Selection of the Optimum Stage Number in Pipelined Floating-Point Units
Eduardo Balliriain, Martin Ignacio Falcon Faya, Pablo Slavkin, Norberto M. Lerendegui*
Ingtituto Tecnoldgico de Buenos Aires, Departamento de Electronica,

Av. E. Madero 399, (C1106ACD) Buenos Aires, Argentina
*Corresponding Author (nlerende@itba.edu.ar)

Keywords: FHoating Point Unit, Pipdining, Computer Architecture

Abstract

In this work the pipeline theory gpplied to computing systems is reviewed. The effects of the stage delay,
overhead stage delay, equaization factor and number of stages on the pipdine system performance are
andyzed. A pipeline desgn method to identify the optimum number of stages is proposed. This method
makes use of a trade-off expression that considers speed factor and hardware cost. The procedure is
applied to turn a sequentid FHoating Point Unit (FPU) into a Pipelined Hoating Point Unit (PFPU) capable
to achieve a performance 600% larger. The effect of the physicd limits on the PFPU maximum
performanceis andyzed.

1. Introduction

The idea of splitting up any sequential process in stages in order to increase the performance has been
around for many years. Henry Ford gpplied this concept successfully in his Ford-T moded assembly line,
increasing the number of units produced per day and making the Ford- T the most famous car of itstime.

This splitting method, named pipelining, was further applied to processor architecture; initidly to
enhance the processng speed in the classca fetch-decode-execute cycle [1], and then whenever a
sequentiad process is detected. Pipelining became a must-do approach when searching for better
performance.

In this work the pipelining theory and implementation are presented. A method to identify the optimum
number of stagesis proposed. This method is further gpplied to turn a sequentia Floating Point Unit (FPU)
into a Fipelined Hoating Point Unit (PFPU). The processing speed and the hardware size for both
implementations are compared.

2. Pipelining Theory
Given an inherently sequentia process that consumes an amount of time T, once the input has started
being processed the next input has to wait until the ongoing process finishes completely.

| nput—p- - —» Output

Two important parameters are:
- Time to Process a single Input (Latency): Once an input is pushed into the system, it takesatime T to
get the output available. This hgppens for every input.
- Time to Process N Inputs: If N inputs are entered to the system, it takes N*T to process the entire
input set.
If the whole process is symmetrically splitted up in k stages (meaning that each stage consumes a T/k
time), then each time one stage ddiversits output to the next stage, the former is free to take anew input in.
The number k is known asthe order of the pipeine.

CACIC 2003 - RedUNCI 1414

Input > |k |tk [Tk [Joee Tk | TIK) P Output

k stages

When the fird input of the set is fed to the system, it takes atime T for the output to be available
(because the input has to pass dl the processng sages). But things are now different for the following
inputs. While ane input is being processed &t the stage S the following input is being processed & the
stage Stj.; (previous stage). Therefore, once the first system output is available the next one will be ready a
time T/k later. Theoreticdly, there is no lower limit for the Stage delay as long asthe order of the pipelineis
increased to the required level. As a consequence, if N inputs are sequentidly fed to the pipdined system,
the processing of the entire input set tekes:

T+ {)(N -1
A AN
Following N-1 Inputs

First Input (Latency)
The Figure 1 illugtrates a 3- Stage Operation Unit without and with Fipeining

Without Pipeline With Pipdine
St1 S22 S3 St1 St2 St3
A LA

— Opl —p

Opl —p

1 £

Time Opz - —p

LA £
) R Op3 | —p RL
LA £ v
op2 | || R2
ya—
R3

sl=l Y Y=
1177

TH
-
7

0H
I

R2

Op3 —p

With Pipeline: It is possible to start running one
operation per time unit, keeping all the hardware modules
running simultaneously. It can be seen that at the beginning
and the end some of the modules are resting, but if a great
quantity of operations are executed, the number of resting
R3 modules become extremely small compared to the working
ones. Using the same example as for the non-pipelined case
the results are got in 5 time units, which is almost half the

sfm] Yujm) gefmyc

0
13—
17
@1
13—

Without Pipeline: One operation starts execution AFTER
the preceding operation is completely finished. Hence most
of the hardware stays useless all the time (white cubes).

In this example, running 3 operations involves using 9 time
units.

time. When many operations are executed, aimost all the
modules will be working all the time, hence the processing
capacity will be “three times™ the non -pipelined system one.

Figure 1. Non-Pipdined and Pipelined 3- Stage Operation Unit

CACIC 2003 - RedUNCI

1415

If N is very high the time it takes to the system to produce the entire set of N outputs can be
gpproximated by:

T T
T+—*(N-1 *N
k()@?

indicating that in average each input will be processed in T/k units of time. The Figure 2 shows the Input
Average Processing Time (Time_per_Stage) as afunction of N (number of inputs to process) when T=100
and k=5. When N=1 the Time_per_stageisequa to T.

Pipeline Order vs Stage Delay
100 I I I I

When N is smell, the latency of the
system can strongly affect the

80 7] average processing time.
Time_per_Stage (N) When N is high the average time to
process an input tendsto T/k.

* Note that the pipeline concept
40 - requiresthat all stages havethe
same processing time (Tst); one
stage output can not progress if
e LR = the next stage is busy.

Figure 2. Input Average Processing Time as afunction of the Number of Inputs to process

3. Ripdining Implementation

The Pipdining technique consds of identifying any sequentia stage in a process and organizing the
hardware in sages to maximize its performance. In practice, two factors negatively affect the pipdine
effidency:

1) Although dl stagesin a pipdine must have the same length, thiswill be seldom achieved naturdly in redl
world applications. This problem is solved by forcing dl stage processes to last as the dower one
(equdization). As presented in the Figure 2 this time, named stage delay, represents the average
time taken by the system to produce every output when N is high enough. The lower the stage delay,
the higher the system speed. The Figure 3 shows the stage equalization process.

Origind

—— 71
Ided Fipdining
/) —
Red Pipdining T

17
TPt P) ——*> |

— S

@ Working
(7

Idle

KN
) W

Stage equalization Tr
Figure 3. Stage Equalization Process

CACIC 2003 - RedUNCI 1416

After the sysem has been equdized, the new latency Tr will be larger than the initid one (T). The
Equalization Ratio (EQR) can be defined as the ratio between the Equalized Stage Delay and the
Ided Stage Delay:

L

EQR=
Q T

x|—||x|j

2) Credting the stages not only has an associated incresse in hardware to hold a stage output while the
next stage is dill processing, but also adds an extra fixed delay to each stage, named Overhead Delay
(OD), related to that extra hardware. The Figure 4 illudrates this Overhead Delay.

Equalized Stage

. B
1

Stage Overhead
Delay

— H/_J
Tr/k+OD = Tp
Figure 4. Stage Overhead Delay

The OverHead Ratio (OHR= OD/Tp) indicates how much of the sage time is wasted in the
associated hardware (note that 0O< OHR <1). When OHR is close to 1 the system spends most of its
time holding data without processng it. On the contrary, the nice empirica vaue OHR=0.001
indicates that 99.9% of the Stage Delay is used for processing.

The former two factors determine that the Stage Delay in ared system be:
StageDelay = T?r +0D

It is clear that the term Tr/k diminishes when the order of the pipdine (k) increases, while the term OD
remains constant. When Tr/k has a smilar magnitude than OD the increasing of the pipeline order will not
decrease the stage ddlay dgnificantly. For ingtance, if T=100, OD=0.1T and EQR=1.1, the Stage Delay
will ber

StageDelay = l'lk* T +0.1*T = %+1O
If k= 20, StageDelay=15.5; if k=22, StageDelay=15. In other words, a 10% increase in the stage number
caused only a 3.2% decrease in the StageDel ay.

4. Redl World Pipeline Design

The procedure described in the former section was gpplied by the authors to design a Pipelined Floating
Point Unit (PFPU). The PFPU is capable to perform the four basic operations (one at atime): addition (or
subtraction), multiplication and divison, according to IEEE 754 standard for single precision [2][3][4]. The
origind FPU was designed without pipeline [5]. The Figure 5 shows a amplified diagram of the PFPU
architecture. Information concerning hardware delays and number of gates was collected in order to make
aclear comparison of the performances of the Hoating Point Unit with and without pipeline.

CACIC 2003 - RedUNCI 1417

In order to make the analysis independent of the hardware technology used and extend its conclusions
to other designs, dl ddays are represented in units of ‘ Transstor Delay Time (Td), which is defined as the
time it takes to a trangstor to produce a stable output once a stable signdl is presert a itsinput. Thistime
depends on the chosen |IC technology but it is fully documented by hardware manufecturers. All ddays
shown in this work were obtained by smulating the designed hardware with the commercid OrCAD V.9
software product. The origind PFPU operation blocks has the following processing times.

Adder: 152 Td Multiplier: 48 Td Divider: 422 Td

Operands Resul
Adder

Add_Ctrl

Multiplier
Mult_Ctrl

Div_Cirl Divider

Simplified Block Diagram of the PFPU
Figure 5: PFPU Simplified Architecture

This design takes into account two main factors to decide the number of pipdine stages to implement:

1) Processing Speed: according to pipeline theory, increasing the number of stages while kesping low
OHR figures makes the FPU run faster

2) Hardware Cost (measured in quantity of digital gates used): A larger number of stages increases the
hardware cogt of the sysem. Thereis an average quantity of trangstors for dl digita gatesinvolved in
thisdesign. Thisvaueis used to assess the hardware cost.

These two factors drives the designer to take a critical implementation decision. Therefore, it is convenient

to find out some andytical tool to assess the trade-off.

The procedure of choosing the optimum pipdine stage number requires that the hardware circuit be
carefully studied in order to propose possible “cut points” in the circuit to form the different pipeline stages.
Every time a pipdine stage is added, the stage delay is decreased (see Figure 6), but a quantity of latches
proportiond to the quantity of datalines cut must be also added.

PFPU: Delay Vs Pipeline stages

450 4

-0 l

I I

& 80 |

= 300 |

H |

a2 250

E zon

- 150 i

L]

= 100

= B —'%i‘;m.;.
o T e e S |

Fipeline stages

|+Adder — = Multiplier Oivider |

Figure 6: PFPU Stage Delay as afunction of the number of stages

CACIC 2003 - RedUNCI 1418

This quantity of latches has a very wide range of variation, sSnce the sysem may be cut in a place where 5
data lines have to be latched or in aplace where 300 data lines must be latched.

The fact that there are certain places where the quantity of latches added is too high forces the desgner
to cut the system before or after that place, increasing the difference of length between stages and making
the totd stage delay bigger after the equdization. The criteriafollowed by the authorsis that the quantity of
latches added must grow linearly with the number of stages added. The circuit was studied to propose
cutting points to implement a pipdine of order 1 to 10. The Figure 7 represents the number of logic gates
as afunction of the pipeline stages.

Number of logical gates ¥s Pipeline
stages

40000 5

. A careful selection of the pointsin the

35000 L :
M circuit to cut, leads to an almost linear
20000

s growth of the quantity of latches
i / employed as the pipeline order increases.

20000

Humbar aof Imgical
o ater

1} 2 4 E 2 10 12

Fipeline st ages

Figure 7: Number of Logic Gates as afunction of the Pipdine Order

For al operation modules, the dower data path was found (critical path) to determine the worst case
delay for each stage (critical delay). Since the divider block causes the largest critical delay for dl stage
numbers consdered and the system was designed to work synchronoudy, this delay isthe chosen one for
this design. The latches used in this design add a congtant delay equal to 10 Td b each stage of the
pipeline. The data collected is summarized in the Table 1.

The complete pipeline design procedure applied to the PFPU isthe following:

A) Gathering of information concerning the possible places where “cuts to introduce laiches could be
made (cases k= 1 to 10 analyzed). As these “cuts’ would leave asymmetric stages (e.g. it is not a
good idea to insert latches inside a full adder, since too much hardware would be involved), the time
taken by the stages differs from one another. Therefore the “critica path” concept, defined as the
longest time taken for any stage to fulfill its task, becomes very useful. As expressed above, thistimeis
measured using transstor delay times (Td) as normdized units. Independently of the number of stages
taken, the time used by al stages is completely defined by the divider circuit due to the fact that this
circuit is much dower than the multiplier and adder. As a consequence, both adder and multiplier will
haveidletime.

B) Cdculation of the criticd path for dl 10 pipeline orders taking into account that each time a pipeine
stage is added, a latch delay (overhead) must be added to the stage delay. The memory cdls used in
this design have a time response dday of 10*Td. Note that the stage time fals nonlinearly with the
increesing number of stages (see Figure 6. This is due to the fact that the shorter the stage the
stronger the effect of the constant delay (overhead) of the latches (10* Td per latch). As shown in the
Table 1, for a 10-stage PFPU the 22 % of the delay is due to the latches.

CACIC 2003 - RedUNCI 1419

C) Counting of the number of gates required for al ten pipeline orders to get an idea of the "hardware
cod” involved in each case. The number of logicd gates used grows linearly with the number of
pipdine stages to implement (because the places of the circuit cuts were chosen carefully).

Pipeline Operation Critical stage Latch delay Total Gates Gates Gates per | Total amount
| Stages Delay {Td multipies) | Critical delay | (without latches) {latches) operation of gates
| ADD /SUBST 142 10 152 2840 272 Iz
| ﬂ MULT 38 10 15 6175 272 B447 22710
| DIV 412 10 422 12574 272 13151
: ADD / SUBST 72 10 g2 2840 540 3480
@ MULT 149 10 29 6175 936 7111 24879
DIV 207 10 217 12879 784 13663
! ADD /SUBST 49 10 59 2840 1265 4105
| 3 MULT 15 10 26 B175 1408 7583 25863
| DIV 144 10 154 12579 1296 14175
ADD / SUBST 37 10 47 2840 1504 4344
: é;L MULT 12 10 2 6175 2456 8631 27662
: DIV 109 10 119 12875 1803 14657
| ADD /SUBST 30 10 A0 2840 2584 5424
! 5 MULT 12 10 2 6175 2728 8903 289526
| DIV 95 10 106 12879 2320 15139
, ADD / SUBST 24 10 34 2840 2408 5248
@ MULT 12 10 2 B175 3000 9175 30134
DIV 77 10 g7 12579 2832 15711
| ADD /SUBST 2 10 5 2840 2832 5672
| ? MULT 12 10 22 6175 3270 9447 3342
| DIV 61 10) 12879 3344 16223

ADD / SUBST 19 10 29 2840 3483 6328
MULT 12 10 2 6175 3544 9714 327582
, DIV 55 10 B5 12579 3856 16735
| ADD /SUBST 18 10 28 2840 3550 6390
| @ MULT 12 10 22 6175 3816 9991 33628
| DIV 49 10 59 125749 4368 17247
| ADD / SUBST 15 10 24 2840 4083 B928
ﬂ@ MULT 12 10 2 6175 4083 10263 34950
DIV 45 10 55 12879 4880 17755

Table 1: Number of Logic Gates and Tota Criticad Delay as afunction of the Pipeline Order in the
Pipelined Floating Point Unit

D) Normdizing of dl of the collected data (forcing it to be between 0 and 1) in order to be used in an
optimization formula This formula indicates how good the decison of using a determined order of
pipeline is. This formula takes into account the gain in speed related to a higher order of the pipdine,
the increase in hardware cost and the relative weight the designer dlocates to these factors. The
optimization formula was defined as.

1

Trade Off; =
g (1 - P -NormGatesy, + P-NormDelay,,
Where: Total_Delay, Total_Gates,,
NormDelay,, = NormGatesy, =
max(Total Delay) max(Total Gates)

P is the Speed Weight (red number between 0 and 1).
k (pipeline order) isan index equa to the number of stages.

CACIC 2003 - RedUNCI 1420

In the PFPU design the speed was considered more important than the hardware cost. Speed Weight
was 60% and Hardware Weight 40%. With these parameters the former expression becomes.

1
0.4 -NormGatesy, + 0.6-MNormDelay,

Trade Off; =

When the Trade-Off expression is depicted as a function of k (see Figure 8) it is possble to identify the
maximum of the function. Its corresponding kcoordinate (7, in this case) represents the best pipeline
order for the PFPU regarding the assumptions stated.

2176,
1735

Trade_(Off,

1163,

10

Figure 8. PFPU Trade-off Evduaion Fgure as afunction of the Pipeline Order

5. Comparisons and conclusions:

The Table 1 showsthat in the case of afirst order pipeline (placing 1 series of latches at the output of
the operation blocks to hold the results caculated), the critical delay is 422* Td. The same sysem with a
seventh order pipeline structure has a critica stage delay of 71* Td, which represents a 600% increase in
the operation execution throughput. If the latches added to the system did not increase the stage delay the
increase in processing throughput would be 700%, as predicted by the pipdine theory.

The Trade-Off formula takes into account that increasing the pipeline order does not necessarily lead to
better performance. In this design the best choice was a 7-gtage pipeline architecture.

While the increase of the pipeline stage ddlay has an intringc nontlinear behavior (because of the
constant value of the overhead), the increase in hardware caused by the growing of the pipeline order can
be forced to be linear by making an intelligent sdection of the “cuts' in the circuit. This fact guarantees the
scalability of the hardware associated.

There is awdl defined limit for the increase in speed performance in a red world pipeine design, as
shown in the Delay/Pipeine Stage curve. This limit appears because as the stage delay becomes smaller
(the order of the pipdine grows), it becomes comparable to the overhead ddlay, that remains congtant
regardless the pipeline order.

CACIC 2003 - RedUNCI 1421

6. References:

[1] A. S. Tanenbaun, “ Structured Computer Organization”, Fourth Edition,
Prentice Hall,1999.

[2] “|EEE Standard for Binary Floating-Point Arithmetic”, ANSI/IEEE Standard 754, 1985.

[3] D. Goldberg, “ What Every Computer Scientist Should Know About Floating-Point
Arithmetic’, Xerox Palo Alto Research Centre, 3333 Coyote Hill Road, Pao Alto.

[4] W. Kahan, “ | EEE Standard 754 for Binary Floating Point Arithmetic, Lecture noteson
status of |EEE 754", May 31, 1996.

[5] E. Bdliriain, M. Facdn, P. Savkin, "Disefio y simulacién de una unidad de punto flotante
conforme ala norma | EE-754", Find Project, Electronics V, ITBA 2002.

CACIC 2003 - RedUNCI 1422

