
the results are sensitive to the process planner experience(even using variant CAPP). On the other
hand, its complete automation is difficult, requires much knowledge representation, and does not al-
low the incorporation of the manufacturing engineer’s experience and preferences during the process
planning. In this context, it would be useful to have an intelligent agent that contributes to the process
planning task with the advantages of automatic planning (inorder to reduce the workload of manu-
facturing engineers), but which allows the process plannerto incorporate his experience, preferences,
restrictions and knowledge about certain aspects of the manufacturing processes that are not taken
into account by the agent.

Thus, in this paper we propose a mixed-initiative approach that combines the exploitation of
knowledge acquired from previous designs, the identification of manufacturing engineer’s design
intentions, and a generative approach to generate new designs that fulfill these inferred intentions, in
an interactive fashion.

2.1 Mixed-initiative Systems

Mixed-initiative systems are those where each participating agent contributes with its best capabilities
during the interaction, in order to find a solution. Thus, theproblem solving and tasks execution on
this kind of systems is seen as a collaborative process, where each agent can initiate an interaction,
can propose solutions or give advise to the other, in contrast with single-initiative systems in which
the agent that has the initiative in the interaction is previously specified [4].

Mixed-initiative systems, where both human and computer agents participate in the interaction,
have the advantage that they do not automate completely the decision processes (since the human
user is actively involved in the tasks execution and decisions taking), and at the same time they
provide automated assistance in order to achieve user’s goals in a better way. Thus, mixed-initiative
interactions provides a mean for tackling the problems mentioned in section 1, specially the problem
of reducing the user’s workload on a complex knowledge-richdomain as CAPP, and at the same time
allow him to introduce his experience interactively duringthe decision processes. Figure 1 shows the
basic architecture of a mixed-initiative system.

In this paper, we present an approach where mixed-initiative is supported by a plan recognition
component, integrated with an automated planner. The proposed approach learns and updates a plan
library from previous designs created by the human process planners, uses plan recognition in order
to infer his intentions and integrates these techniques with automatic planning for synthesizing new
designs in accordance with the engineer’s intentions.

1521



Figure 1: A Mixed-initiative system’s basic architecture

2.2 Plan Recognition and Mixed-initiative Systems

Mixed-initiative systems require each participant to understand each other’s possible goals, plans and
capabilities, in order to make better contributions. In this context, plan recognition techniques are
useful because they provide an intelligent assistant with amean for inferring the user’s intentions, by
observing its behavior.

2.2.1 Plan Recognition

Plan recognition is the problem of inferring an observed agent’s goals and intentions, sufficient to ex-
plain his observed behavior. Plan recognition techniques have been applied in many domains (natural
language disambiguation, intelligent interfaces, military simulations, etc). Our interest in these tech-
niques is because they are useful whenever a human interactswith an intelligent agent. Independently
of the specific domain, if an agent is going to assist a user in his tasks, it must understand what the
user is doing or trying to do. The communication between the agent and the user can be done in sev-
eral ways. The user could explicitly ask the agent to do something, or they could communicate with
each other implicitly, using some kind of shared user interface. Plan recognition techniques allow an
assisting agent to automatically infer the user’s intentions, reducing the need of explicit communica-
tion of his intentions. Figure 2 shows a similar architecture to that presented in figure 1, but including
a plan recognition component in the intelligent agent.

Most of the existing plan recognition techniques rely on a plan library in order to infer user’s
intentions. These plan libraries contain information about the objectives the user may be pursuing,
the tasks needed to achieve these objectives, constraints on tasks and parameters (such as orderings,
causal links, parameter values propagation, etc), and possibly probabilistic information. During the
recognition process, primitive actions are observed in theuser’s behavior, and using these observations

Figure 2: Architecture of a mixed-initiative system with a plan recognition component

1522



Figure 3: Architecture of a mixed-initiative system with a plan recognition component

and the information in the plan library, the plan recognizercan infer the plan (or plans) the user may
be executing.

Basically, there exist two kind of approaches to plan recognition: consistency based and probabil-
ity based. Consistency based approaches try to narrow the possible plans and goals the user may be
pursuing, by isolating those that are consistent with the observed user’s actions. Probability based ap-
proaches, on the other hand, use an explicit representationof probabilities in order to determine which
are the most plausible ones. Once the user’s intentions havebeen identified, the intelligent agent can
assist the user in several ways, such as giving him advise, detecting errors or executing actions on
his behalf. There are several algorithms and formalisms in the literature that uses consistency based
and/or probability based approaches. A complete description of these algorithms and formal models
is beyond the scope of this paper (for more details on a specific formal model of consistency based
plan recognition and plan library representations, see [9]and [10]).

As an example, figure 3 depicts a simplified plan library for the CAPP domain, based on the
formal model proposed in [10]. Under this representation, nodes represent events (machining pro-
cesses in our domain). Thick gray arrows represents abstractions (“is a” relationships), and thin black
ones represent decompositions (“part of” relationships).Consider the case where a user includes
TwistDrilling andReamingmachining processes into the process plan he is building fora piece to be
manufactured. In a consistency based approach, a plan recognizer could narrow the possible user’s
intentions identifying the minimum set of plans that are consistent with the observations. In this ex-
ample, the plan recognizer can infer that the user is including the machining process of makingHole-1
as part of his plan, and that he is creating a process plan forPiece-1or Piece-2. If the user includes
the ConicTurningprocess later, the recognizer can infer that he is creating aplan for Piece-2, even
whenProfiling has not been yet observed.

2.2.2 Plan Libraries Learning

Until some years ago, plan libraries for plan recognition were completely hand-coded. Creating
plan libraries manually is a complex and difficult task. It requires not only a domain expert (in
our case, a CAPP expert), but also a knowledge representation expert. As mentioned in [11], a plan
library has an external representation (related to conceptual aspects), and and internal one (concerning
implementation details). There are several external plan library representation schemes. Here we
adopt a formal model similar to the commonly used one proposed in [10].

Under the adopted representation, plan libraries contain ahierarchical tree of goals and plans,
that includes not only the primitive observable actions (and their corresponding data), but also every
possible goal and plan the user may be trying to execute. As will be seen in later sections, in our CAPP

1523



domain the primitive actions and their associated data are the basic capabilities of a manufacturing
company, so we can expect that these actions do not change very frequently. However, there are many
combinations of these primitive actions, that represents different manufacturing procedures. So the
hand-coding of all allowed possibilities is very expensivein time and is very error prone. Moreover, if
the combinations of manufacturing processes change over time, this task must be done several times.

The reasons mentioned before have motivated several research efforts in order to produce algo-
rithms for generating these plan libraries automatically.Basically, the approaches to automatically
generate plan libraries, with a representation model similar to that mentioned before (i.e, without
learning or storing probability information, but only learning symbolic structures), are supervised or
not supervised. Supervised approaches require example labeling in order to work, while unsupervised
approaches can learn from unlabeled examples.

There are several works on learning plan libraries (specially supervised approaches), but we men-
tion two relevant ones here to exemplify. In [11], a technique is proposed that generates all possible
plans and goals in the domain, and filters out only those plansand goals that do not satisfy some im-
posed bias. That work uses a formal representation of plan actions, and goal predicates as a knowledge
support for generating all possible goals and plans in the domain. The problem with this approach
is that it requires the specification of biases for plans and goals, and the generated libraries are sen-
sitive to these biases. Besides, it does not generate hierarchical libraries, and generates all possible
plans and goals that satisfy the biases, instead of only considering those that the user actually pursues.
Bauer [1] proposes an alternative approach, where plan libraries are generated by abstracting the con-
crete plans that are observed. The problem with this work is that it requires labeled examples as input
to the learning algorithms. Moreover, it uses simple abstraction mechanisms, and these mechanisms
require an abstraction hierarchy of concepts in order to produce good results.

The works mentioned (as most of the works in this area), require labeled examples, which implies
an explicit supervised training, or uses biased-driven plan library generation. In our domain, we need
a more precise approach, in order to generate plan librariesthat contain plans that the user actually
pursues, and at the same time we need not require the user (a manufacturing engineer) to explicitly
train the system. In [12] and [13], we presented an algorithmthat learns hierarchical plan libraries
similar to that proposed in [10] (although some details of these libraries are not yet learned). Our ap-
proach is to use observed cases from a user working on a CAPP application (for example sequences
of manufacturing processes that form a process plan), to learn a hierarchical decomposition of plans,
similar to that shown in figure 3. Thus, this unsupervised algorithm learns “in background” as the
user works on real cases, rather than requiring labeled training sets. The mentioned algorithm also
supports the case of interleaved plans in the input cases, and provides corrective mechanisms for some
situations where the learning component produces a conceptthat includes two sub-concepts that are
not related to each other. As an example, the plan library shown in figure 3 was learned by our algo-
rithm, from the following two action sequences, each one representing a process plan:

AS0 = {conicTurning, profiling, twistDrilling, reaming}
AS1 = {turning, twistDrilling, reaming}

Basically, the algorithm identifies common processes in theobservations (also calledeventsor
tasksin the context of plan recognition), and it creates a hierarchical decomposition based on this
similarities. In the previous example, the processesTwistDrilling andReamingare shared by the two
processed process plans, and this yields the plan library shown in figure 3 (see [12] and [13] for more
details about the learning algorithm).

1524



Figure 4: An example of a manufacturing process representedin the ADL language

2.3 Integrating Plan Recognition and Planning in a Mixed-initiative Approach

Plan recognition is only a component within a mixed-initiative system. Mixed-initiative interactions
require that agents not only understand each other, but alsocontribute with the common plan they
share. Thus, for an intelligent assistant, the identification of user’s intentions and plans is useful to
guide an active participation in the solution generation procedure.

2.3.1 Managing Initiative

In order to give the agent initiative capabilities, we propose the use of a planning algorithm. Several
kind of planners could be used, such as reactive planners (e.g. PRS), or generative planners (e.g.
UC-POP, Graphplan, etc). PRS [3, 14, 18] is a reactive planner specially intended for real-time
environments. It uses a kind of plan library (KA library for some versions and ACT library for other
ones) that contains information regarding goals and plans for these goals, from which the planner
takes procedures to achieve its goals (posted by the user or generated by world events). The contents
of plan libraries used by PRS are similar to that included in some plan libraries for plan recognition.
However they are intended for generating (or selecting) plans to achieve goals, not for infer goals
from observed plans, and therefore some aspects are not taken into account (such as abstractions,
probabilities, etc).

Generative planning algorithms on the other hand, can take an initial state description, a goal to
achieve, and a set of operators (or actions), and synthesizea solution in the form of a plan that, when
executed in the initial state, can achieve the requested goals. Generative planners use primitive actions
as building blocks in order to produce a solution, rather than search for a known solution stored in the
plan library. Reactive planners (such as PRS) could be adapted in order to share a plan library with
the plan recognizer component. However this approach wouldonly allow the planner to complete
the inferred user’s plan, and not to synthesize other alternatives. Even when our approach does not
prescribe a specific planning algorithm, we propose the use of a generative planner since it is more
flexible for solutions generation, thus giving the agent better assistance capabilities.

2.3.2 Plan Recognizer-Planner Interface

One important aspect to be addressed is that of the integration of the plan recognizer and the planner.
The output of the plan recognizer must be useful for the planner, in order for it to produce a new solu-
tion. We propose the adoption of a commonly used language, such as ADL [15] (Actions Description
Language), for the description of actions for the planner, the plan recognizer and the plan library
learning components, though our approach can accommodate different planning languages (such as
STRIPS, ACT, etc). Figure 4 shows an example of a manufacturing process represented in ADL.

Thus, we propose that the plan recognition component, the plan library learner and the planning
system share a common set of information (primitive actions, their parameters, preconditions, effects,
and some descriptions of certain type of resources, such as raw materials, machines, etc). Using

1525



Figure 5: The proposed mixed-initiative CAPP architecture

this information as a shared resource, all components in theproposed mixed-initiative system can
communicate with each other.

Figure 5 shows the complete architecture. We now point out some important details of this ap-
proach. As proposed in [12], if a plan library learner knows not only the name (or some kind of name
or identification) of the primitive actions that could appear in observed cases, but also has detailed
knowledge of these actions, their parameters, etc (i.e, information that is already needed for a plan-
ning component, as mentioned before, and that was exemplified in figure 4), it can not only generate
a hierarchical decomposition of actions, but also it can learn more deep and useful information, such
as abstractions of actions and alternative decompositions. Abstractions of actions and alternative de-
compositions have not been successfully addressed in previous works on plan libraries learning for
plan recognition, and has almost not been even considered. Thus, the addition of knowledge repre-
sentation to the primitive actions that are observable can significantly increase the knowledge that can
be learned. Besides, this knowledge representation is already needed if we assume that a planner will
be part of the mixed-initiative system.

Another important consideration, is that not only the learning process is enriched with the addi-
tion of knowledge representation of actions. If primitive actions have a knowledge-rich description
(including preconditions, effects and parameters), the output of the plan recognizer can be improved,
in the sense that the plan recognizer is not limited to just inform which of a set of known goals the
user is trying to achieve, but it can generate an open logic representation of that goal.

The decomposition of a non-primitive action (also called a non-primitive event), is a set of simpler
actions that must be done in order to achieve it. Thus, the actions that constitutes the decomposition
of another one have an implicit conjunction relationship between each other. For example, the decom-
position ofHole-1 in figure 3, is the set of actions composed byTwistDrilling andReaming, so these
two actions have and implicit conjunction relationship in order to achieveHole-1 (i.e, both actions
must be done in order to considerHole-1as done). Now suppose that we have an open logic repre-
sentation of primitive actions (in this case,TwistDrilling andReaming), such that shown in figure 4.
In this situation, when a set of actions is observed during the recognition process, as well as during
the learning process, the system can compute the preconditions and effects of the non-primitive ac-
tions recognized, as the conjunction of the preconditions and effects of their individual components

1526



observed.
Formally, letAi be the i-th part of a non-primitive eventA, and letPi andEi be the precondi-

tions and effects ofAi. Let P andE be the preconditions and effects of the non-primitive eventA.
Then, since the componentsAi have a conjunction relationship withinA, P is the conjunction of the
preconditionsPi, and similarlyE is the conjunction of the effectsEi:

P ⇐⇒ P1 ∧ P2 ∧ · · · ∧ Pi

E ⇐⇒ E1 ∧ E2 ∧ · · · ∧ Ei

For example, the system can infer the preconditions and effects ofHole-1 (which is not directly
observable, and whose knowledge representation is not hand-coded), as the conjunction of the pre-
conditions and effects ofTwistDrilling andReaming(which are primitive actions whose knowledge
representation is assumed to be defined). For the plan library learner this means that, even when
it can not assign a significative name to the new abstract concepts it learns after each observation
is processed, it can know which preconditions and effects are associated with it. Besides, a similar
approach can be taken with primitive actions’ parameters (they can be propagated up in the tree hierar-
chy). During the recognition process, the plan recognizer can also take advantage of this information
in order to improve the recognition process.

Additionally, once the plan recognizer has identified the user goal (or possible goals), it can build
a logic representation of this goal (using the same idea mentioned before). The approach usually
taken for the intelligent assistant’s initiative, is to complete the rest of the plan the user is working
on using only the information of the plan library, since in most cases the events included in the plan
library do not have a knowledge-rich representation.

We propose to use generative capabilities for completing the plan and/or synthesizing other al-
ternatives, using the knowledge-rich representation of the user’s goals as input to the planner. A
planner could then generate alternative solutions (plans)that achieve the same goals as the plan (per-
haps partially) built by the user. The advantage of this approach is that the planner could generate
plans optimizing different criteria, and could suggest to the user some modifications (i.e, it can give
advice to the user), including giving him explanations about the planning decisions. Thus, the system
does not have to restrict its actions to what it knows about the possible plans in the plan library (i.e,
the solutions the user has already created in the past), but it has now the capability of building new
solutions based on the knowledge it can extract from the userbehavior.

As can be seen, the proposed mixed-initiative approach to CAPP can give the generative advan-
tages of a planning system (or a knowledge based system), with the possibility to allow the user to
contribute to the decision process with his experience.

3 EXECUTION MODEL

In this section we explain the execution model of the proposed approach. We assume that the basic
knowledge has already been represented in the system (primitive actions with parameters, precondi-
tions and effects, as shown in figure 4, and representation ofthe necessary resources, such as machine
families, raw materials, etc).

At the beginning, the system has an empty plan library, so it can not recognize users intentions
during the process plan elaboration. As the manufacturing engineer uses the system, the plan library
learning component updates the plan library with new information extracted from observed action se-
quences. The action sequences processed by the plan librarylearner corresponds to complete process
plans, so after the user completes each plan this component processes it.

1527



As the plan library evolves, the plan recognition module is able to infer user’s intentions more
and more precisely. When the plan recognizer identifies the goal or goals the user may be pursuing,
it can use this information to build a formal representationof these goals, based on the information
about preconditions and effects of the recognized goals andplans, as was exposed in section 2.3. The
plan recognizer can use a consistency based approach, as well as a probability based approach (our
proposal does not restrict the system to use one kind of plan recognizer or another).

Once the plan recognizer has identified user’s intentions and goals, and has built a knowledge
representation of these intentions, it can provide this information to an automated planner. Thus, the
planner can generate alternative solutions to assist the user in diverse forms. Is important to note that
the plan recognition process as well as the planning process, can be performed even when the user has
not finished the creation of the plan. Even in the situation where the process plan the user is working
on is a completely new one, the plan recognizer can identify sub-plans already known and assist the
user on them.

The agent can give assistance to the user in diverse forms. Once the plan recognizer has identified
the user’s intentions, the planner can generate alternative solutions and use them as suggestions to the
user. Another useful assistance is the execution of tasks onthe user’s behalf, for example automati-
cally completing the process plan the engineer is working on. This particular assistance is very useful,
as it allows the user to actively participate during the planning process while can significantly reduce
the workload of this task (this situation could be seen as some sort of mixed-initiative planning). Fi-
nally, the system can suggest the user specific modificationsfor improving the already created process
plan portions, or to correct potential errors. The type of assistance each user needs or prefers on each
situation is beyond the scope of this research (see for example [16]).

Consider an example. At the beginning, the system’s plan library is empty. After the user creates
the following simple process plans:

AS0 = {conicTurning, profiling, twistDrilling, reaming}
AS1 = {turning, twistDrilling, reaming}

the plan library state is that depicted in figure 3. When the user works on a new process plan,
the plan recognition component will try to identify his goals, and if it can, it will build an open
representation of that goal (i.e, instead of restricting the recognition’s output to, for example,Hole-1,
the plan recognizer can output something likeMakeHole(H) ∧ FinishHole(H, F inishType1)).
With this knowledge, a planner can synthesize other processplans that achieve the same goals, and
can propose this alternatives to the user. Alternatively, the processes already included by the user in
the process plan could be used as restrictions during the planning process.

The execution of the learning algorithm is performed after the process plan is completed, so the
learning component processes only complete action sequences. The plan recognition and the planning
components instead, are executed “in background” during the process plan creation. Thus, the system
can infer user’s intentions, and proactively act in order toreduce his workload and errors. At the same
time, the system adjust its own knowledge during execution,so new plans are learned as the user
starts considering them, thus eliminating the restrictionof having a complete plan library before the
use of the system.

4 RELATED WORK

Some existing works in CAPP address some of the problems mentioned in section 1, by proposing in-
teractive methods supported by machine learning techniques in order to achieve interactive intelligent

1528



assistance, reducing the need of knowledge representationexperts (see [5], [6] and [7]). One of the
contributions of these papers is the identification of problems when implementing CAPP systems that
over or under-automate the process planning activities. They also propose the use of CAPP systems
as communication tools between experts that must work together (for example, experts on machines
and machining processes, and experts on process planning),or to help inexperienced manufacturing
engineers. In the mentioned works, the focus is set on the analysis of the problems that arises when
human’s intentions need to be stored on an internal representation. The authors point out that one
of the biggest problems in implementing successfully CAPP systems is the complexity of the com-
munication between the users and the problem solving procedures. They also allow many types of
resources to be saved in the knowledge base (multimedia resources, plain text, formally represented
knowledge, etc), so even when these works propose novel ideas from the conceptual point of view,
the specific proposals lacks of a solid intelligent support.The above mentioned works are focused
on the architectural and conceptual ideas, and not on algorithms and data structures, so they does not
include information for implementation.

In [2] a multi-agent architecture is proposed for CAPP systems. As in those already mentioned,
the focus of this work is on the architecture, and not on specific techniques and algorithms. An
interesting contribution is a comparison between the amount of automation level achieved so far in
CAD/CAM tools and the automation of CAPP applications.

In [17], an expert system approach to generative CAPP is proposed. The authors propose a system
where manufacturing processes, machines and tools are formally represented, as well as a set of rules
for generating process plans based on an input feature model. This approach has some drawbacks,
such as the big amount of knowledge that must be represented (it does not use a planning approach
to generate process plans, but a rule-based approach), it lacks of learning and it requires a complete
feature model of the parts to be manufactured.

5 CONCLUSIONS AND FUTURE WORK

CAPP is a knowledge rich domain in which intelligent assistance would be very useful. A description
of the known problems of current CAPP systems was exposed in this paper. We also proposed a
mixed-initiative approach to CAPP domains, that aims at solve these problems.

At this moment we have an implementation of the learning algorithms we proposed in [12] and
[13]. We are currently doing some work in order to test them with real data. In order to achieve
the mixed-initiative system we proposed here, future work must not only validate the mentioned
learning algorithms, but also extend them in order to learn complete plan libraries for plan recognition.
Besides, special plan recognition and planning algorithmsmust be developed and integrated with the
plan library learner in order to test the complete system in areal CAPP application.

REFERENCES

[1] M. Bauer. Towards the Automatic acquisition of Plan Libraries. In Proc. of the 13th European
Conference on Artificial Intelligence. 1998.

[2] P. Dépincé, H. Amara and J-Y. Hascoët. Multi-Agent environment for process planning elabo-
ration. In Proc. 8th International Conference on Emerging Technologies and Factory Automation.
2001.

1529



[3] M.P. Georgeff, F.F. Ingrand. Decision-Making in an embedded reasoning system. 11th Interna-
tional Joint Conference On Artificial Intelligence. 1989.

[4] M.A. Hearst. Trends & Controversies: Mixed-initiativeinteraction. IEEE Intelligent Systems. Vol
14, N 5:14-23. 1999.

[5] L. Horváth and I. J. Rudas. Human Computer Interactionsat Decisión Making and Knowledge
Acquisition in Computer Aided Process Planning Systems. InProc. International Conference on
Systems, Man and Cybernetics. 1994.

[6] L. Horváth and I. J. Rudas. A Machine Learning Based Approach to Manufacturing Process
Planning. In Proc. International Symposium on Industrial Electronics, ISIE’93. 1993.

[7] L. Horváth and I. J. Rudas. Modeling Human-Computer Interactions in Collaborative Design and
Planning. International Conference on Systems, Man and Cybernetics. ’Intelligent Systems for the
21st century’. 1995.

[8] S. Kalpakjian and S. R. Schmid. Manufacturing Engineering and Technology. Addison-Wesley.
4th ed. 2002

[9] H. Kautz. A Formal Theory of Plan Recognition and its Implementation. In Reasoning About
Plans, chapter 2, Morgan Kaufmann. 1991.

[10] H. Kautz. A Formal Theory of Plan Recognition. PhD Thesis. University of Rochester. 1987.

[11] N. Lesh. Scalable and Adaptive Goal Recognition. PhD thesis. University of Washington. 1998.

[12] M. Marchetta and R. Forradellas. A New Model for Automatic Generation of Plan Libraries
for Plan Recognition. Proc. Third International Conference On Production Research Americas’
Region (ICPR-AM06). 2006.

[13] M. Marchetta and R. Forradellas. Supporting Interleaved Plans in Learning Hierarchical Plan
Libraries for Plan Recognition. Proc. 8th Argentine Symposium on Artificial Intelligence. 2006.

[14] K.L. Myers. User Guide for the Procedural Reasoning System. Technical Report, Artificial In-
telligence Center, SRI International. 1997.

[15] E.P.D. Pednault. Formulating multi-agent, dynamic-world problems in the classical planning
framework. En Proc. Workshop on Reasoning About Actions andPlans. 1986.

[16] S.N. Schiaffino. Personalization of User Interface Agent Interaction. PhD Thesis. Universidad
Nacional del Centro de la Pcia. de Bs. As. 2004.

[17] D. Sormaz and B. Khoshnevis. Knowledge Representationfor Automated Process Planning. In
Proc. International Symposium on Assembly and Task Planning. 1995.

[18] D. Wilkins, K.L. Myers, J.D. Lowrance, L. Wesley. Planning and Reacting in Uncertain and
Dynamic Environments. Journal of Experimental and Theoretical Artificial Intelligence. volumne
6, 1994.

1530


