Belief Dynamics and Explanations in AnsProlog*

Gerardo I. Simari | Marcelo A. Falappa

Laboratorio de Investigacién y Desarrollo en Inteligencia Artificial (LIDIA)?*
Departamento de Ciencias e Ingenieria de la Computacion
Universidad Nacional del Sur. Av. Alem 1253, (8000) Bahia Blanca, Argentina
Tel: ++54 291 4595135 - Fax: ++54 291 4595136
{gis,mfalappa}@cs.uns.edu.ar

Abstract

Knowledge representation models are very important in the design of intelligent agents
because they provide with mechanisms to manage beliefs and their dynamics. In this
paper, we propose the use of AnsProlog* as a knowledge representation language, and
develop a Non Prioritized Belief Revision operator based on the Answer Set semantics
and the use of explanations. This operator is suitable for multiagent environments, in
which agents can exchange information by having dialogues which explain their respective
beliefs. A simple, yet complete example follows the presentation of this operator.

Keywords: Belief Change, Knowledge Representation, Logic Programming,
Answer Set Semantics, AnsProlog*.

1 Introduction and Motivation

The design of intelligent agents is greatly influenced by the many different models that exist to
represent knowledge. It is essential that such agents have computationally adequate mechanisms
to manage its knowledge which, more often than not, may be incomplete and even inconsistent.
It is also important for an agent to be able to obtain new conclusions that allow it to reason
about the state of the world in which it is embedded [F'SO03].

It has been shown that this problem cannot be solved within the realm of Classic Logic. This
situation has triggered the development of a series of logical formalisms that extend the classic
ones. These proposals often carry the names of Nonmonotonic, or Defeasible Reasoning. Some
examples of such models are Reiter’s Default Logic, Moore’s Autoepistemic Logic, McCarthy’s
Circumscription, McDermott and Doyle’s Nonmonotonic Logics, and Belief Revision (also called
Belief Change). This last formalism was introduced by Gérdenfors and later extended by
Alchourrén, Gérdenfors, and Makinson [AGMS85, G&88|.

In particular, Belief Revision has as its main objective to model the dynamics of knowledge,
that is, the way in which an agent’s knowledge must be updated when it finds new information.

TPartially supported by Comisién de Investigaciones Cientificas (CIC) - Gobierno de la Provincia de Buenos
Aires, Argentina.
fMember of the IICyTI (Instituto de Investigacién en Ciencia y Tecnologfa Informética)

CACIC 2003 - RedUNCI 589

In other words, in what way must an agent’s model of the world be updated when its sensors
obtain up to date information about the environment? In this sense, it is in the field of Cognitive
Robotics where belief revision finds its most appropriate application. Agents (be them physical
or software) must have the necessary flexibility in order to change their beliefs because they
are the main motivators of their actions. The idea of belief revision finds an example close to
our basic intuitions in the legal environment, where the promulgation of a new law demands
that some of the rest be “revised” and others removed to keep the set of laws consistent. In
this example, the three basic operations of belief revision known as expansion, contraction,
and revision are respectively mapped into promulgation, derogation, and amendment of laws.
These same ideas are also applicable to environments that are closer to the computational realm,
such as the use of communication protocols where new protocols can be added (expansion),
withdrawn (contraction), or a subset of them be replaced by one or more (revision).

Revisions are the most commonly used change operators because they allow a sentence « to
be included into a set K, generating a new set K', preserving consistency in the new set. The
traditional revision models are prioritized, that is, they give priority to new information over
the information that is already part of their knowledge. This property does not seem plausible
in the real world, because in many cases it is not reasonable to give priority to information just
because it is new.

In non prioritized models, it is possible for new information not to be accepted. Such
new information can be rejected or accepted only after a debate process. In this sense, there
exists a variety of different non prioritized belief revision models, among which are David
Makinson’s Screened Revision [Mak97, Han97b], Sven Ove Hansson’s semirevision operators
[Han97a|, André Fuhrmann’s merge operations [Fuh97] and Falappa et al.’s [FKIS02] recently
formulated revisions by sets of sentences. In this last work, a new kind of non prioritized
revision operator based on the use of explanations is presented. It is argued that an agent,
before incorporating information which is inconsistent with its knowledge, should request an
explanation that supports this information. An explanation is characterized as being composed
of an explanans (set of sentences supporting a certain belief), and an explanandum (the final
conclusion).

A classic example of this situation is the following: Suppose that a person believes that
() all mammals can jump and () Titus is a mammal. Thus, he will believe (&) Titus can
jump. Later on, another person states that Titus cannot jump. If § is dropped, then « or § will
have to be dropped as well. However, it does not seem to be rational to incorporate external
beliefs without pondering them. An explanation should be required in order to incorporate
such information, especially in the case where it contradicts the previously maintained set of
beliefs.

In our case, the person should demand an explanation for . One possibility is that he is
given an explanation such as: Titus cannot jump because he is an elephant, and elephants are
mammals, but they cannot jump. Now, the sentences in the explanans can be used to evaluate
the new piece of information before it is incorporated. We propose the use of AnsProlog* as a
language for the representation of beliefs, as well as for explanations.

CACIC 2003 - RedUNCI 590

The rest of this work is organized as follows: section 2 presents a review of the AnsProlog*
language. The description of some of its most important syntactic subclasses, and examples
for them, are also included. Section 3 describes the use of explanations in belief dynamics, and
introduces the concepts used in the construction of the Answer Set Revision operator. The
use of AnsProlog* as a knowledge representation language is introduced in section 4, along
with a series of examples that illustrate it. Next, section 5 introduces the Answer Set Revision
operator, and section 6 exemplifies it by means of the formalization of a multiagent domain in
AnsProlog*. Finally, future work is discussed in section 7.

2 A Brief Review of the AnsProlog* Language

We now consider the language of logic programming with respect to the answer set semantics,
which is usually referred to as AnsProlog*. This name is short for “Programming in Logic
with Answer sets” [GL90]. An AnsProlog* program is a finite collection of rules of the form:

Lgor .. or Ly < Lgyq, ..., L, not Lyiq, ..., not L,.

where the L;’s are literals (in the sense of classical logic). Intuitively, a rule of this form means
that if Ly, ..., L,, are true and if L,,,1, ..., L,, can be assumed to be false, then the sentence L
or ... or Ly is true (i.e., at least one of its literals is true). The symbol ‘*’ in AnsProlog™* means
that no restriction is applied to the structure of the program’s rules; a variety of syntactic sub-
classes can be defined when such rules are restricted. Some of these sub-classes are described
next.

2.1 AnsProlog

AnsProlog programs are sets of rules in which the L;s are atoms and £ = 0. The following is
an example of an AnsProlog program:

Jumps(X) < mammal(X), not ab(X).
ab(X) < elephant(X).

mammal(X) < elephant(X).
mammal(larry) < .

elephant(titus) < .

From this program, we can conclude that Larry jumps, while Titus does not (because he is
an elephant, and elephant’s are “abnormal” in this sense).

CACIC 2003 - RedUNCI 591

2.2 AnsProlog "

In this class, the L;’s are atoms, £k = 0, and m = n. These programs are similar to Prolog
programs that do not make use of negation as failure, or the cut predicate. Another difference
between Prolog and AnsProlog™"* (and AnsProlog* in general) is that Prolog’s semantics is
defined with respect to a fixed inference mechanism, whereas AnsProlog*’s is not. In AnsPro-
log*, a program is interpreted as a set of rules, each of which is a set of literals (or literals
preceded by not). Hence, the ordering of rules or literals does not affect the semantics of a
given AnsProlog* program.

not

The following is an example of an AnsProlog="% program:

flight(X, Z) + flight(X,Y), flight(Y, Z).
flight(bhi, eze).
flight(eze, jfk).

This program is an example of the transitive closure of a given relation. We can conclude
from it that there is a flight from bhi to jfk (the facts also express that there are flights from
bhi to eze and from eze to jfk).

2.3 AnsProlog™

Programs in this class allow the presence of “—=” in their rules; the only restriction they impose
is k = 0. The following is an example of an AnsProlog™ program, similar to the one presented
for AnsProlog:

Jumps(X) < mammal(X), not —jumps(X).
—jumps(X) < elephant(X).

mammal(X) < elephant(X).
mammal(larry) < .

elephant(titus) <« .

As in the example for the AnsProlog class, from this program we can conclude that Larry
jumps and Titus does not.

2.4 AnsProlog™

This class introduces disjunction in the head of the rules; however, it does impose the restriction
that the L;’s must be atoms. It must be noted that the “or” operator is different from “Vv”.
The first one is called epistemic disjunctions [GL91]. The sentence “A or B” means “A is
believed to be true or B is believed to be true”. Therefore, A or —A is not always true, as is

AV -A.

A simple example of an AnsProlog®” program is the following, from which we can conclude
that Larry is a bird or an insect, but we cannot conclude both.

CACIC 2003 - RedUNCI 592

insect(X) or bird(X) « flies(X)
flies(larry) < .

This is only a subset of the different classes that have been studied. The importance of
defining such a set of sub-classes lies in the varying degree of complexity of the rules in each
class. This complexity has a profound impact on the computational cost of operations that
may be performed on programs, such as Answer Set checking and verifying if a given belief is
entailed by a given program [Got94]. The study of how the computational complexity of these
and other problems is related to belief dynamics under this representation is left as future work.

3 Belief Revision by Sets of Sentences

The theory of belief change assumes that an agent’s beliefs are represented by belief sets (sets
of sentences closed under logical consequence) or belief bases (arbitrary sets of sentences). It is
clear that, in computational applications, one must opt for finite belief bases. New information,
which is called epistemic input, is sometimes represented by a sentence of the language or an
arbitrary set of sentences.

The revision operator proposed in [FKIS02] allows a non prioritized revision in the following
way:
e The epistemic input is a single sentence with an explanation for it.

e The explanation (a set of sentences with some constraints) is added to the original set,
maybe resulting in a temporarily inconsistent set.

e Then the consistency is restored by a contraction by falsum.

An ezplanation can be defined as follows [FKIS02]. The set A is an explanation for the
sentence « if and only if the following conditions are satisfied,

1. Deduction: A I a.

2. Consistency: A ¥ L

3. Minimality: if B C A then B F a.

4. Informational Content: Cn(A) Z Cn(«).

Deduction guarantees that the explanans (support for a given belief) implies the explanan-
dum (the belief being explained). Consistency prevents having an inconsistent explanation

(which would explain any belief). Minimality establishes that every belief in the explanation
is needed to obtain the explanandum, and Informational Content avoids cases in which the

CACIC 2003 - RedUNCI 593

explanandum implies every sentence in the explanans. In particular, it avoids a sentence being
an explanation for itself.

This operator incorporates the possibility of partial acceptance, i.e., even though the pro-
posed explanation for a may be rejected, parts of it may still be added to the knowledge base in
the process. The first approach for this operator, described here, does not take this possibility
into account. Therefore, an explanation is either fully accepted or fully rejected, as we will see
below. An Answer Set revision operator that incorporates partial acceptance is left for future
work.

Assume we want to revise a given belief base II with respect to a given explanation A for a
belief a. The revision involves:

1. Construction of counter-explanations for A from II. These counter-explanations are min-
imal subsets of II which are inconsistent with A.

2. A is compared with respect to its counter-explanations.

3. If Ais (in some sense) “better” than its counter-explanations, then A is incorporated into
IT and its counter-explanations (or part of them) are eliminated. In any other case, II
will remain unaltered.

The last step of the revision involves a decision between the proposed explanation, and the
counter-explanations that can be built from II. This process, and how it can be implemented,
will not be treated here, and is the topic of future work.

This mechanism could be applied in some real life situations or dialogues between agents.
In this work, we develop a new operator of this type, based on explanations, for multiagent
systems.

4 An AnsProlog* Representation

An agent’s beliefs can be directly represented by an AnsProlog program. This program’s answer
set semantics will represent such beliefs. Such semantics can be defined as follows [GL02]:

1. A program II cautiously entails a literal [(II |=1) if | belongs to all answer sets of II.

2. A program II bravely entails a literal [(Il | 1) if [belongs to some answer sets of II.

For programs having only one answer set, there is no difference between these two relations.
As will be noted later, the Answer Set Revision operator is not affected by this choice in belief
entailment. In the same way, any explanation for a given belief can be represented by an
AnsProlog program; the program’s rules can be interpreted as the explanans, and the desired
explanandum will be entailed by the program. A simple example of a belief base is the following
program II;:

CACIC 2003 - RedUNCI 594

Jjumps(X) < mammal(X).
mammal(X) < elephant(X).
mammal(titus) < .

I1; has as its only answer set: Sy = {mammal(titus), elephant(titus), jumps(titus)}. An
explanation represented by an AnsProlog* program, related to this example, is the following

program (s:

Jjumps(X) < mammal(X).
mammal(larry) < .

Like II;, this program explains that Larry jumps because he is a mammal, and has the
sole answer set: By = {mammal(larry), jumps(larry)}. This program can then be used as an
explanation for jumps(larry), where @ is the explanans and jumps(larry) is the explanandum.
An example of an explanation that conflicts with II; is the following program ¢-:

—jumps(X) < elephant(X).
elephant(titus) < .

which has as its only answer set: FE, = {elephant(titus), =jumps(titus)}. This answer set
clearly disagrees with II;, which entails the belief jumps(titus). In the next section, we intro-
duce a non prioritized belief revision operator based on the representation described.

5 Non Prioritized Answer Set Revision

An agent’s belief base can be represented by an AnsProlog* program, and its beliefs by con-
sidering the program’s answer set semantics [GL02]. Therefore, a belief will belong to a given
belief base if and only if it is entailed by its associated logic program. The answer sets shown in
the previous section are examples of knowledge bases generated from logic programs. Because
explanations can be seen as special cases of belief bases (they are sets of beliefs specifically
designed to entail a given belief), they can be represented by AnsProlog* programs in the same
way. It must be noted that, even though the answer set semantics yields a unique set, the
complete set of answer sets is available at any time because it can be computed directly from
the program. This fact plays an important role in the construction of the Answer Set Revision
operator, as we will see below.

When an agent with belief base II is faced with an explanation ¢ for a given belief o, the
agent must establish the status of the given information. There are three possible scenarios:

(7). « is consistent with every answer set of II; i.e.,
for every S such that S is an answer set of II, —a ¢ S.

CACIC 2003 - RedUNCI 595

(7). « is only consistent with some of the answer sets of II; i.e.,
there is at least one answer set S of II such that —a ¢ S.

(13i). « is not consistent with any of the answer sets of II; i.e.,
for every S such that S is an answer set of II, —a € S.

Situation (4) is the simplest because the explanation agrees completely with the beliefs in II.
Therefore, new knowledge can be safely incorporated by adding ¢ to II, i.e., the new knowledge
base will be II,.., = IT U ¢.

In case (ii), the proposed explanation must be evaluated with respect to the counter-
explanations that can be constructed from II. Such counter-explanations are subsets of II
that have —a as their explanandum. If the new knowledge is to be incorporated, the new
knowledge base will be Il,., = II U ¢, as in (7). This addition to IT will automatically remove
those answer sets that were in disagreement with ¢, and will incorporate new ones. In case ¢
is rejected, II is left unaltered.

The last situation is in some sense the “opposite” of case (7); it is the most difficult because
the explanation presented is in complete disagreement with the beliefs in II. As in (i), the
explanation for the new information must be evaluated with respect to the counter-explanations
that can be constructed from II. If ¢ is accepted, the inconsistency must be removed from
IT U ¢ by traditional means. The belief base will remain unaltered if the agent rejects the
explanation. As was mentioned earlier, the choice in semantics (cautious or brave) is irrelevant
for this operator. This situation arises because the beliefs that could only be bravely entailed
(and not cautiously entailed) are not considered to be “stable” beliefs, in the sense that a given
belief @ and —« could be entailed by such semantics. An extension where this semantics is
considered is left for future work.

6 An Example of Answer Set Revision

In this section, we will show a simple (but complete) example of the concepts introduced above.
The domain is intentionally simple to keep the example from running too long.

Suppose an agent wishes to make an investment of up to $20,000, so he goes out and
scouts the market to see where he can invest his money. Before going in search of options, his
knowledge base could be the following program II:

1 <« buy(X), price(X, PX), invest(M), greater(PX, M).
This rule is called a restriction, and it states that the agent cannot buy X if its price is
greater than the amount intended for investment. Another restriction, similar to this one,

states that the agent cannot invest more money than it owns:

1 <« invest(I), my-money(M), greater(I, M).

CACIC 2003 - RedUNCI 596

The following rule represents that the agent does not wish to buy an item if it has a feature
that is considered negative.

—buy(X) « feature(X,Y), negative_feature(Y).
The belief base is completed with the following facts:

invest(20000).
my-money(28000).
negative_feature(lose_value).
negative_feature(needs_improvement).
(

negative_feature(expensive).

The first fact states that the agent is willing to invest $20,000, and the second one declares
that the agent actually has $28,000. The last three facts mean that the agent considers the
features mentioned to be undesirable in an item.

The agent then goes shopping, and a variety of salesmen offer him: a car for $16,000, a piece
of land for $21,000, and an apartment for $30,000. After seeing the options, the belief base has
been revised; it has been extended to include what the agent has observed. These inclusions
can be directly made because they are in agreement with the answer sets of II:

price(car, 16000).
price(land, 21000).
price(apartment, 30000).

Furthermore, the agent has also gathered information on each of the products:

feature(car, loses_value).
feature(car, low_price).

The car will lose value immediately and by the day after purchase, but it is at a very low
price.

feature(land, needs_improvement).
feature(land, increases_value).

On the other hand, the piece of land will increase its value and could be worth twice in just
a few years. Nevertheless, to make a more immediate profit, it needs improvement.

feature(apartment, expensive).
feature(apartment, collect_rent).

CACIC 2003 - RedUNCI 597

The apartment is well over the price the agent intended to invest. Nevertheless, it has a
very attractive feature: the agent can make money quite easily by renting it to others.

Now, the agent has to make a decision among the three options (if any); each of the salesmen
gave him good reasons to buy their item. The salesmen basically built explanations that point
out the advantages of the item being offered by them. The first salesmen offered the car, and
built the following explanation:

v ={ buy(X) < advantage(X,Y),important_feature(Y).,
advantage(car, low_price).,
important_feature(low_price).}

which minimally entails buy(car). The rest of the salesmen built similar explanations ¢; and
©q to try and convince the agent that their product is the one to buy.

Of course, the agent is able to build counter-explanations for each of the explanations
proposed. The counter-explanation for ¢, is the following explanation for —buy(car):

Y- ={ —buy(X) < feature(X,Y),negative_feature(Y).
feature(car, lose_value),
negative_feature(lose_value).}

Similar counter-explanations ¢-; and ¢, can be built to explain —buy(land) and
—buy(apartment), respectively. In order to gather the information on all the products, the
agent initially rejected all of these explanations, and therefore his knowledge base has not been
modified with respect to what to buy.

The agent is now faced with a revision of his knowledge. Before he went shopping, he
expected to spend $20,000, even though he actually has $28,000 to spend. There are two
possible situations that can arise after the agent revises his beliefs:

e He decides not to change his spending limit.

e He decides to raise his spending limit to try and buy one of the more expensive offers.

In the first case, the agent might decide to buy the car, which is the only option left if the
spending limit is not changed. Therefore, he accepts the salesman’s offer, and his new knowledge
base will entail buy(car), which will involve removing negative_feature(loses_value) from II.

In the second case, the agent may decide that he wants to buy the land, in which case his
belief base will be revised to include invest(21000) instead of invest(20000). If this isn’t done,
there would be an inconsistency because both buy(land) and —buy(land) could be entailed.
Furthermore, as before, negative_feature(needs_improvement) must be removed from II.

The agent might also decide to purchase the apartment. Even though this is initially
inconsistent with his knowledge (he has $28,000, and the apartment costs $30,000), he adopts
the wish anyway, because he is also planning on bargaining with the salesman in order to get
a better price.

CACIC 2003 - RedUNCI 598

7 Summary

In this work, we have proposed the use of AnsProlog* as a knowledge representation language
that is useful in modeling belief dynamics. By interpreting a logic program under its Answer
Set semantics, the associated entailment operator can be used to test membership to a belief
base. Likewise, an explanation for a given belief can be represented by a logic program that
entails such belief. This representation is then used in the definition of the Answer Set Revision
operator, described and exemplified throughout this work.

We regard the topic of Computational Complexity as important future research, because the
computational cost of the various operations that can be performed on AnsProlog* programs
is directly related to the computational cost of the defined operator.

References

[AGMS85| Carlos Alchourrén, Peter Gérdenfors, and David Makinson. On the Logic of Theory
Change: Partial Meet Contraction and Revision Functions. The Journal of Symbolic
Logic, 50:510-530, 1985.

[FKIS02] Marcelo A. Falappa, Gabriele Kern-Isberner, and Guillermo R. Simari. Belief Revi-
sion, Explanations and Defeasible Reasoning. Artificial Intelligence Journal, 141:1—
28, 2002.

[F'S03] Marcelo A. Falappa and Gerardo I. Simari. Non prioritized reasoning in intelligent
agents. In Nelson Acosta, editor, Proceedings of the V- Workshop de Investigadores en
Ciencias de la Computacion, pages 237—240. Universidad del Centro de la Provincia
de Buenos Aires, Tandil, Buenos Aires, Argentina, 2003.

[Fuh97] André Fuhrmann. An Essay on Contraction. Studies in Logic, Language and Infor-
mation, CSLI Publications, Stanford, California, 1997.

[G&88] Peter Gardenfors. Knowledge in Flux: Modelling the Dynamics of Epistemic States.
The MIT Press, Bradford Books, Cambridge, Massachusetts, 1988.

[GL90] Michael Gelfond and Vladimir Lifschitz. Logic Program with Classical Negation. In
David H. D. Warren and Peter Szeredi, editors, Proceedings of the 7th Int. Conf. on
Logic Programming, pages 579-597. MIT, June 1990.

[GL91] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365-385, 1991.

[GL02] Michael Gelfond and Nicola Leone. Logic programming and knowledge
representation—the A-prolog perspective. Artificial Intelligence, 138(1-2):3-38,
2002.

CACIC 2003 - RedUNCI 599

[Got94] Georg Gottlob. Complexity and expressive power of disjunctive logic programming.
In Maurice Bruynooghe, editor, Logic Programming - Proceedings of the 1994 Inter-
national Symposium, pages 23-42, Massachusetts Institute of Technology, 1994. The
MIT Press.

[Han97a] Sven Ove Hansson. Semi-Revision. Journal of Applied Non-Classical Logic, T:151—
175, 1997.

[Han97b] Sven Ove Hansson. Theoria: Special Issue on Non-Prioritized Belief Revision. De-
partment of Philosophy, Uppsala University, 1997.

[Mak97] David Makinson. Screened Revision. In Theoria [Han97b].

CACIC 2003 - RedUNCI 600

