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Abstract. In this paper a thermodynamic approach is presented to the problem of
convergence of evolutionary algorithms. The case of the Simulated Annealing algorithm
for optimisation is considered as a simple evolution strategy with a control parameter
allowing balance between the probabil ity of obtaining an optimal or near-optimal
solution and the time that the algorithm wil l take to reach equilibrium. This capacity is
analysed and a theoretical frame is presented, stating a general condition to be fulfil led
by an evolutionary algorithm in order to ensure its convergence to a global maximum of
the fitness function.
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1   Introduction

In the last years, Evolutionary Algorithms (EA's) have come to be considered as a very powerful
and versatile class of techniques for a wide variety of complex optimisation tasks. Different
evolution-inspired paradigms have been proposed (genetic algorithms, evolution programs,
evolution strategies, genetic programming [6],[8]), each of them best suited for a particular type of
problem. The efficiency of these approaches is out of question (at least in this paper). What we want
to examine here is a rather theoretical side of the general evolutionary approach. This aspect is the
question about the conditions of convergence of an evolution-inspired program, i.e. under which
conditions such type of program can be guaranteed to attain, in a finite time, the optimal solution
for a given problem. We said rather, but in no way purely theoretical, since the conclusions of this
analysis could be, in certain cases, decisive for the usefulness of a technique.

Then, the first question that naturally arises is: can EA’s be guaranteed to converge to a globally
optimal population? And the answer is: no, unless infinite population is assumed [5],[7]. This is a
quite general result, and it could even be considered irrelevant, since for most of real-li fe
optimisation problems, a good sub-optimal solution can be obtained with a well parameterised EA,
without a too high computational cost, and this is often all what is needed.

But a second, more general question, could be of practical interest: can EA’s be ensured to
converge to a globally optimal population with a certain predetermined probabil ity? (i.e. to know a
priori the asymptotic probability distribution?). This is not a theoretical question anymore, since the
possibility to know a priori the probabil ity of global convergence and, moreover, the ability to



control it via a proper parameter setting is a quite attractive perspective, especially for those
applications in which an optimal or near-optimal solution is  required.

The task of providing an answer (or answers) to the question stated above, could be considered as
the subject of a very ambitious program, which would mainly include, among its theoretical
concerns, the study of the conditions to be fulfilled in order for this program to be sensible and, as a
practical, technical task, the design and development of efficient EA's satisfying those conditions.

Being this a previous exploratory work, we do not claim to have many specific answers.
Nevertheless, we can bring a concrete example of a stochastic technique that, despite its different
original inspiration, can legitimately be considered as a simple evolution strategy and, hence, a
member of the EA family in its own right. We are talking about the Simulated Annealing (SA)
algorithm.

2   The SA algorithm

The SA algorithm is a computational formalism inspired in the thermodynamics of equil ibrium for a
physical system with a large number of particles, but fixed in its size, so that it can only exchange
energy with the environment. This model is known in statistical thermodynamics as the canonical
ensemble. In more practical terms, the SA tries to emulate the physical process by which a crystal
configuration can be obtained by melting some piece of material and then cooling it down very
slowly. This is a common technique for manufacturing fine crystal goods. If cooling is too fast, a
glass, i.e. imperfect crystal is obtained, associated with metastable configurations, local minima for
the energy of the physical system. On the other hand, a perfect crystalline structure, associated with
a global minimum of the energy, requires slow cooling (until freezing) to be obtained.

Obviously, the SA is suitable either for minimisation or maximisation problems. Fig. 1
summarises the logic flow of a program implementing the SA algorithm for the problem of
maximising a function F taking real values over a set S. C is the candidate generation distribution,
i.e. C(r,s) represents the probability of generating r as a candidate when the current solution
produced by the algorithm is s. Similarly, A, the acceptance probabilit y distribution, that is, the
probability, at time t, of accepting candidate r when the system is in s, can be expressed in a
compact manner as min{1, exp(∆F/T(t))}, being ∆F = F(r) – F(s). Finally, a stochastic matrix P,
representing the transition probabil ity distribution of the whole process, will result from the
combination of both C and A. In other words, the probabil ity for the algorithm to change from state
s to state r is the probability to generate r as a candidate when the system is in s, times the
probability of accepting it.

The more relevant results concerning convergence of the SA algorithm can be summarised as
follows [9],[11]: assuming that

i) C is symmetric:

ii) C satisfies  the Markov property:

i.e. the probabil ity of generating a candidate is independent of the past states of the system.
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Fig. 1.  Basic pseudo-code for the Simulated Annealing algorithm.

ii i) P is ergodic, that is, without any transient subsets. In other words, any state may be re-visited
after a long enough time (which implies that P has a left eigenvector p with eigenvalue 1).

Then the following holds:

a) Equilibrium (for fixed T )

where π is the Gibbs or Boltzmann distribution and the constant  k is assumed to be 1.

b) Annealing (decreasing T, equili brium when T=0).
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SIMULATED ANNEALING

- t=0

- Chose initial s(0) from S domain of configurations

- While (~ Termination Condition)
           {

t++

            Generate candidate c from C(r,s)

            If F(c) > F(s(t-1))
               s(t) = c;
            Else
                       {
                   generate α ≈ U[0,1]
                    if exp(∆F/T(t)) > α
                                     s(t) = c;
                        else
                         s(t) = s(t-1);
       }
          }



being D some positive constant and U[Ω] the uniform probability distribution over the set of global
maxima for F. U[Ω] coincides with the Gibbs distribution for T = 0.

Briefly speaking, a) states that, the lower T, the higher the probability of the system to be in a
global maximum after equilibrium has been reached (no matter the initial state of the system), while
b) means that, provided T decreases slowly enough, the final equilibrium distribution only assigns
probabilities greater than zero to global optima.

In other words, a parameter such as T in the case of SA would be a very useful feature to be
provided to any EA. This is not impossible in principle, and here we have an example, since SA can
be easily showed to be but an evolution strategy (ES) [10],[12] combined with a non-stationary
Markov process. Replacing the term offspring operator by candidate generation distribution and
selection operator by acceptance probabilit y distribution, the SA depicted in Fig. 1 looks much like
an ES with a two-member population (a (1+1)-ES in the usual notation [2],[8]) and an increasing
selective pressure, represented by the parameter T. If, in addition, we fix T at a constant value, the
analogy is even greater (Fig. 2). The difference is, of course, that in a classical ES (basically applied
to continuous optimisation problems) the candidate generation distribution is Gaussian and the
selective pressure is uniformly maximum along the whole process (i.e. the offspring replaces its
parent if and only if it has a greater fitness). It is worth mentioning that for this type of EA's there
exist theoretical results concerning convergence to the optimum [3].

What is, then, the essential feature that makes the SA, even at a fixed temperature, a special case
of  ES? It is the ergodicity associated to the candidate generation distribution (its "offspring
operator" in the terminology of EA's). In other words, the Markov chain associated to that
distribution has no transient subsets, which implies that any state of the space of possible
configurations ("genotypes") has non-zero probability of being generated as a candidate, no matter
the time elapsed.

3   Thermodynamics of  equilibrium and  evolutionary algorithms

It is a well known fact from thermodynamics that the properties of a system in equilibrium are
completely determined by its energy. This is the case for a canonical ensemble: if we know the
energy associated to each state of the system, then its properties in equil ibrium at temperature T can
be computed as if we had an ensemble of identical systems, where the probabil ity of finding one of
them in any of the possible states is proportional to exp(-E/kT), the Gibbs or canonical distribution
(k stands for the Boltzmann constant). In other words, given the probability distribution for the
states, the mean value for any observable quantity is predetermined [1].

Therefore, allowing the system to evolve for a long enough time, at a fixed temperature, the time
average of any quantity will equal the average over many systems appearing in different states with
a relative frequency proportional to exp(-E/kT).

On the other hand, in an EA the basic structure of the elements in the state space is given by the
genotype. Each of them has associated a fitness function F, that the algorithm is expected to
maximise upon the evolution process. Then the system can be viewed, to some extent, as an
ensemble of identically distributed genotypes (population), except, probably, for the crossover
operator. If the parameters of the algorithm are fixed, the system will  eventually reach its
equilibrium distribution. The success of an EA resides, then, in how large is the probabil ity
assigned by this equil ibrium distribution to the maxima of the fitness function F. In other words,
how likely is to find one or more of the individuals at or near a global optimum of F.

Now, for the case of SA, we know from section 2 (Eq. 3) that, at fixed temperature, its equilibrium
distribution is the Gibbs canonical distribution. Hence, SA is an ES with an equilibrium distribution
that assigns increasing probabil ity to global optima as the parameter T is lowered. Therefore, at



Fig. 2. The SA as a two-member evolution strategy.

equilibrium for a given T, it is easy to compute the probabil ity to get a final state with value of F
greater than an arbitrary L:

where Z is the so called partition function (a normalisation constant for our purposes). For the case
of a discrete configuration space the integration sign is to be replaced by a sum.

This useful feature of SA is due, of course, to the transition probability P, which is in its turn
determined by both the candidate generation distribution C and the acceptance probabil ity A (see
section 2) or, in evolutionary computing terms, by the offspring and the selection operators. Two
interesting questions arise: i) would it be possible to find other EA's whose genetic operators can be
guaranteed to bring, with a high probabil ity, the system (i.e. the population) into an optimal or near-
optimal fitness value? and ii) could these operators be parameterised so as to control that
probability?

Generally speaking, the lower the temperature at which the system is fixed, the longer it will take
to reach equilibrium. And this is the reason why question ii ) is worth to be asked. There is,
unavoidably, a trade-off between efficiency (how near-optimal will the solution be and how likely
is this to happen) and cost (in terms of the time that the process will take). A global optimum will
not in general be possible with probability 1. In the case of SA, only at zero temperature the system,
if in equilibrium, is in some absolute optimum with probabil ity 1, but this equilibrium requires, to
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SIMULATED ANNEALING (finite temperature)

- t=0

- Chose initial s(0) from S set of possible solutions

- While (t < maximum number of generations)
         {
            t++

            /* Offspring */
            Generate offspring c from operator C(r,s)

            /* Selection */
            If F(c) > F(s(t-1))
                s(t) = c;
            Else

{
       generate α ≈ U[0,1]
        if exp(∆F/T) > α
                         s(t) = c;
         else
                         s(t) = s(t-1);
      }
            }



be reached, a very slow cooling law (see section 2, Eq. 4) which turns, again, the algorithm
inefficient.

More precisely, the condition to be satisfied by the transition probability matrix P is that if

being I and J any two elements in the state space and ϕ a function of a single state, then

where ρ (I,n) is the probability of being in state I at time n.
This condition is called the detailed balance condition [1]. It is fulfil led by the SA due essentially

to the ergodicity of its transition probabil ity (section 2, condition iii). In this case, we have ϕ (I) =
exp(F(I)/kT) for all  I; then the process leads ρ to the equili brium distribution of the Gibbs canonical
ensemble.

Hence the proposed line of research, in its more technical concern, implies to find EA's with
genetic operators that define a transition probabil ity function satisfying detailed balance. For this to
be possible, therefore, the genetic operators must be ergodic (i.e. without any transient subsets).
Then, knowing the corresponding transition probabil ity, it is possible to compute the asymptotic
probability distribution of the algorithm.

4   Conclusions

We have presented a thermodynamical approach to Evolutionary Algorithms, on the base of the
analysis of some features of the Simulated Annealing algorithm. This optimisation technique,
despite its different origin and inspiration, can be considered as a simple example of evolution
strategy and, hence, used as a case of study.

Provided it is known that no EA can be guaranteed to converge to a globally optimal population,
unless infinite population is assumed, we claim that the question whether can EA’s be guaranteed to
converge to a globally optimal population with a certain predetermined probabil ity (i.e. to know a
priori the asymptotic probability distribution) is not a purely theoretical one, since it may
substantially affect their efficiency both in the accuracy of the solution obtained for a problem and
in the time spent in getting that solution. The possibility to know a priori the probabil ity of global
convergence and, moreover, the ability to control it via a proper parameter setting is a quite
attractive perspective, especially for those applications in which an optimal or near-optimal solution
is needed.

We summarised some main results concerning equil ibrium distribution of the SA (i.e. at fixed
finite temperature) as well as its asymptotic distribution for the case in which equilibrium is reached
at zero temperature. In any case, the equilibrium probability distribution is the Gibbs distribution.
The temperature acts as a parameter: the lower it is, the higher the probabil ity for the system to be
near an optimal configuration once equilibrium has been reached. Analysing the conditions that
make this behaviour possible, we find that, from the point of view of thermodynamics of
equilibrium, the essential condition is detailed balance and, in its turn, this condition depends, from
a dynamical systems point of view, on the ergodicity intrinsic to the transition probabil ity matrix
associated with the SA algorithm.

Therefore, a way for the design of EA's with such good properties (asymptotic convergence to
maxima of the fitness function) could be to find genetic operators that define a transition probability
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function satisfying the condition of detailed balance. For this to be possible, in its turn, these
operators must be ergodic. Thus, knowing the corresponding transition probabil ity, it is possible to
compute the asymptotic probabil ity distribution of the algorithm.

It is worth to mention that many attempts have been made so far in order to design more
sophisticated SA-based evolution strategies. The idea of a parallel SA has been dealt with by
several authors. There are, however, several problems to be solved, the rate of convergence not
being the least. In fact, some well known theoretical results [4] assert that for a parallel SA with p
processors, the expected speedup in the convergence is of order O(log p). Therefore, even in the
theoretically better founded case of SA, it is not clear how to eff iciently integrate it into more
complex evolutionary computing architectures. And for the same theoretical framework being
applicable to more general EA's with large populations and complex genetic operators, the
questions to be solved are even many more.
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