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Abstract

Evolutionary algorithms (EAs) are merely blind search algorithms, which only make use of the
relative fitness of solutions, but completely ignore the nature of the problem. Their performance can
be improved by using new multirecombinative approaches, which provide a good balance between
exploration and exploitation. Even though in difficult problems with large search spaces a
considerable number of evaluations are required to arrive to near-optimal solutions.

On the other hand specialized heuristics are based on some specific features of the problem, and the
solution obtained can include some features of optimal solutions. If we insert in the evolutionary
algorithm the problem specific knowledge embedded in good solutions (seeds), coming from some
other heuristic or from the evolutionary process itself, we can expect that the algorithm will be
guided to promising sub-spaces avoiding a large search.

This work shows alternative ways to insert knowledge in the search process by means of the
inherent information carried by solutions coming from that specialised heuristic or gathered by the
evolutionary process itself. To show the efficiency of this approach, the present paper compares the
performance of multirecombined evolutionary algorithms with and without knowledge insertion
when applied to selected instances of the Average Tardiness Problem in a single machine
environment. 

Keywords: Average tardiness scheduling problem, Evolutionary scheduling, conventional
heuristics, problem-specific knowledge.
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Introduction

In a production system it is usual to stress minimum average tardiness to achieve higher client
satisfaction on the average. The Average Tardiness problem (11/n ∑ Tj) [3, 15], is an important
NP-hard scheduling problem which measures the adaptation of the system to client requirements. Its
minimization leads to a situation where it is less likely that the waiting time of any given job will be
unacceptably long.

Branch and Bound and other partial enumeration based methods, which guarantee exact solutions,
are prohibitively time consuming even with only 20 jobs. To provide reasonably good solutions in
very short time the scheduling literature offers a set of dispatching rules and heuristics. Depending
on the particular instance of the problem we are facing, some of them behave better than others.
Among others heuristics [11], evolutionary algorithms (EAs) have been successfully applied to
solve scheduling problems [17, 18]. Current trends in evolutionary algorithms make use of
multiparent [4, 5, 6] and multirecombinative approaches [7, 8, 9]. The latter we called, multiple-
crossovers-on-multiple-parents (MCMP). Instead of applying crossover once on a pair of parents
this feature applies n1 crossover operations on a set of n2 parents. In order to improve the balance
between exploration and exploitation in the search process a variant called MCMP-SRI [12, 13]
recombines a breeding individual (stud) by repeatedly mating individuals that randomly immigrates
to a mating pool. Under this approach the random immigrants incorporate exploration and the
multi-mating operation with the stud incorporates exploitation to the search process. 

If we are trying to incorporate knowledge to the blind evolutionary search process, the issue here is
how to introduce problem-specific knowledge? If optimality conditions for the solutions are known
in advance we can restrict the search operating only on solutions which hold these conditions. When
optimality conditions are unknown, which is the case, the answer is to provide information which is
gathered by the evolution process itself and resides in the elitist individual, or to import this
knowledge from solutions that come out from heuristics specifically designed for the problem under
consideration. Both kinds of knowledge-based intermediate solutions contain some of the features,
which are present in the best (optimal or quasi-optimal) solution at the end of the evolutionary
process.

Consequently, MCMP-SRSI, a latest variant, considers the inclusion of a stud-breeding individual
in a pool of random and seed-immigrant parents. Here, the seeds generated by conventional
heuristics or by the evolutionary process itself, introduce the problem-specific knowledge. Next
sections describe the average tardiness-scheduling problem, alternative ways to insert problem-
specific knowledge and discuss the results obtained.

1. The average tardiness scheduling problem

The problem [15] can be stated as follows: n jobs are to be processed without interruption on a
single machine that can handle no more than one job at a time. Job j (j=1,...,n) becomes available
for processing at time zero, requires an uninterrupted positive  processing time pj on the machine,
and has a due date dj by which it should ideally be finished.  For a given processing order of the
jobs, the earliest completion time Cj and the tardiness Tj = max{Cj -dj,0} of job j can readily be
computed. The problem is to find a processing order of the jobs with minimum average tardiness
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The problem has received considerable attention by different researchers. For many years its
computational complexity remained open until established as NP-Hard in 1989 [15].

2. Conventional approaches to the average tardiness problem

Dispatching heuristics assign a priority index to every job in a waiting queue and the one with the
highest priority is selected to be processed next. There are different heuristics [11] for the Average
Tardiness problem whose principal property is not only the quality of the results, but also to give an
ordering of the jobs (schedule) close to the optimal sequence. The following dispatching rules and
heuristics were selected to determine priorities, build schedules and contrast their outcomes with
those obtained by the evolutionary algorithms.

SPT (Shortest Processing Time first) the job with the shortest processing time is selected first and in
the final schedule jobs are ordered satisfying: p1 ≤ p2 ≤   … ≤ pn .

EDD (Earliest Due Date first) the job with earliest due date is selected first and in the final schedule
jobs are ordered satisfying: d1 ≤ d2 ≤   … ≤ dn .

SLACK (Least slack) he job with smallest difference between due date and processing time is
selected first first and in the final schedule jobs are ordered satisfying: d1-p1 ≤ d2-p2 ≤   … ≤ dn-pn .

Hodgson Algorithm: This heuristic provides a schedule according to the following procedure,
Step 1: Order the activities in EDD order.
Step 2: If there are no tardy jobs, stop; this is the optimal solution.
Step 3: Find the first tardy job, say k, in the sequence. 
Step 4: Move the single job j (1 ≤ j ≤ k ) with the longest processing time to the end of the sequence.
Step 5: Revise the completion times and return to step 2.

The algorithm is optimal for a related objective (unweighted number of tardy jobs) and can behave
well for some instances of average tardiness.

Rachamadagu and Morton Heuristic (R&M). This heuristic provides a schedule according to the
following priority,

with Sj = [dj – (pj + Ch)] is the slack of job j at time Ch, where Ch is the total processing time of the
jobs already scheduled, k is a parameter of the method (usually k =2.0) and pav is the average
processing time of jobs competing for top priority. In the R&M heuristic, also called the Apparent
Tardiness Cost heuristic, jobs are scheduled one at a time and every time a machine becomes free a
ranking index is computed for each remaining job. The job with the highest-ranking index, is then
selected to be processed next.

3. Multirecombination of random and seed immigrants with the stud

Multiple Crossovers per Couple (MCPC) [7, 8] and Multiple Crossovers on Multiple Parents
(MCMP) [9] are multirecombination methods, which improve EAs performance by reinforcing and
balancing exploration and exploitation in the search process. In particular, MCMP is an extension of
MCPC where the multiparent approach of Eiben [4, 5, 6] is included. Results obtained in diverse
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single and multiobjective optimization problems indicated that the searching space is efficiently
exploited by the multiple application of crossovers and efficiently explored by the greater number
of samples provided by the multiple parents. A further extension of MCMP is known as MCMP-
SRI [12, 13]. This approach considered the mating of an evolved individual (the stud) with random
immigrants. The process for creating offspring is performed as follows. From the old population,
the stud is selected by means of proportional selection and inserted in the mating pool. The number
of n2 parents in the mating pool is completed with randomly created individuals (random
immigrants). The stud mates every other parent, the couples undergo partial mapped crossover
(PMX) and 2n2 offspring are created. The best of these 2 n2 offspring is stored in a temporary
children pool. The crossover operation is repeated n1 times, for different cut points each time, until
the children pool is completed. Finally, the best offspring created from n2 parents and n1 crossover
is inserted in the new population. MCMP-SRSI [14, proposes to insert problem-specific-knowledge
by recombining potential solutions (individuals of the evolving population) with seeds, which are
solutions provided by other heuristics specifically intended to solve the scheduling problem under
study. In MCMP-SRSI, the process for creating offspring is similar to that of MCMP-SRI, except
that the mating pool contains also seed immigrants. In this way the evolutionary algorithm
incorporates problem-specific-knowledge supplied by the specific heuristic.

In the present work we propose different versions of the MCMP family:

a) Without knowledge insertion

MCMP-SRI, it works as above described.

b) With knowledge insertion, including the following MCMP-SRSI variants,

b1) internal knowledge insertion. Here the knowledge acquired during the evolutionary process
itself is inserted as a seed.

SRSI-E. After the second generation, the best individual found so far (the elitist individual), is
inserted in the mating pool as a unique seed individual along with the stud and random
immigrants.

SRSI-E-N. The mating pool is built as in SRSI-E variant but here a neighbourhood operator is
added to eliminate possible copies of the best individual. After a search for copies, this operator
replaces each copy by a neighbour created by random interchange of allele values. If more than
one copy exists then, a neighbour created by a single interchange replaces the first copy, another
neighbour created by two interchanges replaces the second copy, and so on. The idea is that
copies will be replaced by individuals that retain certain genetic characteristics of the best
individual, but differ more and more from this best individual as the number of copies
augments.

b2) external knowledge insertion. Here, solutions provided by other heuristics specifically
intended to solve the scheduling problem are inserted as seeds in the mating pool.

SRSI-H. Here, only one immigrant seed is inserted in the mating pool along with the stud and
random immigrants. This seed is selected as the schedule built by the best heuristic in the
corresponding instance. The seed belongs to every mating pool.
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b3) internal and external knowledge insertion. Here, both the best individual found so far
(elitist) and a solution provided by the best heuristic, are inserted as seeds in the mating
pool.

SRSI-H-E. During the first two generations the schedule built by the best heuristic, in the
corresponding instance, is inserted as a unique seed in the mating pool. In successive
generations, the elitist individual remains as the unique seed. The seed shares the mating pool
with the stud and random immigrants.

SRSI-H-E-N. The mating pool is built as in SRSI-H-E variant but here a neighbourhood operator
is added to eliminate possible copies of the best individual. The neighbourhood operator works
in the same way above described.

4. Experimental tests and results

As it is not usual to find published benchmarks for the Average Tardiness problem we built our own
test suite with data (pj ,dj ) extracted from 25 selected instances of the OR-library benchmarks for the
weighted tardiness problem, with 40-jobs problem size, [1,2]. This data was the input for
dispatching rules, conventional heuristics and our proposed multi-recombined EAs, MCMP-SRI
and MCMP-SRSI.

Instance SPT LPT EDD SLACK HODGSON R&M

1 40.23 106.68 13.05 19.85 22.18 25.30
6 94.60 314.38 116.68 132.35 88.55 95.70

11 214.28 676.25 292.65 350.78 203.08 228.00
19 542.85 991.68 773.78 808.05 557.45 610.35
21 525.43 1236.13 879.48 1036.38 805.40 616.03
26 51.33 97.23 0.40 0.90 0.40 5.58
31 150.08 427.75 93.95 99.53 100.83 84.95
36 233.10 617.88 353.78 377.30 199.88 232.63
41 413.65 980.10 667.68 709.78 400.70 471.83
46 375.33 1001.25 628.53 748.40 704.88 439.63
51 121.38 211.35 0.00 0.00 0.00 1.05
56 107.03 222.58 30.93 40.33 56.50 30.03
61 241.20 688.00 263.43 292.68 171.33 199.75
66 455.78 987.53 608.65 631.00 566.78 530.93
71 469.43 1059.28 670.50 789.10 800.25 538.43
76 42.38 171.30 0.00 0.00 0.00 0.00
81 162.88 348.90 4.85 7.10 28.58 7.20
86 207.70 599.63 127.35 139.23 157.03 128.70
91 404.28 903.35 558.25 583.23 477.90 383.68
96 658.40 1210.18 920.70 1009.35 872.85 767.30
101 76.70 112.45 0.00 0.00 0.00 0.00
106 180.25 412.40 0.00 0.00 0.00 0.00
111 397.63 727.25 333.85 350.55 441.70 275.23
116 325.78 894.18 412.00 457.85 509.23 319.13
121 598.78 1322.30 904.50 1030.98 941.65 654.80

Table 1. Average Tardiness values found by each heuristic
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To evaluate the dispatching rules and the conventional heuristics (SPT, EDD, SLACK, Hodgson
and R&M) we used PARSIFAL [11] which is a software package provided by Morton and Pentico,
to solve different scheduling problems by means of different heuristics.

The initial phase of the experiments consisted in to establish the best results from dispatching rules
and conventional heuristics to use them as upper bounds for this scheduling objective. These results
can be observed in table 1, where the first column identifies the instance number and the rest
indicate the Average Tardiness achieved by each approach. Boldfaced values indicate the best
(minimum) objective value, which will be used as an upper bound. 
Results in table 1, shows that EDD is the best in 32% of the cases (8 instances), then SPT follows
being the best in 28% of the cases (7 instances). Both best performers are followed by Hodgson and
R&M which are he best in 20% of the cases (5 instances).

The second phase of the experiments consisted in to establish adequate parameter settings for
MCMP-SRI and MCMP-SRSI and then to run a number of experimental series. After a series of
initial trials the best parameter setting was determined under each algorithm, as follows:
The maximum number of generations was fixed to 500 and 200 for MCMP-SRI and MCMP-SRSI,
respectively. Both algorithms run with a population size of 15 individuals, with n1 = 20, n2 = 18,
and crossover probability fixed at 0.65. Mutation probability was set to 0.0 and 0.05 for MCMP-
SRI and MCMP-SRSI, respectively. Series of ten runs where performed for each instance. To
compare the algorithms, the following relevant performance variables were chosen:

Ebest = ( (best value - opt_val)/opt_val)100
It is the percentile error of the best-found individual when compared with the known, or estimated
(upper bound) optimum value opt_val. It gives us a measure on how far the best individual is from
that opt_val. 

Mean Ebest: It is the mean value of Ebest throughout all runs.

Best: It is the minimum objective value corresponding to some of the best-found individuals
throughout all runs.

Max Best: It is the maximum objective value corresponding to some of the best-found individuals
throughout all runs.

Mean Best: It is the mean objective value obtained from the best-found individuals throughout all
runs.

Gbest:It is the generation where the best individual was found.

Mean Gbest: It is the mean generation number where the best individual was found, throughout all
runs.

Hit Ratio: Denotes the percentage of runs where the algorithm reaches the upper bound or
improves it. Its value is 1 (a 100% of success) when the upper bound is reached or improved in
every run.

Evals: Is the number of evaluations necessary to obtain the best-found individual in a run.
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Mean Evals: Is the mean number of evaluations necessary to obtain the best-found individual
throughout all runs.

Values of some of these performance variables, obtained under MCMP-SRI, are listed in the
following tables. Columns one to three indicate the instance number, the upper bound and the
heuristic providing that upper bound, respectively, the remaining columns indicate the performance
variable values. At the bottom of the tables, average, minimum and maximum Hit ratio, Avg Ebest
and Avg Evals values, are indicated.

Inst Upper
Bound

Provided
by

Best Max
Best

Mean
Best

Mean
Gbest

Hit Ratio Mean
Ebest

Mean
Evals

1 13.05 EDD 11.98 11.98 11.98 34.00 1.00 -8.20 174420
6 88.55 HDS 73.15 74.08 73.34 117.90 1.00 -17.18 604827

11 203.08 HDS 191.30 192.43 191.56 239.80 1.00 -5.67 1230174
19 542.85 SPT 509.25 514.07 511.25 377.60 1.00 -5.82 1937088
21 525.43 SPT 522.50 522.60 522.53 386.60 1.00 -0.55 1983258
26 0.40 EDD 0.40 0.40 0.40 22.60 1.00 0.00 115938
31 84.95 RM 71.32 71.88 71.43 230.70 1.00 -15.91 1183491
36 199.88 HDS 183.18 185.90 184.15 348.50 1.00 -7.87 1787805
41 400.70 HDS 374.50 378.10 376.76 359.20 1.00 -5.98 1842696
46 375.33 SPT 369.35 369.58 369.38 397.60 1.00 -1.58 2039688
51 0.00 EDD 0.00 0.00 0.00 34.10 1.00 0.00 174933
56 30.03 RM 16.17 17.00 16.28 198.00 1.00 -45.78 1015740
61 171.33 HDS 150.63 153.95 152.27 380.90 1.00 -11.12 1954017
66 455.78 SPT 395.90 396.00 395.95 431.90 1.00 -13.13 2215647
71 469.43 SPT 449.23 449.30 449.24 380.80 1.00 -4.30 1953504
76 0.00 EDD 0.00 0.00 0.00 5.20 1.00 0.00 26676
81 4.85 EDD 3.20 3.45 3.27 217.00 1.00 -32.52 1113210
86 127.35 EDD 82.55 85.07 83.29 388.10 1.00 -34.60 1990953
91 383.68 RM 329.98 330.63 330.14 407.30 1.00 -13.95 2089449
96 658.40 SPT 639.65 639.83 639.67 412.90 1.00 -2.84 2118177

101 0.00 EDD 0.00 0.00 0.00 5.50 1.00 0.00 28215
106 0.00 EDD 0.00 0.00 0.00 127.80 1.00 0.00 655614
111 275.23 RM 210.80 213.25 211.69 402.00 1.00 -23.09 2062260
116 319.13 RM 242.90 244.85 243.85 463.70 1.00 -23.59 2378781
121 598.78 SPT 576.57 576.68 576.60 448.40 1.00 -3.70 2300292

Avg 272.72 1.00 -11.10 1399074
Min 5.20 1.00 -45.78 26676
Max 463.70 1.00 0.00 2378781

From table 2 the following observations can be done:

MCMP-SRI outperforms all other heuristics improving the upper bounds except when EDD is
optimal (reaching the same optimal value), which is the case for instances 26, 51, 76, 101 and 106.
Recall that for this problem EDD provides an optimal schedule when the total tardiness is zero (and
consequently average tardiness is also zero) or when EDD produces one tardy job [11]. Mean Ebest
ranks from 0.0 to –45.78% with a global average value of –11.10%. Consequently, the Hit Ratio is
1 for each instance. These best values are obtained through a number of generations Gbest that goes

Table 2. MCMP-SRI. Values of the performance variables for the Average Tardiness problem
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from 5 to 474 (273 in average) which requires a number of evaluations Mean Evals ranking from
26,676 to 2,378,781 (1,399,074 in average).

A similar study was done for each MCMP-SRSI variant. In what follows we present tables
summarizing results of mean Ebest and mean Evals for each method.

MCMP
Instance SRI SRSI-E SRSI-E-N SRSI-H SRSI-H-E SRSI-H-E-N

1 -8.20 -8.20 -8.20 -8.20 -8.20 -8.20
6 -17.18 -16.72 -16.68 -17.09 -16.34 -17.14

11 -5.67 -5.42 -5.47 -5.74 -5.80 -5.24
19 -5.82 -5.94 -6.03 -5.74 -6.19 -6.19
21 -0.55 -0.56 -0.56 -0.56 -0.56 -0.56
26 0.00 0.00 0.00 0.00 0.00 0.00
31 -15.91 -15.72 -16.04 -15.98 -15.91 -16.04
36 -7.87 -8.23 -8.28 -8.08 -8.36 -8.36
41 -5.98 -5.75 -5.81 -5.81 -6.55 -5.99
46 -1.58 -1.59 -1.59 -1.59 -1.59 -1.59
51 0.00 0.00 0.00 0.00 0.00 0.00
56 -45.78 -37.95 -46.14 -46.05 -46.14 -46.14
61 -11.12 -11.71 -11.61 -11.83 -12.16 -12.15
66 -13.13 -13.14 -13.14 -13.08 -13.14 -13.14
71 -4.30 -4.30 -4.30 -4.30 -4.30 -4.30
76 0.00 0.00 0.00 0.00 0.00 0.00
81 -32.52 -34.02 -34.02 -34.02 -34.02 -34.02
86 -34.60 -35.40 -35.38 -35.03 -35.30 -35.21
91 -13.95 -14.00 -14.00 -13.78 -14.00 -14.00
96 -2.84 -2.85 -2.85 -2.85 -2.85 -2.85
101 0.00 0.00 0.00 0.00 0.00 0.00
106 0.00 0.00 0.00 0.00 0.00 0.00
111 -23.09 -23.27 -23.25 -22.73 -23.41 -23.41
116 -23.59 -23.89 -23.87 -23.41 -23.89 -23.87
121 -3.70 -3.71 -3.71 -3.71 -3.71 -3.71
Avg -11.10 -10.89 -11.24 -11.18 -11.30 -11.28
Min -45.78 -37.95 -46.14 -46.05 -46.14 -46.14
Max 0.00 0.00 0.00 0.00 0.00 0.00

Table3: Mean Ebest values 

Results in table 3 indicate that all MCMP evolutionary algorithms outperform conventional
heuristics showing improvements that range from 0 to 46% and an average value of about 11%.
Although their performance is similar, SRSI-E shows the lower and SRSI-H-E-N the higher
performance, respectively.
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MCMP
Instance SRI SRSI-E SRSI-E-N SRSI-H SRSI-H-E SRSI-H-E-N

1 174420 170829 127737 141588 8208 7695
6 604827 234954 230337 349353 15903 80028

11 1230174 574560 451953 540189 26163 47709
19 1937088 533520 563274 795150 75924 97983
21 1983258 409887 354996 399627 24111 90801
26 115938 127224 41040 12312 39501 6669
31 1183491 349866 339093 370899 62073 32832
36 1787805 557118 538650 646380 42066 47196
41 1842696 407835 376542 559683 54378 224694
46 2039688 477090 418608 451953 28215 83619
51 174933 212382 180576 5130 5130 5130
56 1015740 279072 430920 377568 12312 32319
61 1954017 675108 739746 807975 68742 88236
66 2215647 552501 573534 903906 71820 88749
71 1953504 407322 381159 546858 37449 52839
76 26676 33345 29241 5130 5130 5130
81 1113210 471447 384237 28728 6669 35397
86 1990953 630990 601749 698193 84132 251370
91 2089449 619704 730512 933660 69255 111834
96 2118177 444258 428355 738720 38988 55404
101 28215 29241 31806 5130 5130 6156
106 655614 286767 310365 5130 6669 6669
111 2062260 441180 505818 938277 44118 97983
116 2378781 641250 587898 943920 83106 86184
121 2300292 471447 435024 840294 38475 39501
Avg 1399074 401556 391727 481830 38147 67285
Min 26676 29241 29241 5130 5130 5130
Max 2378781 675108 739746 943920 84132 251370

Table4: Mean Eval values

Table 4 indicates the mean number of evaluations necessary to obtain the results shown in table 3.
Here, we can observe that MCMP-SRI (without knowledge insertion) is the most costly algorithm
needing 1,400,000 evaluations in average. All other variants including some kind of knowledge
reduce the number of evaluation in a range that goes from 65.5% (SRSI-H) to 97.3% (SRSI-H-E).

5. Conclusions

The scheduling problem of minimizing Average Tardiness in a single machine environment, is a
difficult problem by itself and some conventional heuristics were developed to provide optimal or
quasi-optimal solutions. In this work two of the latest multirecombined evolutionary algorithms
were contrasted against the most common, rapid, and good heuristics for the problem.

Evolutionary algorithms are robust search algorithms in the sense that they provide good solutions
to a broad class of problems which otherwise are computationally intractable. To improve EAs
performance, multi-recombined EAs allow multiple interchange of genetic material among multiple
parents (MCMP). To ameliorate the search process, by means of a better balance between
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exploration and exploitation, the concept of the stud and the random immigrants was inserted in
MCMP-SRI.

Nevertheless the robustness of EAs has as a drawback the kind of search process they perform: a
blind search that slightly addressed by the relative fitness of the solutions, completely ignores the
nature of the problem. In order to improve their performance we decided to insert problem-specific-
knowledge by recombining internal or external seeds in the evolutionary process. 

Results indicate that:

• Both multirecombined EAs produced solutions of higher quality (11% in average) than those
achieved by typical heuristics.

• MCMP-SRSI variants outperform the former MCMP-SRI. In particular their superiority is
strongly related to speed of convergence, perceptible in a reduction of the number of
evaluations that ranges from 65.5% to 97.3%.

Further work will be dedicated to find alternative ways to guide the evolutionary search for
different scheduling problems.
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