
Solving Parallel Problems by OTMP Model

F. Piccoli M. Printista

J.A. Gonz�alez C. Le�onJ.L. Roda C. Rodr��guez F. Sande

Universidad Nacional de San Luis. Cen tro Superior de Inform�atica.

Ej�ercito de los Andes 950, San Luis, Argentina. Universidad de La Laguna, Tenerife, Spain.

e-mail: fmpiccoli@unsl.edu.arg

Abstract

Since the early stages of parallel computing, one of the most common solutions to in tro-
duce parallelism has been to extend a sequential language with some sort of parallel version
of the for construct, commonly denoted as forall construct. Although similar syntax, these
forall loops di�er in their semantics and implementations. The High Performance Fortran
(HPF) and OpenMP versions are, likely, among the most popular. This paper presents yet
another forall loop extension for the C language.

In this work, we introduce a parallel computation model: One Thread Multiple Processor
Model (OTMP). This model proposes an abstract machine, a programming model and cost
model. The programming model de�nes another forall loop construct, the theorical machine
aims for both homogeneous shared and distributed memory computers, and the cost model
allo ws the prediction of the performance of a program. OTMP does not only in tegrates
and extends sequential programming, but also includes and expands the message passing
programming model. The model allows and exploits any nested levels of parallelism, taking
advan tage of situations where there are several small nested loops.

Keywords: Computation Model, Abstract Machine, Programming Model, Cost Model.

1 Introduction

When compared parallel computing with that of sequential computing, the current situation is
di�erent. No single model of parallel computation has yet come to dominate developments in
parallel computing in the w aythat von Neumann model has dominated sequential computing.
The aims of parallel computing model are: to describe classes of arc hitectures in simple and
realistic terms and, to propose the design methodology of parallel algorithm. It provides an
abstract view of both the technologies and applications. An abstract model de�nes such as the
algorithms are designed and analyzed in the abstract model and coded in programming model.

The design of parallel programs requires fancy solutions that are not present in sequential
programming. Thus, a designer of parallel applications is concerned with the problem of ensuring
the correct behavior of all the processes that the program comprises.

Generally, a programming model describes a programmer's view of the parallel systems. It
has a di�erent meaning in other areas of computer science, but in particular, it often stands
for complete semantics of a language. A good parallel programming model has to satisfy the
next properties: Programmability, Re
ectivity, Cost model, Architecture independence and

exibility[8].

In this paper, w epresent OTMP computation model, its abstract machine and, its paral-
lel programming model, valid to distributed memory machines and shared memory machines.

CACIC 2003 - RedUNCI 433

Although, there are others similar models, HPF[6] and OpenMP[11], OTMP has several di�er-
ences with their current versions.
The next section presents the theorical machine, the programming model: syntax and semantic,
and the associated complexity model. Section three deals load balancing issues and mapping
and scheduling policies used. Finally, the section four shows many examples and computational
results.

2 OTMP Model

One of the most common solutions to in troduce parallelism has been to extend a sequential
language with a short set of parallel constructors. Such constructor are a version of the for
construct, commonly denoted as for all construct. This model proposes another forall loop
extension for the C language. These extensions are aimed both for homogeneous distributed
memory and shared memory architectures.

This model has several di�erences with other model [6][11]. The most important are:

� The parallel programming model introduced has associated a complexity model that allows
the analysis and prediction of the performance.

� It allo ws and exploits any nested levels of parallelism, taking advan tage of situations where
there are several small nested loops: although each loop does not produce enough work to
parallelize, their union suÆces. The recursive divide and conquer algorithms are the most
paradigmatic example.

� It does not only integrates and extends the sequential programming model but also includes
and expands the message passing programming model.

2.1 Abstract Machine

OTMP theorical computer is a machine composed of a number of in�nite processors, each one
with its own private memory and a net w orkin terface connecting them. The processors are
organized in groups. At any time, the memory state of all the processors in the same group is
identical. An OTMP computation assumes that they also ha vethe same input data and the
same program in memory. The initial group is composed of all the processors in the machine.
Each processor is a RAM machine [1], the only di�erence among them is an in ternal register,
the NAME of the processor. This register is not available to the programmer. According to this
de�nition, every real parallel machine is a OTMP machine.

2.2 Syntax and Semantic

The programming model being introduced, extends the classic sequential imperative paradigm
with a new construct: parallel loops. The model aims for both distributed and shared memory
arc hitectures. The implementation on the last can be considered the \easy part" of the task.

The programmer with the parallel loops

forall(i= �rst;i<= last;(r[i],s[i]))

compound_statement_i

states that the di�erent iterations i of the loop can be performed independently in parallel.
(r[i],s[i]) is the memory area of the results of the i -th iteration, where r[i] points to �rst positions
and s[i] is the size in bytes.

When reaching the former forall loop, each processor decides in terms of its NAME the cor-
responding initialization of i and its subsequent value of the register NAME. Each independent

CACIC 2003 - RedUNCI 434

thread compound statement i is executed b y a subgroup. The simple equations performed b y
any processor NAME ruling the division process are:

Number of iterations to do: M = last� first+ 1 (1)

Iteration to do: i = first+NAME %M (2)

for (j = 1; j < M; j++)

neighbor[j] = � + (NAME + j) %M (3)

where � is given b y:� = M � (NAME =M)

New value of register: NAME = NAME =M (4)

These equations decide the mapping of processors to tasks, and ho wthe exc hangeof results
will take place. After the for all is �nished, the processors recover their former value of NAME.

Each time a forall loop is executed, the memory of the group, up to that point contains
exactly the same values. At suc hpoint the memory is divided in tw oparts: the one that is
going to be modi�ed and the one that is not changed inside the loop. V ariables in the lastset
are a vailable inside the loop for reading.The others are partitioned among the new groups.

The last parameter in the forall has the purpose to inform the new \ownership" of the part
of the memory that is going to be modi�ed. It announces that the group performing thread i
\owns" (and presumably is going to modify) the memory areas delimited by (r[i]; s[i]). r[i] + j

is a pointer to the memory area containing the j-th result of the i-th thread.
T oguarantee that after returning to the previous group, the processors in the father group

have a consistent view of the memory and that they will behave as the same thread, it is necessary
to provide the exc hangeamong neighbors of the variables that w eremodi�ed inside the for all
loop. Let us denote the execution of the body of the i-th thread (compound statement i) b y
Ti. The semantic imposes tw o restrictions:

1. Given t w o di�erent independent threads Ti and Tk and tw o di�erent result items r[i] and
r[k], it holds:

[r[i]; s[i]]
T
[r[k]; s[k]] = ; 8i; k

2. For any thread Ti and any result j, all the memory space de�ned by [r[i] + j; s[i]] has to
be allocated previously to the execution of the thread body. This makes impossible the
use of non-contiguous dynamic memory structures.

The programmer has to be specially conscious of the �rst restriction: it is mandatory that
the address of an ymemory cell written during the execution of Ti has to belong to one of the
intervals in the list of results for the thread. As an example, consider the code in �gure 1.

1 forall(i=1; i<=3; (ri[i], si[i]))

2 f ...

3 forall(j=0; j<=i; (rj[j], sj[j]))f
4 int a, b;

5 ...

6 if (i % 2 == 1)

7 if (j % 2 == 0)

8 send(j+1, a, sizeof(int));

9 else receive(j-1, b, sizeof(int));

10 ...

11 g
12 ...

13 g

Figure 1: Two nested foralls

Initially, the in�nite processors are in the same group, represented b y the root of the tree in

CACIC 2003 - RedUNCI 435

�gure 2. All the processors are executing the same thread and ha veidentical values stored in
their local memory. Applying equations 1, 2, 3 and 4, the parallel loop in line 1 of �gure 1 divides
the group in three. After the execution of the loop, and to keep the coherence of the memory,
each processor exchanges with its two neighbors the corresponding results. Thus, processor 0 in
the group executes iteration i = 1 and sends its memory area, (ri[1],si[1]) to processors 1 and
2. F urthermore, it receives from processor 1 (ri[2],si[2]) and from processor 2 (ri[3], si[3]). The
same exchange is repeated among the other corresponding triplets ((3; 4; 5); (6; 7; 8); : : :). Every
new nested forall creates/structures the current subgroup according as a M-ary h ypercube,
where M is the number of iterations in the parallel loop and the neighborhood relation is given
by formula 3. Thus, this �rst for allproduces \the face" of a ternary hypercubic dimension, where
ev ery corner has tw o neighbors. The second nested forall at line 3 requests for di�erent number

Figure 2: The mapping associated with the tw o nestedfor all in �gure 1

of threads in the di�erent groups. F orexamples, to the last group (i = 3) executes a for all of
size 4, and consequently the group is partitioned in 4 subgroups. In this 4-ary dimension, each
processor is connected with 3 neighbors in the other subgroups. Therefore, at the end of the
nested compound statement, processor 17 will send its data, rj[1], to processors 14, 20 and 23
and will receive from them their data rj[0], rj[2] and rj[3].

2.3 Others Clauses

The OTMP model admits several coherent extensions, in this section we present tw o:reduction
clauses and global communication.

The reduction clauses have syntax and semantic similar to the above forall, its simpli�ed
syntax is

forall R(i= �rst;i<= last;(r[i],s[i]);f r[i];(rr[i],sr[i]))

f
compound_statement_i;

f r;

g

The for all R works of the same w aythat forall, divides the processors, executes in parallel
compound statement i over owns data and exc hanges the results, r. When all is done, eac h
processor reduces the results through f r. The result of f r is rr and it has size sr. The f r can
be any function, but it is mandatory that it has to be commutative and associative.

Other OTMP clauses are the global communication clauses: result and result P. Their func-
tion is to communicate partial results among ev ery processors belong distinct groups. The

CACIC 2003 - RedUNCI 436

di�erence between result and result P is, the �rst only communicates the same data to ev-
ery processors in the other groups, and result P communicates data to every processors in the
other groups, but the data are di�erent and depend of the receptor processor's group. The
corresponding syntax is

result(i,data[i],s[i])

result P(i,data to[i],s to[i],data from[i], s from[i])

where i identi�es the task, Ti. In the �rst clauses, data[i] points to the data of Ti and s[i] is its
size. In the second clauses, data to[i] is a pointer to the memory area containing the data to
send to Ti, and s to[i] contains its size. data from[i] and s from[i] have the same function, but
to received data of Ti. These clauses are similar to functions gather and scatter in standards
library such as MPI [10], but one of di�erences is the neighborhood relation, it takes place every
that the exchanging of data is necessary.

2.4 Cost Model

In this section, w eanalyze the cost of the forall loop. A similar analysis is required to other
clauses.

The complexity T (P) of any OTMP program P can be computed in what refer to sequential
ordinary constructs (while, for, if, . . .) as in the RAM machine [1]. The cost of the for all loop
is given by the recursive formula:

T (forall) = A0 +A1 �M +
e2

max
i=e1

(T (Ti)) +

e2X

i=e1

(g �Ni) + L (5)

where Ti is the code of compound statement i, M is the size of the loop and Ni is the size of the
message transferred in iteration i,

M = (e2 � e1 + 1) Ni =
Pm

k=1 ski

A0 is the constant time invested computing formulas 1, 2 and 4. A1 is the time spent �nding the
neighbors (formula 3). Constant g is the inverse of the bandwidth, andL is the startup latency.
Assuming the rather common case in which the volume of communication of eac hiteration is
roughly the same

N � Ni � Nj 8i 6= j = e1; e2

F romformula 5 and from the fact that in current machines the scheduling and mapping time
A0 +A1 �M is dominated by the communication time

Pe2
i=e1

(g �Ni +L), it follo ws the result
that establishes when an independent for loop is worth to convert in a forall :

T (forall) � T (for),M � (g �N) + L+
e2

max
i=e1

T (Ti)�

e2X

i=e1

T (Ti) (6)

A remarkable fact is that the OTMP machine not only generalizes the sequential RAM but also
the Message P assingProgramming Model. Lines 6-8 in �gure 1 illustrate the idea. Each new
forall \creates" a communicator (in the MPI sense). The execution of lines 7 and 8 in the fourth
group (i=3) implies that thread j=0 sends a to thread j=1. This operation carries that, at the
same time that processor 2 sends its replica of a to processor 5, processor 14 sends its copy to
processor 17 and so on. T osummarize: an ysend or receive is executed b y the in�nite couples
involv ed.Still, the tw o aforementioned constraints have to be true. Any variable modi�ed inside
the loop and non local to the loop has to be allocated before the loop and has to inform it.

CACIC 2003 - RedUNCI 437

3 Mapping and Scheduling

Unfortunately, an in�nite machine, suc has that described in the previous section, is only an
idealization. Real machines ha vea restricted n umber of processors. Each processor has an
internal register NUMPROCESSORS where stores the n umber of available processors in its
current group. Three di�erent situations have to be considered in the execution of a for all
construct with M = e2 � e1 + 1 threads:

� NUMPROCESSORS is equal to 1;

� M is larger or equal than NUMPROCESSORS;

� NUMPROCESSORS is larger than M;

The �rst case is trivial. There is only one processor that executes all the threads sequentially ,
and there is not opportunity to exploit any intrinsic parallelism.

The second case has been extensively studied as
at parallelism. The main problem that
arises is the load balancing problem. T odeal with it, several scheduling policies ha vebeen
proposed [11]. Many assignment policies are also possible: block, cyclic-block, guided or dynamic.

The third case was studied in the previous section. But the fact that the number of available
processors is larger than the number of threads introduces several additional problems: the �rst
is load balancing. The second is that, not anymore, the groups are divided in subgroups of the
same size.

If a measure of the w orkwi per thread Ti is available, the processors distribution policy
viewed in the previous section can be modi�ed to guarantee an optimal mapping [3]. The
syntax of the forall is revisited to include this feature:

forall(i= �rst; i<= last; w[i]; (r[i], s[i]))

compound_statement_i

If there are not w eights speci�cation, the same w orkload is assumed for every task. The
semantic is similar to that proposed in [2]. Therefore, the mapping is computed according to a
policy similar to that sketc hed in [3]. The �gure 3 shows the applied mapping algorithm. There
is, how ever, the additional problem of establishing the neighborhood relation. This time the
simple one� to� (M � 1) hypercubic relation of the former section does not hold. Instead, the
h ypercubic shape is distorted to a polytope holding the property that each processor in every
group has one and only one incoming neighbor in any of the other groups.

1 for(i = 0; i< M; i++)

2 p_i = 1;

3 for(j = M+1 ; j< NUMPROCESSORS; j++)

4 f
5 Get p_k such as w k

p k
� max i = 2; : : : ; M w i

p i
;

6 p_k= p_k + 1;

7 g

Figure 3: Optimal Mapping Algorithm

This algorithm satis�es with the postulate of optimal mapping.

4 Examples

Many examples have been chosen to illustrate the use of the OTMP model: Matrix Multipli-
cation, Fast F ourier Transform, QuickSort and Parallel Sort by Regular Sampling. The results
are presented for several machines and we use the current soft ware system that consists of a C
compiler and a run time library, built on top of MPI.

CACIC 2003 - RedUNCI 438

4.1 Matrix Multiplication

The problem to solve is to compute tasks matrix multiplications (Ci = Ai�Bi i = 0; : : : tasks�
1). Matrix Ai and Bi ha verespectively dimensions m� qi and qi �m. Therefore, the product
Ai�Bi tak es a number of operations w[i] proportional to m2�qi. Figure 4 shows the algorithm.
V ariablesA, B and C are arrays of pointers to the matrices. The loop in line 1 deals with the
di�erent matrices, the loops in lines 5 and 7 traverse the rows and columns and �nally, the
innermost loop in line 8 produces the dot product of the current row and column. Although
all the for loops are candidates to be converted to forall loops, we will focus on tw ocases: the
parallelization of only the loop in line 5 (labeled FLAT in the results, �gure 5) and the one shown
in �gure 4 where additionally, the loop at line 1 is also converted to a forall (label NESTED in
�gure 5). This example illustrates one of the common situation where you can take advan tage

1 forall(i = 0; i < tasks; w[i]; (C[i], m * m))

2 f
3 q = ...;

4 Ci = C+i; Ai = A+i; Bi = B+i;

5 forall(h = 0; h < m; (Ci[h], m))

6 f
7 for(j = 0; j < m; j++)

8 for(r = &Ci[h][j], *r=0.0, k=0; k<q; k++)

9 *r += Ai[h][k] * Bi[k][j]

10 g
11 g

Figure 4: Exploiting 2 levels of parallelism

of nested parallelism: when neither the inner loop (lines 5-10) nor the external loop (line 1)
have enough w orkto have a satisfactory speedup, but the combination of both does. We will
denote b y SPR(A) the speedup of an algorithm A with R processors and b y TP (A) the time
spent executing algorithm A on P processors. Let us also simplify to the case when all the inner
tasks tak ethe same time, i.e. qi = m. Under this assumptions, the previous statement can be
rewritten more precisely:

Lemma 1

L etbe

tasks < P , SPP (inner) < SPP=tasks(inner) and tasks� (g �m2) + L � TP=tasks(inner)

then

SPP (FLAT) < SPP (NESTED)

The �gure 5 shows the expressed before for this example. Both matrix have dimensions 45� 45.
The number of task is 8, and to when the number of processors is 2 and 4, there are processor
virtualization. In all case and to di�erent arc hitectures, the nested parallelism works well.

Moreover, when the size of the problems to solv eis large, the speedup grows to be quasi-
lineal. We check that the speedup reached is linear as it sho ws�gure 6. In the next examples
w e will concentrate in the more interesting case where the nested loops are small and, according
to the complexity analysis, there are few opportunities for parallelization.

4.2 Fast F ourierTransform

The Discrete F ouriertransform is widely used in solving problems in science and engineering.
It is de�ned as

A(j) =
1

N

N�1X

k=0

a(k)e�2�ikj=N (7)

CACIC 2003 - RedUNCI 439

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s.

)

No. of processors

Matrix N=46 Tasks=4 Cray T3E

FLAT
NESTED

(a) Cra yT3E

2 3 4 5 6 7 8

0.4
0.5

0.6
0.7

0.8
0.9

1.0

NP

Tim
e

Flat

Nested

(b) Origin 2000

Figure 5: Nested versus Flat parallelism

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

No. of processors

Matrix N=500 Tasks=4 Cray T3E

Large Size

Figure 6: Speedup reached for large size problems

The OTMP code in �gure 7 implements the Fast Fourier Transform (FFT) algorithm developed
by Tukey and Cooley [4]. P arameterWk = e�2�ik=N contains the pow ers of theN -th root of the
unity.

The �gure 8 shows the computational results for such implementation on a SGI Origin 2000
and CRAY T3E . The speedup curve behaves according to what a complexity analysis following
formula 5 predicts. Moreover, when the size of problem is small, the communications in
uence
on the performance.

4.3 QuickSort

The w ell-known quicksort algorithm [5] is a divide-and-conquer sorting method. As suc h, it
is amenable to a nested parallel implementation. This example is specially in teresting, since
the size of the generated sub-vectors are used as w eights for the forall, see �gure 9, line 14.
Remember that, depending on the goodness of the pivot c hosen, the new subproblems may have
rather di�erent weights.

Figure 10 presents the speed-ups on a digital Alpha Server, an Origin 2000, an IBM SP2, a
CRAY T3E and a CRAY T3D. The size of the problem was 1MB integers.

CACIC 2003 - RedUNCI 440

1 void llcFFT(Complex *A,Complex *a,Complex *W,

unsigned N,unsigned stride,Complex *D)f
2 Complex *B, *C, Aux, *pW;

3 unsigned i, n;

4

5 if(N == 1) f
6 A[0].re = a[0].re;

7 A[0].im = a[0].im;

8 g
9 else f
10 n = (N >> 1);

11 forall(i = 0; i <= 1;(D+i*n , n))

12 f
13 llcFFT(D+i*n,a+i*stride,W,n,stride<<1,A+i*n);

14 g
15 B = D; /* Combination phase */

16 C = D + n;

17 for(i = 0,pW = W; i<n; i++,pW += stride) f
18 Aux.re = pW->re*C[i].re - pW->im*C[i].im;

19 Aux.im = pW->re*C[i].im + pW->im*C[i].re;

20 A[i].re = B[i].re + Aux.re;

21 A[i].im = B[i].im + Aux.im;

22 A[i+n].re = B[i].re - Aux.re;

23 A[i+n].im = B[i].im - Aux.im;

22 g
25 g
26 g

Figure 7: The OTMP implementation of the FFT

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 5 10 15 20 25 30 35

S
pe

ed
-u

p

Processors

64 Kb
256 Kb

1024 Kb

(a) Cra yT3E

2 3 4 5 6 7 8

1.5
2.0

2.5
3.0

3.5
4.0

NP

Sp
ee

du
p

64

512

1024

(b) Origin 2000

Figure 8: FFT. Di�erent sizes.

4.4 Parallel Sorting b yRegular Sampling

Parallel Sorting by Regular Sampling(PSRS) is an parallel sorting algorithm proposed by Li et
all[9]. It is an example of simple and synchronous algorithm, and has been shown e�ective for
a wide variet y of MIMD architecture.

PSRS w orkswith p process and assumes that the input list has n unsorting elements. It
arises in four synchronous phases:

� Phase 1
Each of the p processors uses the sequential quicksort algorithm to sort a local dnp e elements.
The n elements no wform p independent lists. Each processor selects, among its sorted

CACIC 2003 - RedUNCI 441

1 void qs(int *v, int first, int last) f
2 int w[2]; /* weight vector */

3 int pos f[2],pos l[2]; /* first and last of each partition*/

4 int pivot, i, j;

5

6 select(v, first, last, *pivot);

7 i=first; j=last;

8 partition(v, &i, &j, pivot);

9 /* setting each subproblems and weight vector*/

10 w[0]=(j-first+1); w[1]=(last-i+1);

11 pos f[0]=first; pos f[1]=i;

12 pos l[0]=j; pos l[1]=last;

13

14 forall(i=0; i<=1; w[i]; (v+pos f[i],w[i]*sizeof(int)))

15 qs(v, pos [i],pos l[i]);

16 g

Figure 9: The OTMP implementation main of QuickSort

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 2 4 6 8 10 12 14 16

S
pe

ed
-u

p

No. of processors

Matrix N=46 Tasks=4 Cray T3E

Digital
SGI
SP2

Cray T3E
Cray T3D

Figure 10: QuickSort. Size of the vector: 1M

data, a sorted list as regular sample.

� Phase 2
One processor gathers and sorts every local samples. Finally, it selects p� 1 piv ots value
from list of regular samples. At this point, eac h processors knows the �nal pivots list and
partitions its sorted data into p disjoint pieces, the pivot v alues are the separators betw een
the pieces.

� Phase 3
Each processor i keeps its ith partition and assigns the jth partition to processor j. Each
processor keeps one partition and reassigns p� 1 other partitions to other processors.

� Phase 4
Each processor merges its p partition into a single list. The concatenation of ev erypro-
cessor's lists obtains the �nal sorted list with n elements.

OTMP algorithm to PSRS is shown in �gure 11. T osolv ethe problem, it uses the global
communication constructors, line 14 and 23. This algorithm is di�erent to original propose,
ev ery processes have ev ery samples and don't need extra communications to know the �nal
pivots.

The quicksort in line 17 can be replaced by a merge of NUMPROCESSORS sorted list of
samples.

CACIC 2003 - RedUNCI 442

1 void PSRS(int i, int *v, int size, int *V, int *size_V)f
2 int j, k;

3 int *Samples, sample st; /*Samples vector and stride in v to obtain samples*/

4 int *Pivots, pivot st; /*Pivots vector and stride in Samples to obtain pivots*/

5 int *to task; /*First list to each process*/

6 int *res o task, *from size; /*List of received data from other process and its size*/

7

8 int v Local; /*Data list of local process*/

9

10 /* ================== Phase 1 =================*/

11 quicksort(v, size);

12 for ((k=0,j=i*NTASK); k<NTASK; (k+=sample st,j++))

13 Samples[j]= v[k];

14 result(i,Samples+(i*NTASK), NTASK*sizeof(int));

15

16 /* ================== Phase 2 ================*/

17 quicksort(Samples, NTASK*NTASK);

18 for(k=0,j=1;j<=(NTASK-1);k++,j++)

19 Pivots[k]=Samples[(j*NTASK + pivot st)-1];

20 divide list(v, Pivots, to task);

21

22 /* ================== Phase 3 ================*/

23 result P(i,v,to_task,res o task,from size);

24

25 /* ================== Phase 4 ===============*/

26 V= merge list(v Local, res o task, from size, size V);

27 g

Figure 11: The OTMP implementation of the PSRS

The �gure 12 sho wsthe main function. The problem is solved b yNUMPROCESSORS

tasks. Each task w orksin parallel over SIZE
NUMPROCESSORS data. V is the output vector, it is

sorted. After the forall not is necessary an ycommunications, ev ery processes ha vethe total
sorted vector.

1 void main(argc, argv)f
2 int i, size, new_size;

3 int *v, *V;

4

5 size= SIZE/NUMPROCESSORS;

6 v = calloc(size, sizeof(int));

7 V = calloc(SIZE, sizeof(int));

8

9 initialize(v, size);

10 forall(i=0; i<=NUMPROCESSORS-1; (V[i],new size[i]))

11 PSRS(i,v,size[i],(V[i]),&(new size[i]))

12 g

Figure 12: The OTMP main function of PSRS

The OTMP PSRS is an algorithm easy to understand and follow. The computational
results are not reported because we are taking and analyzing their.

5 Conclusions and Future Work

OTMP is a computation model o�ers: simplicity, easiness of programming, improvement of the
performance (does not in troduce any overheadfor the sequential case), portability, and a cost
model associated. In addition to these characteristics, the model extend not only the sequential
but the MPI programming model.

OTMP has several di�erences with most current versions of HPF and OpenMP. One is that

CACIC 2003 - RedUNCI 443

the parallel programming model introduced has a complexity model that allows the analysis and
prediction of performance. The other is that it allows exploits any nested levels of parallelism,
taking advantage of situations where there are several small nested loops: although eac hloop
does not produce enough work to parallelize, their union suÆces. P erhaps the most paradigmatic
example of such family of algorithms are recursive divide and conquer algorithms.

We have a prototype for the model. Many issues can be optimized. Even incorporating
these improvements, the gains for distributed memory machines will never be equivalent to
what can be obtained using raw MPI. Results obtained prove the feasibility of exploiting nested
parallelism with the model. How ev er,the combination of every its properties makes worth the
research and development of tools oriented to this model.

Acknowledgments

We wish to thank the Universidad Nacional de San Luis and the ANPCYT from which we receive
continuous support. Also to the european centers: EPCC, CIEMAT, CEPBA and CESCA.

References

[1] Aho, A. V. Hopcroft J. E. and Ullman J. D.: The Design and Analysis of Computer Algo-
rithms, Addison-Wesley , Reading, Massach usetts, (1974).

[2] Ayguade E., Martorell X., Labarta J, Gonzalez M. and Navarro N. Exploiting Multiple
Levels of Parallelism in OpenMP: A Case Study Proc. of the 1999 International Conference
on Parallel Processing, Aizu (Japan), September 1999.

[3] Blikberg R., S�revik T.. Nested parallelism: Allocation of processors to tasks and OpenMP
implementation. Proceedings of The Second European Workshop on OpenMP (EWOMP
2000). Edinburgh, Scotland, UK. (2000).

[4] Cooley, J. W. and Tukey, J. W.: An algorithm for the machine calculation of complex Fourier
series, Mathematics of Computation, 19, 90, (1965) 297{301.

[5] Hoare, C. A. R.: Quicksort, Computer Journal, 5(1), (1962) 10{15.

[6] HPF F orum: HPF Language Speci�cation. V ersion 2.0
h ttp://dacnet.rice.edu/Depts/CRPC/HPFF/ versions/hpf2/hpf-v20/index.html (1997)

[7] Keller, J. Kesler, C. Larsson, J.. Practical PRAM programming. John Wiley & Sons inc.
(2001)

[8] Leopold, C. P aralleland Distributed Computing: A survey of models, paradigms, and ap-
proaches. John Wiley & Sons inc. (2001)

[9] Li, X. Lu, P .Sc hae�er, J. Shillington, J. Wong, P .Shi, H.. On the V ersatilit yof P arallel
Sorting b y Regular Sampling. T ech. Report TR 91-06. Universit y of Alberta, Edmonton,
Alberta, Canada. (1992)

[10] MPI F orum: MPI-2: Extensions to the Message-Passing Interface, h ttp://www.mpi-
forum.org/docs/mpi-20.ps.Z (1997).

[11] OpenMP Architecture Review Board: OpenMP Speci�cations: F ORTRAN 2.0.
h ttp://www.openmp.org/specs/
mp-documents/fspec20.ps (2000).

CACIC 2003 - RedUNCI 444

