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Abstract. In this paper a thermodynamic gpproad is presented to the problem of
convergence of evolutionary algorithms. The cae of the Smulated Annealing algorithm
for optimisation is considered as a simple evolution strategy with a control parameter
allowing hkelance between the probability of obtaining an optimal or nea-optimal
solution and the time that the dgorithm will take to read equilibrium. This cgpacity is
analysed and a theoretical frame is presented, sating a general condition to be fulfilled
by an evolutionary algorithm in order to ensure its convergence to a global maximum of
the fitnessfunction.
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1 Introduction

In the last yeas, Evolutionary Algorithms (EA's) have cme to be cnsidered as a very powerful
and versatile class of tedhniques for a wide variety of complex optimisation tasks. Different
evolution-inspired paradigms have been proposed (genetic algorithms, evolution programs,
evolution strategies, genetic programming [6],[8]), eat of them best suited for a particular type of
problem. The efficiency of these goproadhesis out of question (at least in this paper). What we want
to examine here is a rather theoretical side of the general evolutionary approadh. This asped is the
guestion about the conditions of convergence of an evolution-inspired program, i.e. under which
conditions such type of program can be guarantead to attain, in a finite time, the optimal solution
for a given problem. We said rather, but in no way purely theoretical, since the @mnclusions of this
analysis could be, in certain cases, decisive for the usefulness of atednique.

Then, the first question that naturally arises is. can EA’s be guaranteed to converge to a globally
optimal population? And the answer is. no, unless infinite population is assumed [5],[7]. Thisis a
quite general result, and it could even be mnsidered irrelevant, since for most of real-life
optimisation problems, a good sub-optimal solution can be obtained with a well parameterised EA,
without atoo hgh computational cost, and thisis often all what is needed.

But a seaond, more general question, could be of pradical interest: can EA’s be ensured to
converge to a globally optimal population with a cetain predetermined probability? (i.e. to know a
priori the asymptotic probability distribution?). This is not a theoretica question anymore, since the
possibility to know a priori the probability of global convergence and, moreover, the aility to



control it via a proper parameter setting is a quite dtradive perspedive, especially for those
applications in which an optimal or nea-optimal solutionis required.

The task of providing an answer (or answers) to the question stated above, could be nsidered as
the subjed of a very ambitious program, which would mainly include, among its theoretical
concerns, the study of the mnditions to be fulfilled in order for this program to be sensible and, as a
pradical, technicd task, the design and development of efficient EA's satisfying those conditions.

Being this a previous exploratory work, we do not clam to have many spedfic answers.
Nevertheless we can bring a @wncrete example of a stochastic tedhnique that, despite its different
original inspiration, can legitimately be considered as a simple evolution strategy and, hence, a
member of the EA family in its own right. We ae talking about the Smulated Annealing (SA)
algorithm.

2 The SA algorithm

The SA algorithm isa computational formalism inspired in the thermodynamics of equil ibrium for a
physicd system with a large number of particles, but fixed in its size, so that it can only exchange
energy with the environment. This model is known in statistical thermodynamics as the canorical
ensemble. In more practicd terms, the SA tries to emulate the physical process by which a aystal
configuration can be obtained by melting some piece of material and then cooling it down very
slowly. This is a cmmmon technique for manufaduring fine aystal goods. If coaling is too fast, a
glass i.e. imperfed crystal is obtained, associated with metastable wnfigurations, local minima for
the energy of the physicd system. On the other hand, a perfed crystalline structure, asciated with
aglobal minimum of the energy, requires slow cooling (until freezing) to be obtained.

Obviously, the SA is giitable either for minimisation or maximisation problems. Fig. 1
summarises the logic flow of a program implementing the SA algorithm for the problem of
maximising a function F taking real values over aset S C is the canddate generation dstribution,
i.e. C(r,s) represents the probability of generating r as a candidate when the aurrent solution
produced by the algorithm is s. Similarly, A, the acceptance proballity distribution, that is, the
probability, at time t, of accepting candidate r when the system is in s, can be expressd in a
compad manner as min{l, exp(AF/T(t))}, being AF = F(r) — F(s). Finally, a stochastic matrix P,
representing the transition probability distribution of the whole process will result from the
combination of both C and A. In other words, the probability for the dgorithm to change from state
s to state r is the probability to generate r as a candidate when the system is in s, times the
probability of accepting it.

The more relevant results concerning convergence of the SA algorithm can be summarised as
follows[9],[11]: asuuming that

i) Cissymmetric:
C(r,s) =C(s,r) 0Or,sOS. D

ii) C satisfies the Markov property:
C(s(t +D|s(t)) = C(s(t +[s(t),s(t = 1), s(t = 2),..) . 2

i.e. the probability of generating a andidate is independent of the past states of the system.



SIMULATED ANNEALING
-1=0
- Choseinitial s(0) from Sdomain of configurations
- While (~ Termination Condition)
{
t++

Generate candidate cfrom C(r,s)

If F(c) > F(s(t-1))

sit) = ¢;
Else

{
generate a =U[0,]]
if exp(AF/T(Y)) > a

sit) = ¢;

else

s(t) = s(t-1);
}
}

Fig. 1. Basic pseudo-code for the Simulated Annealing algorithm.
i) P isergodc, that is, without any transient subsets. In other words, any state may be re-visited
after along enough time (which implies that P has a left eigenvedor p with eigenvalue 1).
Then the following holds:

a) Equilibrium (for fixed T)

m
(.

(Jim P(s(t) = wis(0) =) = (w) T expﬁﬂ

kT 3

O

where 1tis the Gibbs or Boltzmann distribution and the omnstant k is assumed to be 1.
b) Anneding (deaeasing T, equili brium when T=0).
If

> 1+log(1+t)

then

lim P(s(t) = w|s(0) = n) = U[Q] . (4)

t -



being D some positive mnstant and U[ ©] the uniform probability distribution over the set of global
maximafor F. U[ Q] coincides with the Gibbs distribution for T = 0.

Briefly spe&king, a) sates that, the lower T, the higher the probability of the system to be in a
global maximum after equilibrium has been reached (no matter the initial state of the system), while
b) means that, provided T deaeases slowly enough, the final equilibrium distribution only assgns
probabilities greaer than zero to gobal optima.

In other words, a parameter such as T in the cae of SA would be avery useful fedure to be
provided to any EA. Thisis not impossible in principle, and here we have an example, since SA can
be easily showed to be but an evolution strategy (ES) [10],[12] combined with a non-stationary
Markov process Replacing the term offspring operator by canddate generation dstribution and
seledion operator by acceptance probahlity distribution, the SA depicted in Fig. 1 looks much like
an ES with a two-member population (a (1+1)-ES in the usual notation [2],[8]) and an increasing
seledive presaure, represented by the parameter T. If, in addition, we fix T at a constant value, the
analogy iseven greder (Fig. 2). The differenceis, of course, that in a classcal ES (basicdly applied
to continuous optimisation problems) the candidate generation distribution is Gaussian and the
seledive presaure is uniformly maximum along the whole process (i.e. the offspring replaces its
parent if and only if it has a greder fitnesg. It is worth mentioning that for this type of EA's there
exist theoretical results concerning convergence to the optimum [3].

What is, then, the esential fedure that makes the SA, even at a fixed temperature, a spedal case
of ES? It is the ergodcity asociated to the candidate generation distribution (its "off spring
operator” in the terminology of EA's). In other words, the Markov chain associated to that
distribution has no transent subsets, which implies that any state of the space of possible
configurations ("genotypes') has non-zero probability of being generated as a candidate, no matter
the time elapsed.

3 Thermodynamicsof equilibrium and evolutionary algorithms

It is a well known fad from thermodynamics that the properties of a system in equilibrium are
completely determined by its energy. This is the cae for a canonicd ensemble: if we know the
energy associated to ead state of the system, then its properties in equilibrium at temperature T can
be computed as if we had an ensemble of identical systems, where the probability of finding one of
them in any of the possible states is proportional to exp(-E/KT), the Gibbs or canonical distribution
(k stands for the Boltzmann constant). In other words, given the probability distribution for the
states, the mean value for any observable quantity is predetermined [1].

Therefore, allowing the system to evolve for a long enough time, at a fixed temperature, the time
average of any quantity will equal the average over many systems appeaing in different states with
arelative frequency proportional to exp(-E/KT).

On the other hand, in an EA the basic structure of the elements in the state spaceis given by the
genotype. Each of them has associated a fitness function F, that the algorithm is expeded to
maximise upon the evolution process Then the system can be viewed, to some extent, as an
ensemble of identicadly distributed genotypes (population), except, probably, for the aosover
operator. If the parameters of the dgorithm are fixed, the system will eventually reech its
equilibrium distribution. The success of an EA resides, then, in how large is the probability
assigned by this equilibrium distribution to the maxima of the fitness function F. In other words,
how likely isto find one or more of the individuals at or nea aglobal optimum of F.

Now, for the cae of SA, we know from sedion 2 (Eg. 3) that, at fixed temperature, its equilibrium
distribution isthe Gibbs canonical distribution. Hence, SA is an ES with an equilibrium distribution
that assigns increasing probability to global optima & the parameter T is lowered. Therefore, at



SIMULATED ANNEALING (finite temperature)
-t=0
- Choseinitial s(0) from Sset of passble solutions

- While (t < maximum number of generations)

{

t++

[* Offspring */
Generate offspring c from operator C(r,s)

[* Selection */
If F(c) > F(s(t-1))
sit) = ¢;

{

generate a =U[0,1]
if exp(4AF/T) > a
) = ¢

else

S}(t) = §(t-1);

Else

Fig. 2. The SA as atwo-member evolution strategy.

equilibrium for a given T, it is easy to compute the probability to get a final state with value of F
greder than an arbitrary L:

7 1 exp(F(s)/T)ds (5)
d1S/F(s)>L

where Z is the so called partition function (a normalisation constant for our purposes). For the case
of adiscrete mnfiguration space the integration signisto be replaced by a sum.

This useful feaure of SA is due, of course, to the transition probability P, which is in its turn
determined by both the candidate generation distribution C and the accetance probability A (see
sedion 2) or, in evolutionary computing terms, by the offspring and the seledion operators. Two
interesting questions arise: i) would it be possible to find other EA's whose genetic operators can be
guarantedd to bring, with a high probability, the system (i.e. the population) into an optimal or nea-
optimal fitness value? and ii) could these operators be parameterised so as to control that
probability?

Generally spe&ing, the lower the temperature at which the system is fixed, the longer it will take
to read equilibrium. And this is the reason why question ii) is worth to be aked. There is,
unavoidably, a trade-off between efficiency (how nea-optimal will the solution be and how likely
is this to happen) and cost (in terms of the time that the processwill take). A global optimum will
not in general be possible with probability 1. In the cae of SA, only at zero temperature the system,
if in equilibrium, is in some absolute optimum with probability 1, but this equilibrium requires, to



be reached, a very slow cooling law (see sedion 2, Eqg. 4) which turns, again, the dgorithm
inefficient.
More precisely, the condition to be satisfied by the transition probability matrix P isthat if

P(113)¢ (1) = PQIN¢() .

being | and J any two elements in the state space ad ¢ a function of a single state, then

om0 0TI S 60) O, 6)

where p (1,n) is the probability of being in state | at time n.

This condition is called the detailed bdance condition [1]. It is fulfilled by the SA due essentially
to the ergodicity of its transition probability (sedion 2, condition iii). In this case, we have ¢ (1) =
exp(F(1)/KT) for al I; then the processleads p to the equili brium distribution of the Gibbs canonicd
ensemble.

Hence the proposed line of reseach, in its more tedhnical concern, implies to find EA's with
genetic operators that define atransition probability function satisfying detailed balance For thisto
be possible, therefore, the genetic operators must be ergodic (i.e. without any transient subsets).
Then, knowing the crresponding transition probability, it is possible to compute the aymptotic
probability distribution of the algorithm.

4 Conclusions

We have presented a thermodynamical approach to Evolutionary Algorithms, on the base of the
analysis of some fedures of the Simulated Annealing algorithm. This optimisation tedhnique,
despite its different origin and inspiration, can be mnsidered as a simple example of evolution
strategy and, hence, used as a cae of study.

Provided it is known that no EA can be guaranteed to converge to a globally optimal population,
unlessinfinite population is assumed, we claim that the question whether can EA’s be guaranteed to
converge to a globally optimal population with a cetain predetermined probability (i.e. to know a
priori the asymptotic probability distribution) is not a purely theoretical one, since it may
substantiall y affed their efficiency both in the acaracy of the solution obtained for a problem and
in the time spent in getting that solution. The possibility to know a priori the probability of global
convergence and, moreover, the aility to control it via a proper parameter setting is a quite
attractive perspedive, especialy for those gplications in which an optimal or nea-optimal solution
is needed.

We summarised some main results concerning equilibrium distribution of the SA (i.e. at fixed
finite temperature) as well as its asymptotic distribution for the cae in which equilibrium is reached
at zero temperature. In any case, the equilibrium probability distribution is the Gibbs distribution.
The temperature ads as a parameter: the lower it is, the higher the probability for the system to be
nea an optimal configuration once euilibrium has been reached. Analysing the conditions that
make this behaviour possible, we find that, from the point of view of thermodynamics of
equilibrium, the essential condition is detailed balance and, in its turn, this condition depends, from
a dynamical systems point of view, on the ergodicity intrinsic to the transition probabil ity matrix
asociated with the SA algorithm.

Therefore, a way for the design of EA's with such good properties (asymptotic convergence to
maxima of the fitness function) could be to find genetic operators that define atransition probability



function satisfying the cndition of detailed balance For this to be possible, in its turn, these
operators must be ergodic. Thus, knowing the mrresponding transition probability, it is possible to
compute the asymptotic probability distribution of the algorithm.

It is worth to mention that many attempts have been made so far in order to design more
sophisticated SA-based evolution strategies. The idea of a parallel SA has been dealt with by
several authors. There ae, however, several problems to be solved, the rate of convergence not
being the least. In fad, some well known theoretical results [4] asert that for a parallel SA with p
processors, the expeded speadup in the convergence is of order O(log p. Therefore, even in the
theoretically better founded case of SA, it is not clea how to efficiently integrate it into more
complex evolutionary computing architedures. And for the same theoretical framework being
applicable to more general EA's with large populations and complex genetic operators, the
guestions to be solved are even many more.
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