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Abstract

In this work, we present an integral scheduling system for non-dedicated clusters, termed
CISNE-P, which ensures the performance required by the local applications, while simultane-
ously allocates cluster resources to parallel jobs. Our approach solves efficiently the problem
by using a social contract technique. This kind of technique is based on making reserves of the
computational resources, preserving a predetermined response time to local users.

CISNE-P is a middleware which includes both a previously developed space-sharing job
scheduler and a dynamic coscheduling system, a time sharing scheduling component. The
experimentation performed in a Linux cluster shows as these two schedulers components are
complementary and a good coordination improves global performance significantly. We also
compare two different CISNE-P implementations: one developed inside the kernel, and the
other entirely implemented in the user space.

Keywords: space and time sharing scheduling, coscheduling, social contract.

Resumen

En este trabajo, presentamos un sistema integral de planificacion para clusters no dedicados
llamado CISNE-P, el cual asegura el rendimiento especificado por los usuarios locales y al
mismo tiempo asigna de forma simultanea recursos del cluster a los trabajos paralelos. Nuestra
propuesta soluciona eficientemente el problema usando una técnica de contrato social. Esta
clase de técnica se basa en realizar reservas de los recursos de computo, preservando de este
modo un determinado tiempo de respuesta predeterminado a los usuarios locales.

CISNE-P es un midleware que incluye un planificador de espacio compartido desarrollado
con anterioridad y un sistema de coplanificacién dindmico, un tipo de planificador de tiempo
compartido. La experimentacién realizada en un cluster Linux muestra como los dos planifi-
cadores son complementarios y una buena coordinacion entre ellos mejora su rendimiento de
forma significativa. También se ha comparado dos implementaciones de CISNE-P: una desar-
rollada dentro del niicleo y la otra implementada enteramente en el espacio de usuario.
Palabras Clave: planificacion en espacio y tiempo compartido, coplanificacion, contrato social.

*This work was supported by The MEyC-Spain under contract TIN 2004-03388.
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1 INTRODUCTION

The use of non-dedicated systems for parallel computation is based on various studies that
prove the effectiveness of making good use of the idle CPU cycles by executing distributed
applications. In [1], it was proved the low utilization of resources in environments such an open
laboratory in an university. The main motivation of using these resources is the low cost at
which it is possible to do parallel computation.

In this article, we present a new system named CISNE-P. Our system combines space
sharing and time sharing scheduling techniques, in order to take advantage of the idle computer
resources available across the cluster by executing parallel jobs without damaging excessively
the local users. CISNE-P is set up basically, by a dynamic coscheduling technique and a job
scheduler.

The parallel job scheduler of CISNE-P is named LoRaS (Long Range Scheduler). It is
responsible for distributing the parallel workload among the cluster nodes. When a parallel
job is submitted to the LoRaS, the job waits in a queue until it is scheduled and executed.
Thus, LoRaS must deal with the Job Selection process from a waiting queue, together with
the problem of selecting the best set of nodes for executing a job (Node Selection policies).
This is performed by taking into account the state of the cluster system together with the
characteristics of the local and parallel workload.

The dynamic coscheduling system, termed CCS [3], is the time sharing scheduling com-
ponent. Traditional dynamic coscheduling techniques [8] rely on the communication behavior
of an application, to simultaneously schedule the communicating processes of a job. Unlike
those techniques, CCS takes its scheduling decisions from the occurrence of local events, such
as: Communication, Memory, Input/Output and CPU, together with foreign events received
from remote nodes. This allows CCS to provide a social contract based on reserving a per-
centage of CPU and memory resources in order to assure the progress of parallel jobs without
disturbing the local users, while coscheduling of communicating tasks is assured. Besides, the
CCS algorithm uses status information from the cooperating nodes to re-balance the resources
throughout the cluster when necessary.

CCS was firstly implemented in the Linux kernel [3]|. In this article, we present the mod-
ifications that allows to CCS to be incorporated into an integral cluster scheduling system,
such as CISNE-P; a middleware entirely located in the user space. The new user level ap-
proach is more flexible than the previous one (implemented in the Linux kernel). This allows to
develop more efficient and portable scheduling extensions on top of the existing operating sys-
tems. With this aim, we compare the performance of both implementations in a Linux cluster.
Likewise, we evaluated the interaction between space and time sharing techniques, showing the
need to combine simultaneously coscheduling techniques together with space-sharing scheduling
policies.

The remainder of this paper is as follows: in Section 2 CISNE-P system is presented. The
efficiency measurements of CISNE-P are performed in Section 3. Finally, the main conclusions
and future work are explained in Section 4.

2 CISNE-P: A PORTABLE AND INTEGRATED SCHEDULER FOR
NON-DEDICATED ENVIRONMENTS

In order to provide a system oriented to execute parallel jobs over non-dedicated environments,
we have developed a system called CISNE-P. This is an space and time sharing scheduling
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Figure 1: CISNE-P Architecture

system, which is based on a social contract to preserve the assignment of resources to local
users.

CISNE-P is a middleware entirely developed in the user space. CISNE-P includes 2 main
components, LoRaS and CCS. LoRaS solves the space scheduling problem. It is responsible
for distributing parallel applications throughout the cluster using information about the system
state, the applications to be launched and the characteristics of CCS as a dynamic time sharing
scheduler. CCS uses a time-slicing technique to exploit the unused computing capacity of a
non-dedicated cluster without disturbing local jobs excessively. With this aim, CCS limits the
CPU and Memory resources assigned to parallel tasks by means of applying a social contract.
CCS tries to exploit the rest of the resources of the NOW for parallel execution by means of
combining balancing of computational resources and coscheduling between parallel jobs. In
doing so, each CCS node assigns its resources dynamically based on a combination of runtime
information, provided by its own o.s. and its cooperating nodes, together with architecture
information and system-wide information. Thus, local decisions are coordinated across the
NOW.

Figure 1 shows the integration of both systems. Besides, this figure illustrates the distribu-
tion of the system with a server node and several other nodes that execute parallel and local
applications.

Next, we explain the main features of LoRaS and CCS, respectively. For efficiency reasons,
CCS was firstly implemented in the kernel space. Successive versions of CCS have been migrated
progressively to the user space. Nowadays, CCS is entirely implemented in the user space. We
analyze the main advantages and differences of both implementations, and how the CCS’s
components interact with each other.
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2.1 LoRaS (Long Range Scheduler) System

LoRaS implements a Job Scheduler in the user space, which provides an Space-Sharing schedul-
ing mechanism.

The LoRaS system has a master-slave architecture and consequently there exists two kind
of nodes, master and slaves. The jobs are delivered to the system from the client nodes. The
clients requests for work to servers by sending them a Job Execution Request (JER). The
admittance of new JERs for execution is performed by the server node.

Among the LoRaS responsibilities we consider (see Fig. 1):

e The admittance of new jobs to be executed: this is done by the Server module, located in
the server node. It is responsible for admitting new jobs into the system, sent by some
parallel user using the client module, located in the slave nodes.

e The management of queued jobs: the LoRaS system has to schedule and then dispatch
every queued job using some scheduling policy. The scheduling is performed by the
Job Scheduler, located in the server node. The Job Scheduler allows the execution of a
JER in a determined cluster and state in the amount of resources requested in the JER
according to the job scheduling policy specified in this module. If there is no possibility of
executing the job on its arrival, then the JER is arranged in the Waiting Queue, waiting
to be scheduled.

The Job Dispatcher formats the jobs accordingly by setting the parameters and the en-
vironment variables and then it dispatch the job by launching it in the cluster nodes
specified by the Job Scheduler. Both, PVM and MPI jobs are supported.

e Job Ezxecution Control and System state gathering: the Node Control module (located
in the slaves) monitors the execution control of every job and takes care of the estate of
every cluster node. It also informs the Job Scheduler so that it can take better scheduling
decisions.

The job scheduling policy is explained in depth next.

2.1.1 Job Scheduling in LoRaS

The job scheduling is determined by the Job Ordering, Job Selection and Node Selection policies.

The parallel jobs, when entering into the system are arranged into the Waiting Queue
according to one of the following job ordering policies: FCFS (First Come First Serve), SJF
(Shortest Job First) and SNPF (Smallest Number of Processors First).

Next, the jobs are selected from the Waiting Queue according to one of the following Job
Selection policies: Best Fit, First Fit and Just First.

Finally, the best set of nodes to map a given job and the current cluster state is obtained.
This is done according to two different Node Selection policies:

e Uniform. This policy merges communication and computation bound applications in the
same node and tasks making up a pair of jobs are mapped in the same set of nodes,
balancing the workload across the cluster.

e Normal. Unlike the uniform policy, it merges the parallel jobs independently of its com-
munication/computation characteristics and placement over the cluster.
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Uniform and Normal policies limit the resources used by the parallel applications across the
cluster. Both policies launches an application on any set of nodes where the fact of executing
it, does not mean the surpass of a system usage limit for some resource. This acceptable limit
is established by the means of a social contract defined by the CCS system, and sets up the
maximum parallel MPL or the percentage of memory or CPU, that could be used by the parallel
applications on each node. Thus, those jobs mapped in nodes where its load has reached the
threshold fixed by the social contract are stopped.

2.2 CCS (Cooperating CoScheduling) System

The time sharing system of CISNE-P provides an execution environment where the parallel
applications can be dynamically coscheduled. The resources are balanced and the interactive
responsiveness of the local applications is totally preserved.

Our dynamic coscheduling mechanism, located in a daemon of the forming clustering nodes,
makes scheduling decisions based on the occurrence of local and remote events involved in the
social contract. This coscheduling is slightly different from traditional dynamic coschedulers,
mainly because not only tries to schedule the communicating tasks making up the jobs, but also,
it tries to balance the assignment of the resources between local and parallel tasks, preserving
in all the cases the portion of computational resources fixed by the social contract.

Firstly, we will explain CCS architecture (see Figure 2), the modules that integrate the
system and how they work to achieve its goals. Later, we present different scenarios that we
have been working on, towards a portable solution.

The main components of the CCS system, residing in each node, are the following:

e Dynamic Coscheduling (DYN): is the module which guarantees that no processes must
wait for a non-scheduled process for synchronization /communication. This is achieved by
means of increasing the communicating task priority, even causing CPU preemption.

e Job Interaction Mechanism (JIM): it preserves the local user tasks responsiveness. In
order to reach this goal, the JIM module manages the interaction between local and
parallel jobs by means of a social contract. It means that both kind of users, local and
parallel, compromise for a cession of a minimum percentage (L) of CPU and memory for
parallel tasks. The minimum term is related to the fact that if parallel tasks require a
bigger percentage than L, then they will be able to use the portion allocated to local
tasks, whenever local tasks are not using this.
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e Cooperating Scheme: this module collaborates with the JIM module in order to balance
the resources (CPU and Memory) assigned to the parallel applications throughout the
cluster. It is responsible for exchanging several events between cooperating nodes!, such
as the login or logout of a local user into a specific node, or the stopping (restarting)
event generated by the JIM module, which stop (restarts) a parallel job. This happens
whenever it has to preserve the local responsiveness.

2.2.1 CCS in kernel space

Firstly, CCS was implemented in a PVM (v.3.4) - Linux (v.2.4.18) cluster (see Fig. 3).

As we can see in Fig. 3, the Cooperating Schema was implemented inside of the daemon
of the PVM system |6]. PVM provides useful information for implementing the algorithms for
sending/receiving events between the cooperating nodes. Every node of a PVM system has a
daemon, which maintains information of the PVM jobs under its management. It contains the
identifier of each job (ptid) and a host table with the addresses of its cooperating nodes. In
this way, each node of the CISNE system knows where their cooperating nodes are.

Likewise, the Dynamic Coscheduling (DYN) and Job Interaction (JIM) modules are imple-
mented in the kernel space. This solution was adapted because in this way, CCS can adapt
quickly to the continuous changes experimented by the environment, guaranteeing fast answer
time for local users with interactivity needs as well as a high coscheduling likelihood for parallel
jobs. A patch, with the following modifications must be introduced into the Linux Kernel:

File System: CCS sends the LOCAL (NO_LOCAL) events by means of the Cooperating
module to the rest of cooperating nodes when there is (no) local user interactivity for
more than 1 minute. This value ensures that the machine is likely to remain available
and does not lead the system to squander a large amount of idle resources |7]. At the

beginning of every scheduling epoch, the access time to the keyboard and mouse files is
checked, setting a new kernel variable (LOCAL_ USER) to True or False.

Communication System: A new kernel function is implemented to collect the sending/receiving
packets from the socket queues in the Linux kernel.

Memory System: The Linux swapping is modified to guarantee the memory portion fixed
by the social contract for local and parallel tasks.

Scheduler: In order to select a task to run, the Linux scheduler considers the dynamic priority
of each task, which is the sum of the base time quantum (static priority) and the number
of remaining CPU ticks by the task in the last epoch. Whenever an epoch finishes, the
dynamic priority is recomputed. The implementation of the social contract technique
involves the modification of the base time quantum. Whenever a parallel task is stopped
due to memory is overloaded, the scheduler assigns such task a quantum equal to zero. On
the other hand, the scheduler decreases the time slice of the parallel task proportionally
to the percentage L fixed by the social contract, whenever there is a local user in such
node. Likewise, the scheduler was modified to implement the dynamic coscheduling. The
coscheduling implementation increases the dynamic priority of each parallel task inserted
in the Ready Queue according to the number of packets in the receive/send socket queue.
Thus, the current scheduled task can be preempted by the task inserted into the RQ with
most pending messages. This way, coscheduling is achieved.

'nodes executing the same parallel job.
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Figure 3: CCS in the kernel space.

However, this installation was complex and unportable, mainly because the Linux kernel should
be modified to make use of CCS system. By these reasons, a more portable implementation
was achieved.

2.2.2 CCS entirely in user space

Towards a more portable solution, we studied and applied the idea to move the JIM component
to user space, as is shown in Fig. 4. To achieve this goal, we modified the JIM module to gather
information about resources consumed by parallel applications from the "/proc" file system.
This way, CCS monitors the amount of resources (Memory and CPU) used by each parallel
process and as a consequence, it checks if the social contract is being carried out. Whenever,
the parallel processes violate the social contract, they are penalized by means of lowering its
priority or even stopping the parallel job until enough resources are available to restart it.

Working for a total portable solution, the only module which had left running in kernel
space, was the dynamic coscheduling. So, we moved the dynamic coscheduling to user space,
obtaining an entirely system portable and a kernel independent code. The dynamic coscheduling
is achieved by lowering/raising priorities according to the number of packets in the socket
queues. Thus, the dynamic coscheduling module is able to manipulate the priority of parallel
jobs or even thought stopping/restarting applications (from user space) by means of the nice
/ renice Unix commands.

Finally, the Cooperating schema was separated from the PVM daemon. In this way, the
LoRaS’s daemon, residing on each node of the cluster, provides to the cooperating module the
information required to exchange events between the cooperating nodes.
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3 EXPERIMENTATION

This experimentation has been divided into two sections. The first section evaluates the need
to use a coscheduling system over a non-dedicated Linux cluster. The second set of results
compares the performance of CCS implemented into the kernel space (CISNE) against CCS in
the user space (CISNE-P). Likewise, these results are evaluated in relation to different sets of
space-sharing scheduling policies.

In order to simulate a non-dedicated cluster, we need two different kinds of workloads: local
and parallel.

The local user activity is represented by a benchmark that could be parametrized in such a
way that it uses a percentage of CPU, Memory and Network. To parametrize this benchmark
realistically, we measure our open laboratories for a couple of weeks and use the collected values
to run the benchmark (15% CPU, 35% Mem., 0,5KB/sec LAN). Besides, and according with
the values observed in the monitoring, we will load the 25% of the nodes with local workload
in our experiments.

The parallel workload is a set of NAS parallel applications (CG, IS, MG, BT, LU and FT)
with a size of 2, 4 or 8 tasks. These benchmarks have been mixed in different ways according
to our experimental purposes. So, we will explain the composition of each parallel workload on
the following sections.

Both workloads were executed in an Linux cluster composed of 16 P-IV (1,8GHz) nodes
with 512MB of memory and a fast ethernet interconnection network.

3.1 Dynamic coscheduling

First, we show the impact of the DYN module (dynamic coscheduling in the kernel space) in the
performance of the parallel workload in a non-dedicated/dedicated cluster. With this aim, we
execute a parallel workload into different scenarios: (a) CCS with the DYN module activated
and CCS without the DYN module.
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This evaluation was carried out by running three different parallel workloads (B, C and
D), each one composed of a set of NAS parallel applications merged in such a way that it was
possible to characterize the system bounding it by computation (B workload) and communica-
tion parameters (D Workload). Specifically, the B, C and D workloads were made up by the
{MG and LU}, {SP and CG} and {IS and FT} set of benchmarks, respectively. Each workload
was exercised several times for different Parallel Multiprogramming Level (MPL), from 2 to 4
instances of parallel applications chosen from the set defined by the workload in a round-robin
manner (e.g.: class A - MPL 4: SP.A, BT.A, SP.A, BT.A). It is worthwhile pointing out that
the threshold of MPL=4 was chosen taking the results showed in [3] into account. In such a
paper, we concluded that the response time of the local user for a social contract of L=0,5 and
MPL=4 never exceeds significantly the 400ms stated as the acceptable limit in disturbing the
local user responsiveness [9)].

Figure 5 shows the makespan metric obtained when these parallel workloads were executed
in a non-dedicated cluster (left) and a dedicated (right) cluster. In general, these results shows
the effectiveness of the dynamic coscheduling. As it was expected, the best values are obtained
by the workload with the highest communication rate (D Workload). Likewise, we can see as
this improvement increases according to the value of MPL. However, the gain of the dynamic
coscheduling is reduced for the case of a dedicated cluster. This means that DYN performance
behaves worse when the competing parallel tasks tend to be equal. This problem arises when
some competing parallel processes have the same communication rate. In these cases, a situation
where a set of different parallel processes have the same number of receiving/sending packets
in their reception queues can happen frequently. In such cases, and taking into account the
implementation of dynamic coscheduling into the kernel space, the scheduler assigns the same
priority to all these processes so the next parallel process to run is selected randomly by the
scheduler. In this way, there is a high likelihood that coscheduling was not achieved.

3.2 CISNE vs CISNE-P

In this section, we compare the performance of CCS implemented into the kernel space (CISNE)
against CCS in the user space (CISNE-P).

In this case, the parallel workload was a list of 90 NAS parallel applications (CG, IS, MG,
BT) with a size of 2, 4 or 8 tasks that arrives to the system following a Poisson distribution.
The parallel applications were merged so that the entire workload have a balanced requirement
of computation and communication. It is important to remark that the reached MPL for the
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Figure 7: Makespan of parallel applications: CISNE vs CISNE-P.

workload depends on the system state at each moment, but in any case it will surpass an MPL
= 4. In order to validate our assumptions, the makespan (see Fig. 7) of the workload and the
average Turnaround (see Fig. 6) metric of the parallel jobs were used.

This parallel workload was executed with two different combinations of Job Ordering and
Job Selection policies (see section 2.1): FCFS-FFIT and SJF-JFIRST. Thus, we are able to
evaluate the sensitivity of the CCS performance in relation to different space-sharing scheduling
policies. In all the cases, an Uniform node selection policy was chosen.

The results showed in Fig 6 and 7 show as the penalization for moving from kernel to user
space is lower than 10% for the turnaround and 30% for the makespan metric in the worst case
(see Fig. T.right). The makespan metric is more sensitive to the CCS implementation than
the turnaround due to the fact that a penalization in a specific job has a lower influence in an
average metric, as the turnaround is. Likewise, we can see as this behavior is similar for both
kind of environments, dedicated and non-dedicated cluster.

4 CONCLUSIONS AND FUTURE WORK

This work presents a totally portable and integral system termed CISNE-P, which provides
an space and time sharing scheduling applied on a non-dedicated cluster. It includes both a
previously developed dynamic coscheduling system and a space-sharing job scheduler to make
better scheduling decisions than they can do separately. CISNE-P allows to execute multiple
parallel application concurrently in a non dedicated Linux cluster with a good performance, as
much from the point of view of the local user as that of the parallel application user.

Using this framework, we evaluated two different scenarios of CISNE-P implementations,
one located inside the kernel, and the other, entirely implemented in the user space. The
experimentation shown that dynamic coscheduling and Job Interaction Mechanism, can be
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moved to user space. The penalization in moving from the kernel to the user space is almost
insignificant. Beside, the system improved in portability. We have evaluated the influence of
the dynamic coscheduling inside the CISNE-P environment. The obtained results show as the
performance of parallel jobs is increased when the coscheduling is applied.

The future work is oriented towards extending the functionalities of the CISNE-P system
to provide facilities to execute Soft Real-Time jobs (local/parallel). Likewise, we are interested
on extending the CISNE-P architecture to multicluster systems. Thus, we will be able to get
better profit of the computational resources of any kind of organization.
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