
Selection of the Optimum Stage Number in Pipelined Floating-Point Units
Eduardo Balliriain, Martín Ignacio Falcón Faya, Pablo Slavkin, Norberto M. Lerendegui*

Instituto Tecnológico de Buenos Aires, Departamento de Electrónica,
Av. E. Madero 399, (C1106ACD) Buenos Aires, Argentina

*Corresponding Author (nlerende@itba.edu.ar)
Keywords: Floating Point Unit, Pipelining, Computer Architecture

Abstract
In this work the pipeline theory applied to computing systems is reviewed. The effects of the stage delay,
overhead stage delay, equalization factor and number of stages on the pipeline system performance are
analyzed. A pipeline design method to identify the optimum number of stages is proposed. This method
makes use of a trade-off expression that considers speed factor and hardware cost. The procedure is
applied to turn a sequential Floating Point Unit (FPU) into a Pipelined Floating Point Unit (PFPU) capable
to achieve a performance 600% larger. The effect of the physical limits on the PFPU maximum
performance is analyzed.

1. Introduction

The idea of splitting up any sequential process in stages in order to increase the performance has been
around for many years. Henry Ford applied this concept successfully in his Ford-T model assembly line,
increasing the number of units produced per day and making the Ford-T the most famous car of its time.

This splitting method, named pipelining, was further applied to processor architecture; initially to
enhance the processing speed in the classical fetch-decode-execute cycle [1], and then whenever a
sequential process is detected. Pipelining became a must-do approach when searching for better
performance.

In this work the pipelining theory and implementation are presented. A method to identify the optimum
number of stages is proposed. This method is further applied to turn a sequential Floating Point Unit (FPU)
into a Pipelined Floating Point Unit (PFPU). The processing speed and the hardware size for both
implementations are compared.

2. Pipelining Theory

Given an inherently sequential process that consumes an amount of time T, once the input has started
being processed the next input has to wait until the ongoing process finishes completely.

 Input Output

Two important parameters are:
- Time to Process a single Input (Latency): Once an input is pushed into the system, it takes a time T to

get the output available. This happens for every input.
- Time to Process N Inputs: If N inputs are entered to the system, it takes N*T to process the entire

input set.
If the whole process is symmetrically splitted up in k stages (meaning that each stage consumes a T/k

time), then each time one stage delivers its output to the next stage, the former is free to take a new input in.
The number k is known as the order of the pipeline.

 T

CACIC 2003 - RedUNCI 1414

 Input ... Output

 k stages

When the first input of the set is fed to the system, it takes a time T for the output to be available
(because the input has to pass all the processing stages). But things are now different for the following
inputs. While one input is being processed at the stage Stj the following input is being processed at the
stage Stj-1 (previous stage). Therefore, once the first system output is available the next one will be ready a
time T/k later. Theoretically, there is no lower limit for the stage delay as long as the order of the pipeline is
increased to the required level. As a consequence, if N inputs are sequentially fed to the pipelined system,
the processing of the entire input set takes:

 The Figure 1 illustrates a 3-Stage Operation Unit without and with Pipelining

Without Pipeline With Pipeline
 St1 St2 St3 St1 St2 St3

Figure 1: Non-Pipelined and Pipelined 3-Stage Operation Unit

T/k T/k T/k T/k T/k

T
T
k

N 1−()⋅+

First Input (Latency) Following N-1 Inputs

Without Pipeline: One operation starts execution AFTER
the preceding operation is completely finished. Hence most
of the hardware stays useless all the time (white cubes).
In this example, running 3 operations involves using 9 time
units.

With Pipeline: It is possible to start running one
operation per time unit, keeping all the hardware modules
running simultaneously. It can be seen that at the beginning
and the end some of the modules are resting, but if a great
quantity of operations are executed, the number of resting
modules become extremely small compared to the working
ones. Using the same example as for the non-pipelined case
the results are got in 5 time units, which is almost half the
time. When many operations are executed, almost all the
modules will be working all the time, hence the processing
capacity will be ´three times´ the non -pipelined system one.

Op1

Op2

Time

Op3

R1

R2

R3

Op1

Op2

Op3 R1

R2

R3

CACIC 2003 - RedUNCI 1415

If N is very high the time it takes to the system to produce the entire set of N outputs can be
approximated by:

N*
k
T

)1N(*
k
T

T ≅−+

indicating that in average each input will be processed in T/k units of time. The Figure 2 shows the Input
Average Processing Time (Time_per_Stage) as a function of N (number of inputs to process) when T=100
and k=5. When N=1 the Time_per_stage is equal to T.

Figure 2: Input Average Processing Time as a function of the Number of Inputs to process

3. Pipelining Implementation

The Pipelining technique consists of identifying any sequential stage in a process and organizing the
hardware in stages to maximize its performance. In practice, two factors negatively affect the pipeline
efficiency:
1) Although all stages in a pipeline must have the same length, this will be seldom achieved naturally in real

world applications. This problem is solved by forcing all stage processes to last as the slower one
(equalization). As presented in the Figure 2, this time, named stage delay, represents the average
time taken by the system to produce every output when N is high enough. The lower the stage delay,
the higher the system speed. The Figure 3 shows the stage equalization process.

 Original

 Ideal Pipelining

 Real Pipelining T

 Stage equalization Tr

Figure 3: Stage Equalization Process

When N is small, the latency of the
system can strongly affect the
average processing time.
When N is high the average time to
process an input tends to T/k.

* Note that the pipeline concept
requires that all stages have the
same processing time (Tst); one
stage output can not progress if
the next stage is busy.

Working
Idle

0 20 40 60 80 100

20

40

60

80

100
Pipeline Order vs Stage Delay

Time_per_Stage N()

T

k

N

CACIC 2003 - RedUNCI 1416

After the system has been equalized, the new latency Tr will be larger than the initial one (T). The
Equalization Ratio (EQR) can be defined as the ratio between the Equalized Stage Delay and the
Ideal Stage Delay:

2) Creating the stages not only has an associated increase in hardware to hold a stage output while the

next stage is still processing, but also adds an extra fixed delay to each stage, named Overhead Delay
(OD), related to that extra hardware. The Figure 4 illustrates this Overhead Delay.

 Tr/k+OD = Tp
Figure 4: Stage Overhead Delay

The OverHead Ratio (OHR= OD/Tp) indicates how much of the stage time is wasted in the
associated hardware (note that 0< OHR <1). When OHR is close to 1 the system spends most of its
time holding data without processing it. On the contrary, the nice empirical value OHR=0.001
indicates that 99.9% of the Stage Delay is used for processing.

The former two factors determine that the Stage Delay in a real system be:

It is clear that the term Tr/k diminishes when the order of the pipeline (k) increases, while the term OD
remains constant. When Tr/k has a similar magnitude than OD the increasing of the pipeline order will not
decrease the stage delay significantly. For instance, if T=100 , OD=0.1T and EQR=1.1, the Stage Delay
will be:

If k= 20, StageDelay=15.5; if k=22, StageDelay=15. In other words, a 10% increase in the stage number
caused only a 3.2% decrease in the StageDelay.

4. Real World Pipeline Design

The procedure described in the former section was applied by the authors to design a Pipelined Floating
Point Unit (PFPU). The PFPU is capable to perform the four basic operations (one at a time): addition (or
subtraction), multiplication and division, according to IEEE 754 standard for single precision [2][3][4]. The
original FPU was designed without pipeline [5]. The Figure 5 shows a simplified diagram of the PFPU
architecture. Information concerning hardware delays and number of gates was collected in order to make
a clear comparison of the performances of the Floating Point Unit with and without pipeline.

EQR

Tr

k

T

k

Tr
T

Equalized Stage
Delay
Stage Overhead
Delay

OD
k

Tr
StageDelay +=

10
k

110
T*1.0

k
T*1.1

StageDelay +=+=

CACIC 2003 - RedUNCI 1417

In order to make the analysis independent of the hardware technology used and extend its conclusions
to other designs, all delays are represented in units of ‘Transistor Delay Time’ (Td), which is defined as the
time it takes to a transistor to produce a stable output once a stable signal is present at its input. This time
depends on the chosen IC technology but it is fully documented by hardware manufacturers. All delays
shown in this work were obtained by simulating the designed hardware with the commercial OrCAD V.9
software product. The original PFPU operation blocks has the following processing times:
 Adder: 152 Td Multiplier: 48 Td Divider: 422 Td

Figure 5: PFPU Simplified Architecture

This design takes into account two main factors to decide the number of pipeline stages to implement:
1) Processing Speed: according to pipeline theory, increasing the number of stages while keeping low

OHR figures makes the FPU run faster
2) Hardware Cost (measured in quantity of digital gates used): A larger number of stages increases the

hardware cost of the system. There is an average quantity of transistors for all digital gates involved in
this design. This value is used to assess the hardware cost.

These two factors drives the designer to take a critical implementation decision. Therefore, it is convenient
to find out some analytical tool to assess the trade-off.

The procedure of choosing the optimum pipeline stage number requires that the hardware circuit be
carefully studied in order to propose possible “cut points” in the circuit to form the different pipeline stages.
Every time a pipeline stage is added, the stage delay is decreased (see Figure 6), but a quantity of latches
proportional to the quantity of data lines cut must be also added.

Figure 6: PFPU Stage Delay as a function of the number of stages

CACIC 2003 - RedUNCI 1418

This quantity of latches has a very wide range of variation, since the system may be cut in a place where 5
data lines have to be latched or in a place where 300 data lines must be latched.

The fact that there are certain places where the quantity of latches added is too high forces the designer
to cut the system before or after that place, increasing the difference of length between stages and making
the total stage delay bigger after the equalization. The criteria followed by the authors is that the quantity of
latches added must grow linearly with the number of stages added. The circuit was studied to propose
cutting points to implement a pipeline of order 1 to 10. The Figure 7 represents the number of logic gates
as a function of the pipeline stages.

Figure 7: Number of Logic Gates as a function of the Pipeline Order

For all operation modules, the slower data path was found (critical path) to determine the worst case
delay for each stage (critical delay). Since the divider block causes the largest critical delay for all stage
numbers considered and the system was designed to work synchronously, this delay is the chosen one for
this design. The latches used in this design add a constant delay equal to 10 Td to each stage of the
pipeline. The data collected is summarized in the Table 1.

The complete pipeline design procedure applied to the PFPU is the following:
A) Gathering of information concerning the possible places where ´cuts´ to introduce latches could be

made (cases k= 1 to 10 analyzed). As these ´cuts´ would leave asymmetric stages (e.g. it is not a
good idea to insert latches inside a full adder, since too much hardware would be involved), the time
taken by the stages differs from one another. Therefore the ´critical path´ concept, defined as the
longest time taken for any stage to fulfill its task, becomes very useful. As expressed above, this time is
measured using transistor delay times (Td) as normalized units. Independently of the number of stages
taken, the time used by all stages is completely defined by the divider circuit due to the fact that this
circuit is much slower than the multiplier and adder. As a consequence, both adder and multiplier will
have idle time.

B) Calculation of the critical path for all 10 pipeline orders taking into account that each time a pipeline
stage is added, a latch delay (overhead) must be added to the stage delay. The memory cells used in
this design have a time response delay of 10*Td. Note that the stage time falls nonlinearly with the
increasing number of stages (see Figure 6). This is due to the fact that the shorter the stage the
stronger the effect of the constant delay (overhead) of the latches (10*Td per latch). As shown in the
Table 1, for a 10-stage PFPU the 22 % of the delay is due to the latches.

A careful selection of the points in the
circuit to cut, leads to an almost linear
growth of the quantity of latches
employed as the pipeline order increases.

CACIC 2003 - RedUNCI 1419

C) Counting of the number of gates required for all ten pipeline orders to get an idea of the ´hardware
cost´ involved in each case. The number of logical gates used grows linearly with the number of
pipeline stages to implement (because the places of the circuit cuts were chosen carefully).

Table 1: Number of Logic Gates and Total Critical Delay as a function of the Pipeline Order in the

Pipelined Floating Point Unit

D) Normalizing of all of the collected data (forcing it to be between 0 and 1) in order to be used in an

optimization formula. This formula indicates how good the decision of using a determined order of
pipeline is. This formula takes into account the gain in speed related to a higher order of the pipeline,
the increase in hardware cost and the relative weight the designer allocates to these factors. The
optimization formula was defined as:

Where:

P is the Speed Weight (real number between 0 and 1).
k (pipeline order) is an index equal to the number of stages.

CACIC 2003 - RedUNCI 1420

In the PFPU design the speed was considered more important than the hardware cost. Speed Weight
was 60% and Hardware Weight 40%. With these parameters the former expression becomes:

When the Trade-Off expression is depicted as a function of k (see Figure 8) it is possible to identify the
maximum of the function. Its corresponding k-coordinate (7, in this case) represents the best pipeline
order for the PFPU regarding the assumptions stated.

Figure 8: PFPU Trade-off Evaluation Figure as a function of the Pipeline Order

5. Comparisons and conclusions:

The Table 1 shows that in the case of a first order pipeline (placing 1 series of latches at the output of
the operation blocks to hold the results calculated), the critical delay is 422*Td. The same system with a
seventh order pipeline structure has a critical stage delay of 71*Td, which represents a 600% increase in
the operation execution throughput. If the latches added to the system did not increase the stage delay the
increase in processing throughput would be 700%, as predicted by the pipeline theory.

The Trade-Off formula takes into account that increasing the pipeline order does not necessarily lead to
better performance. In this design the best choice was a 7-stage pipeline architecture.

While the increase of the pipeline stage delay has an intrinsic non-linear behavior (because of the
constant value of the overhead), the increase in hardware caused by the growing of the pipeline order can
be forced to be linear by making an intelligent selection of the ´cuts’ in the circuit. This fact guarantees the
scalability of the hardware associated.

There is a well defined limit for the increase in speed performance in a real world pipeline design, as
shown in the Delay/Pipeline Stage curve. This limit appears because as the stage delay becomes smaller
(the order of the pipeline grows), it becomes comparable to the overhead delay, that remains constant
regardless the pipeline order.

CACIC 2003 - RedUNCI 1421

6. References:
[1] A. S. Tanenbaun, “Structured Computer Organization”, Fourth Edition,

Prentice Hall,1999.
[2] “IEEE Standard for Binary Floating-Point Arithmetic”, ANSI/IEEE Standard 754, 1985.
[3] D. Goldberg, “What Every Computer Scientist Should Know About Floating-Point

Arithmetic”, Xerox Palo Alto Research Centre, 3333 Coyote Hill Road, Palo Alto.
[4] W. Kahan, “IEEE Standard 754 for Binary Floating Point Arithmetic, Lecture notes on

status of IEEE 754”, May 31, 1996.
[5] E. Balliriain, M. Falcón, P. Slavkin, "Diseño y simulación de una unidad de punto flotante

conforme a la norma IEE-754", Final Project, Electronics V, ITBA 2002.

CACIC 2003 - RedUNCI 1422

