A Mixed-Initiative Approach to Computer Aided Process Planning

Mart in G. Marchetta *
Facultad de Ingenieria, Universidad Nacional de Cuyo
Mendoza, Centro Universitario - 5500, Argentina
mmarchetta@fing.uncu.edu.ar

and

Raymundo Q. Forradellas
Facultad de Ingenieria, Universidad Nacional de Cuyo
Mendoza, Centro Universitario - 5500, Argentina
kike@uncu.edu.ar

Abstract

Several approaches have been proposed in order to devidtiigant applications on Computer Aided Process

Planning (CAPP) domain. These approaches range from isistesigns storage for later recovery, to genera-

tive synthesis of process plans. Although these approguiesent advantages over traditional methods, they
have several drawbacks derived specially from the underoardautomation of the decision processes. In

this paper a mixed-initiative model for CAPP systems is pegal, that integrates plan recognition of user’s

intentions, with planning techniques in the context offaitil intelligence, in order to synthesize new designs

that fulfill process planner’s inferred intentions, thugnmoving the usability and usefulness of such intelligent

assistants.

Keywords: Computer Aided Process Planning, Mixed-Initiative SystBhanning, Intelligent Agent

1 INTRODUCTION

In the manufacturing context, process planning is the defmof manufacturing and assembly oper-
ations needed to produce the different parts, along witirthaehines, tools and fixturing required for
these tasks [8]. Parts need to go through a set of manufagtprocesses in order to be produced.
This set of manufacturing processes is a process plan. Eaohfacturing process within a process
plan can be performed by machines of some type or family, ésalraquires certain type of tools.
Besides, each part has its own Bill Of Materials (BOM). TheNBOf a part to be manufactured
is the set of raw materials and intermediate products, rebgeeach manufacturing process in the
corresponding process plan in order to produce the part.

Manual process planning is an intense and time consumimgtactBesides, the quality of its
results is very dependant on process planner’s experidimeecharacteristics above mentioned yield
the need of computer support to process planning activifiéere are basically two approaches to
CAPP, although there exist others that are special cashesd t The first one is calledriant CAPP
This approach makes use of the concept of Group Technolo@y, (@ which parts with similar

*CONICET PhD fellow

1519

features are grouped together. Then, a standard processs meeated for each group and is stored
as a process plan template. When a manufacturing engineesaiing a process plan for a new patrt,
he can retrieve the design template of the part’s group, dagtahis standard process plan to the
specific case he is working on.

The second approach for incorporating computer assistanu@cess planning, is callegner-
ative CAPP This approach uses knowledge based systems, since tisetpdn® manufactured are
described as a feature model. A feature model is a formaligéisn of a part, that contains features
and values for these features. Having an “open” descriifanpart to be manufactured, the man-
ufacturing processes, the capabilities of machines and tow a rule set indicating which process
should be used to produce each feature value, the autorgatitesis of new design processes can be
achieved.

The two mentioned approaches to CAPP have some drawbackbhe@ne hand, variant CAPP
does not assist process planners while they adapt the paly farocess plan template, to the case of
the specific part they are working on. Besides, the manuiactengineer must be conscious of the
existence of a process plan template for that particuldisgamily, and needs to know which is the
corresponding family in order to retrieve the correct pescglan template.

Another important consideration is that the number of déife parts the enterprise manufactures
could make this approach unfeasible. Consider the caseeviiheenterprise manufactures thousands
of different parts for its products. In this scenario, thare two alternatives: many families, each
one grouping a reasonable number of parts, or few familiés abig number of parts each one. The
former case has the advantage that each template needddesstaon to special cases, since it corre-
sponds to a small group of very similar parts. However, tleatification of the correct part family is
very complicated, tedious and error prone, since there thesisk of a bad template selection. The
bad selection of the design template to use could make theattan process more difficult and time
consuming. On the other hand, if there are few part famities retrieval process could be easy and
fast, but the adaptation process would be longer and mdreutithan the previous case.

Finally, when parts that do not fit on previously known faeslimust be produced, no previous
knowledge could be automatically exploited, since as wed bafore, there is no support for the
adaptation process.

Generative CAPP, on the other hand, requires a tight iniegrevith CAD tools, since the feature
model of a part should be the output of the CAD system (or thpudwf some component that con-
verts the CAD output into a feature model). Besides, theaetittn of complete feature models from
CAD data is very difficult (in most cases, either feature meae process plans must be completed
by hand).

Another problem with this approach is that a great amountnowkedge must be represented
in a formal way, since not only knowledge of manufacturinggasses, machines and tools (which
constitutes the basic enterprise’s capabilities) mustelpeessented formally, but also a set of rules
indicating which process, machine and tool should be uspdoduce some value for a feature. Most
of the systems based on generative CAPP follows expertragst@proach, which not only requires
the intervention of a domain expert, but also of a knowledgeasentation expert.

Finally, the manufacturing engineer’s experience aboatgss planning could not be interac-
tively incorporated to each planning process, since in iggive approaches the complete process is
automated, from the feature model to the complete process pb the process planner can modify
or adapt the process plan only when it has been completethasized. Each modification of the
decision rules that guide the process plan synthesis is &l&dge representation task. In [5], this
problem is pointed out by saying that, in general, if the uwdarne of these systems can answer the
questions “what” and “how”, probably he can not answer thestjon “why”.

1520

In this paper we propose a mixed-initiative approach thatlmoes the exploitation of knowledge
acquired from previous designs, the recognition of martufatg engineering’s design intentions, and
a generative approach to generate new designs that fudgktinferred intentions, in an interactive
fashion, where both the user and the agent collaboratesrdgally in order to produce a solution
to the problem. The rest of this paper is organized as follolwghe next section, we present our
mixed-initiative approach to CAPP, along with a brief ovew of some plan recognition concepts.
Section 3 presents the proposed execution model. In settimsummarize some related works on
CAPP. Finally, section 5 gives some conclusions and futumew

2 MIXED-INITIATIVE COMPUTER AIDED PROCESS PLANNING

As mentioned in section 1, CAPP includes tasks that are toneuming, very intensive and where
the results are sensitive to the process planner exper{emea using variant CAPP). On the other
hand, its complete automation is difficult, requires mucbhvwdedge representation, and does not al-
low the incorporation of the manufacturing engineer’s egree and preferences during the process
planning. In this context, it would be useful to have an iigeht agent that contributes to the process
planning task with the advantages of automatic planningider to reduce the workload of manu-
facturing engineers), but which allows the process platmgrcorporate his experience, preferences,
restrictions and knowledge about certain aspects of theufaeturing processes that are not taken
into account by the agent.

Thus, in this paper we propose a mixed-initiative approdet tombines the exploitation of
knowledge acquired from previous designs, the identificatf manufacturing engineer’s design
intentions, and a generative approach to generate newdetsigt fulfill these inferred intentions, in
an interactive fashion.

2.1 Mixed-initiative Systems

Mixed-initiative systems are those where each partiaigegdigent contributes with its best capabilities
during the interaction, in order to find a solution. Thus, piheblem solving and tasks execution on
this kind of systems is seen as a collaborative process,endah agent can initiate an interaction,
can propose solutions or give advise to the other, in caniviils single-initiative systems in which
the agent that has the initiative in the interaction is pyesly specified [4].

Mixed-initiative systems, where both human and computentgparticipate in the interaction,
have the advantage that they do not automate completelyetision processes (since the human
user is actively involved in the tasks execution and desositaking), and at the same time they
provide automated assistance in order to achieve userfs goa better way. Thus, mixed-initiative
interactions provides a mean for tackling the problems rmoeatl in section 1, specially the problem
of reducing the user’s workload on a complex knowledge-tiaimain as CAPP, and at the same time
allow him to introduce his experience interactively durthg decision processes. Figure 1 shows the
basic architecture of a mixed-initiative system.

In this paper, we present an approach where mixed-inigasivsupported by a plan recognition
component, integrated with an automated planner. The gezpapproach learns and updates a plan
library from previous designs created by the human prockessprs, uses plan recognition in order
to infer his intentions and integrates these techniques aitomatic planning for synthesizing new
designs in accordance with the engineer’s intentions.

1521

INTELLIGENT Communication o HUMAMN
AGENT USER

4
k.

Interactions Interactions

APPLICATION SOFTWARE

Figure 1: A Mixed-initiative system’s basic architecture

2.2 Plan Recognition and Mixed-initiative Systems

Mixed-initiative systems require each participant to ustind each other’s possible goals, plans and
capabilities, in order to make better contributions. Irstbontext, plan recognition techniques are
useful because they provide an intelligent assistant witlean for inferring the user’s intentions, by
observing its behavior.

2.2.1 Plan Recognition

Plan recognition is the problem of inferring an observedch#iggoals and intentions, sufficient to ex-
plain his observed behavior. Plan recognition technigaes been applied in many domains (natural
language disambiguation, intelligent interfaces, myjitsimulations, etc). Our interest in these tech-
niques is because they are useful whenever a human intesigicen intelligent agent. Independently
of the specific domain, if an agent is going to assist a usersitasks, it must understand what the
user is doing or trying to do. The communication between genaand the user can be done in sev-
eral ways. The user could explicitly ask the agent to do sbimegt or they could communicate with
each other implicitly, using some kind of shared user iaf Plan recognition techniques allow an
assisting agent to automatically infer the user’s intargjoeducing the need of explicit communica-
tion of his intentions. Figure 2 shows a similar architeetiarthat presented in figure 1, but including
a plan recognition component in the intelligent agent.

Most of the existing plan recognition techniques rely on angibrary in order to infer user’s
intentions. These plan libraries contain information dlibe objectives the user may be pursuing,
the tasks needed to achieve these objectives, constrainésks and parameters (such as orderings,
causal links, parameter values propagation, etc), andigppgsobabilistic information. During the
recognition process, primitive actions are observed imtiez’s behavior, and using these observations

INTELLIGENT AGENT

Intentions HLUMAN USER
¥ Initiative Manager

Plan
recognizer

¥
Observed Suggestions, Interacti
actions actions, etc nteractions

APPLICATION SOFTWARE

Figure 2: Architecture of a mixed-initiative system withlamprecognition component

1522

End Event

Piece-1' Piece-2’

P U

Turning Hole-1" ConicTuming Hole-1" Profiling

N N

TwistDriling Reaming TwistDriling Reaming

Figure 3: Architecture of a mixed-initiative system withlaprecognition component

and the information in the plan library, the plan recognizam infer the plan (or plans) the user may
be executing.

Basically, there exist two kind of approaches to plan redagn consistency based and probabil-
ity based. Consistency based approaches try to narrow gsigb® plans and goals the user may be
pursuing, by isolating those that are consistent with threeoled user’s actions. Probability based ap-
proaches, on the other hand, use an explicit representdtpobabilities in order to determine which
are the most plausible ones. Once the user’s intentionsbiesm identified, the intelligent agent can
assist the user in several ways, such as giving him advisectiteg errors or executing actions on
his behalf. There are several algorithms and formalismberliterature that uses consistency based
and/or probability based approaches. A complete desoniti these algorithms and formal models
is beyond the scope of this paper (for more details on a spdoifinal model of consistency based
plan recognition and plan library representations, searél][10]).

As an example, figure 3 depicts a simplified plan library fae @APP domain, based on the
formal model proposed in [10]. Under this representati@das represent events (machining pro-
cesses in our domain). Thick gray arrows represents abistiag“is a” relationships), and thin black
ones represent decompositions (“part of” relationshigspnsider the case where a user includes
TwistDrilling andReamingmachining processes into the process plan he is building fpoece to be
manufactured. In a consistency based approach, a plannigeogould narrow the possible user’s
intentions identifying the minimum set of plans that aresistent with the observations. In this ex-
ample, the plan recognizer can infer that the user is innythe machining process of makihigle-1
as part of his plan, and that he is creating a process plaRiéme-1or Piece-2 If the user includes
the ConicTurningprocess later, the recognizer can infer that he is creatiplgrafor Piece-2 even
whenProfiling has not been yet observed.

2.2.2 Plan Libraries Learning

Until some years ago, plan libraries for plan recognitiomraveompletely hand-coded. Creating
plan libraries manually is a complex and difficult task. lquées not only a domain expert (in
our case, a CAPP expert), but also a knowledge represant@atjfwert. As mentioned in [11], a plan
library has an external representation (related to cone¢pspects), and and internal one (concerning
implementation details). There are several external plamarly representation schemes. Here we
adopt a formal model similar to the commonly used one prapas§gLO].

Under the adopted representation, plan libraries contdiiel@rchical tree of goals and plans,
that includes not only the primitive observable actiongi(dreir corresponding data), but also every
possible goal and plan the user may be trying to execute. Abeween in later sections, in our CAPP

1523

domain the primitive actions and their associated dataterdasic capabilities of a manufacturing
company, so we can expect that these actions do not changieguently. However, there are many
combinations of these primitive actions, that represeiftsrdnt manufacturing procedures. So the
hand-coding of all allowed possibilities is very expengivéme and is very error prone. Moreover, if
the combinations of manufacturing processes change awer this task must be done several times.

The reasons mentioned before have motivated several cesefforts in order to produce algo-
rithms for generating these plan libraries automaticabgsically, the approaches to automatically
generate plan libraries, with a representation model amd that mentioned before (i.e, without
learning or storing probability information, but only le&mg symbolic structures), are supervised or
not supervised. Supervised approaches require exampelaigin order to work, while unsupervised
approaches can learn from unlabeled examples.

There are several works on learning plan libraries (splg@apervised approaches), but we men-
tion two relevant ones here to exemplify. In [11], a techeidggiproposed that generates all possible
plans and goals in the domain, and filters out only those @adsyoals that do not satisfy some im-
posed bias. That work uses a formal representation of ptaonacand goal predicates as a knowledge
support for generating all possible goals and plans in theaile. The problem with this approach
is that it requires the specification of biases for plans avalgy and the generated libraries are sen-
sitive to these biases. Besides, it does not generate tiéeal libraries, and generates all possible
plans and goals that satisfy the biases, instead of onlyidemsg those that the user actually pursues.
Bauer [1] proposes an alternative approach, where plaarids are generated by abstracting the con-
crete plans that are observed. The problem with this wotkasit requires labeled examples as input
to the learning algorithms. Moreover, it uses simple aloiva mechanisms, and these mechanisms
require an abstraction hierarchy of concepts in order tdyore good results.

The works mentioned (as most of the works in this area), redabeled examples, which implies
an explicit supervised training, or uses biased-driven plaary generation. In our domain, we need
a more precise approach, in order to generate plan librdregscontain plans that the user actually
pursues, and at the same time we need not require the usen(datiaring engineer) to explicitly
train the system. In [12] and [13], we presented an algorithat learns hierarchical plan libraries
similar to that proposed in [10] (although some details ekthlibraries are not yet learned). Our ap-
proach is to use observed cases from a user working on a CApeamn (for example sequences
of manufacturing processes that form a process plan), to kehierarchical decomposition of plans,
similar to that shown in figure 3. Thus, this unsupervisea@llgm learns “in background” as the
user works on real cases, rather than requiring labeledingisets. The mentioned algorithm also
supports the case of interleaved plans in the input casdqramides corrective mechanisms for some
situations where the learning component produces a cotitafpincludes two sub-concepts that are
not related to each other. As an example, the plan librarwsho figure 3 was learned by our algo-
rithm, from the following two action sequences, each oneaggnting a process plan:

ASy = {conicTurning, profiling, twist Drilling, reaming}
AS; = {turning, twist Drilling, reaming}

Basically, the algorithm identifies common processes indibgervations (also calleglventsor
tasksin the context of plan recognition), and it creates a hidriaal decomposition based on this
similarities. In the previous example, the procesBewstDrilling andReamingare shared by the two
processed process plans, and this yields the plan libramyrsin figure 3 (see [12] and [13] for more
details about the learning algorithm).

1524

Action(GrooveMilling(p: Part, m: MachineFamily, t: ToolFamily),
Precond: MachineType(m, Miller) *
ToolType(t, GrooveMillingTool) *
~Grooved(p),
Eff: Grooved(p))

Figure 4: An example of a manufacturing process representin@ ADL language

2.3 Integrating Plan Recognition and Planning in a Mixed-intiative Approach

Plan recognition is only a component within a mixed-initiatsystem. Mixed-initiative interactions

require that agents not only understand each other, butcalswibute with the common plan they
share. Thus, for an intelligent assistant, the identificadf user’s intentions and plans is useful to
guide an active participation in the solution generaticycpdure.

2.3.1 Managing Initiative

In order to give the agent initiative capabilities, we prepthe use of a planning algorithm. Several
kind of planners could be used, such as reactive plannegs RRS), or generative planners (e.g.
UC-POP, Graphplan, etc). PRS [3, 14, 18] is a reactive plaspecially intended for real-time
environments. It uses a kind of plan library (KA library farree versions and ACT library for other
ones) that contains information regarding goals and planshiese goals, from which the planner
takes procedures to achieve its goals (posted by the usenerated by world events). The contents
of plan libraries used by PRS are similar to that includedims plan libraries for plan recognition.
However they are intended for generating (or selectinghgta achieve goals, not for infer goals
from observed plans, and therefore some aspects are naot itstkeaccount (such as abstractions,
probabilities, etc).

Generative planning algorithms on the other hand, can takeital state description, a goal to
achieve, and a set of operators (or actions), and synthasiakition in the form of a plan that, when
executed in the initial state, can achieve the requestdd.g@anerative planners use primitive actions
as building blocks in order to produce a solution, rathentearch for a known solution stored in the
plan library. Reactive planners (such as PRS) could be adaptorder to share a plan library with
the plan recognizer component. However this approach woulyg allow the planner to complete
the inferred user’s plan, and not to synthesize other atees. Even when our approach does not
prescribe a specific planning algorithm, we propose the tisegenerative planner since it is more
flexible for solutions generation, thus giving the agentdyedssistance capabilities.

2.3.2 Plan Recognizer-Planner Interface

One important aspect to be addressed is that of the integratithe plan recognizer and the planner.
The output of the plan recognizer must be useful for the marin order for it to produce a new solu-
tion. We propose the adoption of a commonly used languagt,asADL [15] (Actions Description
Language), for the description of actions for the plannee, plan recognizer and the plan library
learning components, though our approach can accommotffsesdt planning languages (such as
STRIPS, ACT, etc). Figure 4 shows an example of a manufagjymocess represented in ADL.
Thus, we propose that the plan recognition component, @e lgrary learner and the planning
system share a common set of information (primitive actitmer parameters, preconditions, effects,
and some descriptions of certain type of resources, suchvasnaterials, machines, etc). Using

1525

Plan Library Knowledge Base

New plans (new
designs and
dependencies)

Manufacturing
nformation

Plan library Plan Inferred Planner
earner recognizer process
design
~ .
Complete Partial process Complete design,
detection

CAPP APPLICATION SOFTWARE

:

MANUFACTURING ENGINEER

Figure 5: The proposed mixed-initiative CAPP architecture

this information as a shared resource, all components iptbposed mixed-initiative system can
communicate with each other.

Figure 5 shows the complete architecture. We now point ootesionportant details of this ap-
proach. As proposed in [12], if a plan library learner knowsanly the name (or some kind of name
or identification) of the primitive actions that could app&aobserved cases, but also has detailed
knowledge of these actions, their parameters, etc (i.ernmédtion that is already needed for a plan-
ning component, as mentioned before, and that was exendghfiggure 4), it can not only generate
a hierarchical decomposition of actions, but also it caml@aore deep and useful information, such
as abstractions of actions and alternative decompositiinstractions of actions and alternative de-
compositions have not been successfully addressed ingoieworks on plan libraries learning for
plan recognition, and has almost not been even considetaals, The addition of knowledge repre-
sentation to the primitive actions that are observable manfeantly increase the knowledge that can
be learned. Besides, this knowledge representation isdineeeded if we assume that a planner will
be part of the mixed-initiative system.

Another important consideration, is that not only the l@agrprocess is enriched with the addi-
tion of knowledge representation of actions. If primitiveians have a knowledge-rich description
(including preconditions, effects and parameters), thputwof the plan recognizer can be improved,
in the sense that the plan recognizer is not limited to jusirm which of a set of known goals the
user is trying to achieve, but it can generate an open logiesentation of that goal.

The decomposition of a non-primitive action (also calleda-primitive event), is a set of simpler
actions that must be done in order to achieve it. Thus, therecthat constitutes the decomposition
of another one have an implicit conjunction relationshimsen each other. For example, the decom-
position ofHole-1in figure 3, is the set of actions composedTyistDrilling andReamingso these
two actions have and implicit conjunction relationship nd@r to achieveHole-1 (i.e, both actions
must be done in order to considdple-1as done). Now suppose that we have an open logic repre-
sentation of primitive actions (in this caskyistDrilling andReaming, such that shown in figure 4.
In this situation, when a set of actions is observed durirgrétognition process, as well as during
the learning process, the system can compute the precamslind effects of the non-primitive ac-
tions recognized, as the conjunction of the preconditionseffects of their individual components

1526

observed.

Formally, let A; be the i-th part of a non-primitive evert, and letP;, and E; be the precondi-
tions and effects ofl;. Let P and E be the preconditions and effects of the non-primitive evént
Then, since the components have a conjunction relationship withi, P is the conjunction of the
preconditionsP;, and similarlyE is the conjunction of the effects;:

PP ANBA---NP
EF<~ E;NEsN---N\E;

For example, the system can infer the preconditions andtsftd Hole-1 (which is not directly
observable, and whose knowledge representation is notd¢w@ohetl), as the conjunction of the pre-
conditions and effects dfwistDrilling andReaming(which are primitive actions whose knowledge
representation is assumed to be defined). For the planyiltearner this means that, even when
it can not assign a significative name to the new abstractepiadt learns after each observation
is processed, it can know which preconditions and effe@saasociated with it. Besides, a similar
approach can be taken with primitive actions’ parametées/(tan be propagated up in the tree hierar-
chy). During the recognition process, the plan recogniaeraiso take advantage of this information
in order to improve the recognition process.

Additionally, once the plan recognizer has identified thergmpal (or possible goals), it can build
a logic representation of this goal (using the same idea ioveed before). The approach usually
taken for the intelligent assistant’s initiative, is to qolete the rest of the plan the user is working
on using only the information of the plan library, since inshoases the events included in the plan
library do not have a knowledge-rich representation.

We propose to use generative capabilities for completiegothn and/or synthesizing other al-
ternatives, using the knowledge-rich representation efuber’'s goals as input to the planner. A
planner could then generate alternative solutions (plirag)achieve the same goals as the plan (per
haps partially) built by the user. The advantage of this epgin is that the planner could generate
plans optimizing different criteria, and could suggestite tiser some modifications (i.e, it can give
advice to the user), including giving him explanations aliba planning decisions. Thus, the system
does not have to restrict its actions to what it knows abaeipibssible plans in the plan library (i.e,
the solutions the user has already created in the past)t bas inow the capability of building new
solutions based on the knowledge it can extract from thehefeavior.

As can be seen, the proposed mixed-initiative approach tBRC&an give the generative advan-
tages of a planning system (or a knowledge based systen) th@tpossibility to allow the user to
contribute to the decision process with his experience.

3 EXECUTION MODEL

In this section we explain the execution model of the progaggroach. We assume that the basic
knowledge has already been represented in the system fjparactions with parameters, precondi-
tions and effects, as shown in figure 4, and representatitireafecessary resources, such as machine
families, raw materials, etc).

At the beginning, the system has an empty plan library, santmot recognize users intentions
during the process plan elaboration. As the manufactumgineer uses the system, the plan library
learning component updates the plan library with new infmtron extracted from observed action se-
guences. The action sequences processed by the plan liaangr corresponds to complete process
plans, so after the user completes each plan this comporerggses it.

1527

As the plan library evolves, the plan recognition modulebikedo infer user’s intentions more
and more precisely. When the plan recognizer identifies tta¢ @ goals the user may be pursuing,
it can use this information to build a formal representatbthese goals, based on the information
about preconditions and effects of the recognized goalpkms, as was exposed in section 2.3. The
plan recognizer can use a consistency based approach, lassveeprobability based approach (our
proposal does not restrict the system to use one kind of plaognizer or another).

Once the plan recognizer has identified user’s intentiomsgaals, and has built a knowledge
representation of these intentions, it can provide thisrmition to an automated planner. Thus, the
planner can generate alternative solutions to assist #irdmugiverse forms. Is important to note that
the plan recognition process as well as the planning prpcasde performed even when the user has
not finished the creation of the plan. Even in the situatioengtthe process plan the user is working
on is a completely new one, the plan recognizer can identifiydans already known and assist the
user on them.

The agent can give assistance to the user in diverse fornte Ba plan recognizer has identified
the user’s intentions, the planner can generate altemstilutions and use them as suggestions to the
user. Another useful assistance is the execution of taskBeonser’s behalf, for example automati-
cally completing the process plan the engineer is workinglts particular assistance is very useful,
as it allows the user to actively participate during the plag process while can significantly reduce
the workload of this task (this situation could be seen asessont of mixed-initiative planning). Fi-
nally, the system can suggest the user specific modificatommproving the already created process
plan portions, or to correct potential errors. The type sfsiance each user needs or prefers on each
situation is beyond the scope of this research (see for ekegii@y).

Consider an example. At the beginning, the system’s plaaryhs empty. After the user creates
the following simple process plans:

ASy = {conicTurning, profiling, twist Drilling, reaming }
AS; = {turning, twist Drilling, reaming}

the plan library state is that depicted in figure 3. When ther wgorks on a new process plan,
the plan recognition component will try to identify his geabnd if it can, it will build an open
representation of that goal (i.e, instead of restrictirggrtcognition’s output to, for exampldple-1,
the plan recognizer can output something likeike Hole(H) N FinishHole(H, FinishTypel)).
With this knowledge, a planner can synthesize other progkess that achieve the same goals, and
can propose this alternatives to the user. Alternatively,grocesses already included by the user in
the process plan could be used as restrictions during tin@ipig process.

The execution of the learning algorithm is performed after process plan is completed, so the
learning component processes only complete action segaemhbe plan recognition and the planning
components instead, are executed “in background” durie@tbcess plan creation. Thus, the system
can infer user’s intentions, and proactively act in ordeettuce his workload and errors. At the same
time, the system adjust its own knowledge during executsonnew plans are learned as the user
starts considering them, thus eliminating the restricibhaving a complete plan library before the
use of the system.

4 RELATED WORK

Some existing works in CAPP address some of the problemsanedtin section 1, by proposing in-
teractive methods supported by machine learning techsiquarder to achieve interactive intelligent

1528

assistance, reducing the need of knowledge representaterts (see [5], [6] and [7]). One of the
contributions of these papers is the identification of peatd when implementing CAPP systems that
over or under-automate the process planning activitiegy Hiso propose the use of CAPP systems
as communication tools between experts that must work hegétor example, experts on machines
and machining processes, and experts on process planairig)help inexperienced manufacturing
engineers. In the mentioned works, the focus is set on thgsasaf the problems that arises when
human’s intentions need to be stored on an internal repi@sem The authors point out that one
of the biggest problems in implementing successfully CApP$tesns is the complexity of the com-
munication between the users and the problem solving puwesd They also allow many types of
resources to be saved in the knowledge base (multimedianees plain text, formally represented
knowledge, etc), so even when these works propose noved fdaa the conceptual point of view,
the specific proposals lacks of a solid intelligent suppdtie above mentioned works are focused
on the architectural and conceptual ideas, and not on #igasiand data structures, so they does not
include information for implementation.

In [2] a multi-agent architecture is proposed for CAPP systeAs in those already mentioned,
the focus of this work is on the architecture, and not on dget@chniques and algorithms. An
interesting contribution is a comparison between the armmotiautomation level achieved so far in
CAD/CAM tools and the automation of CAPP applications.

In [17], an expert system approach to generative CAPP isgsexh The authors propose a system
where manufacturing processes, machines and tools aralfgmapresented, as well as a set of rules
for generating process plans based on an input feature mdted approach has some drawbacks,
such as the big amount of knowledge that must be represehtbaeé not use a planning approach
to generate process plans, but a rule-based approachjkst ¢é learning and it requires a complete
feature model of the parts to be manufactured.

5 CONCLUSIONS AND FUTURE WORK

CAPP is a knowledge rich domain in which intelligent assiseawould be very useful. A description
of the known problems of current CAPP systems was exposedismpaper. We also proposed a
mixed-initiative approach to CAPP domains, that aims atestiiese problems.

At this moment we have an implementation of the learning rdlgms we proposed in [12] and
[13]. We are currently doing some work in order to test therthweal data. In order to achieve
the mixed-initiative system we proposed here, future worstmot only validate the mentioned
learning algorithms, but also extend them in order to leamplete plan libraries for plan recognition.
Besides, special plan recognition and planning algorithmast be developed and integrated with the
plan library learner in order to test the complete systemresh CAPP application.

REFERENCES

[1] M. Bauer. Towards the Automatic acquisition of Plan labes. In Proc. of the 13th European
Conference on Atrtificial Intelligence. 1998.

[2] P. Dépincé, H. Amara and J-Y. Hascoét. Multi-Agenvieonment for process planning elabo-
ration. In Proc. 8th International Conference on Emergiaghihologies and Factory Automation.
2001.

1529

[3] M.P. Georgeff, F.F. Ingrand. Decision-Making in an emted reasoning system. 11th Interna-
tional Joint Conference On Artificial Intelligence. 1989.

[4] M.A. Hearst. Trends & Controversies: Mixed-initiatiigeraction. IEEE Intelligent Systems. ol
14, N 5:14-23. 1999.

[5] L. Horvath and I. J. Rudas. Human Computer InteractianBecision Making and Knowledge
Acquisition in Computer Aided Process Planning System®rbc. International Conference on
Systems, Man and Cybernetics. 1994.

[6] L. Horvath and I. J. Rudas. A Machine Learning Based Aygh to Manufacturing Process
Planning. In Proc. International Symposium on IndustriacEonics, ISIE'93. 1993.

[7] L. Horvath and I. J. Rudas. Modeling Human-Computeetattions in Collaborative Design and
Planning. International Conference on Systems, Man an@@gbics. 'Intelligent Systems for the
21st century’. 1995.

[8] S. Kalpakjian and S. R. Schmid. Manufacturing Enginegrand Technology. Addison-Wesley.
4th ed. 2002

[9] H. Kautz. A Formal Theory of Plan Recognition and its Imyplentation. In Reasoning About
Plans, chapter 2, Morgan Kaufmann. 1991.

[10] H. Kautz. A Formal Theory of Plan Recognition. PhD Thse&iniversity of Rochester. 1987.
[11] N. Lesh. Scalable and Adaptive Goal Recognition. Phésith University of Washington. 1998.

[12] M. Marchetta and R. Forradellas. A New Model for Automabeneration of Plan Libraries
for Plan Recognition. Proc. Third International Conferi@n Production Research Americas’
Region (ICPR-AMO06). 2006.

[13] M. Marchetta and R. Forradellas. Supporting Interézh¥lans in Learning Hierarchical Plan
Libraries for Plan Recognition. Proc. 8th Argentine Synmiposon Artificial Intelligence. 2006.

[14] K.L. Myers. User Guide for the Procedural Reasoningt&ys Technical Report, Artificial In-
telligence Center, SRI International. 1997.

[15] E.P.D. Pednault. Formulating multi-agent, dynamiard problems in the classical planning
framework. En Proc. Workshop on Reasoning About ActionsRlads. 1986.

[16] S.N. Schiaffino. Personalization of User Interface Ag@ateraction. PhD Thesis. Universidad
Nacional del Centro de la Pcia. de Bs. As. 2004.

[17] D. Sormaz and B. Khoshnevis. Knowledge RepresentdtioAutomated Process Planning. In
Proc. International Symposium on Assembly and Task Planriif95.

[18] D. Wilkins, K.L. Myers, J.D. Lowrance, L. Wesley. Plang and Reacting in Uncertain and
Dynamic Environments. Journal of Experimental and ThecakArtificial Intelligence. volumne
6, 1994.

1530

