APPROXIMATE OPTIMAL CONTROL
APPLIED TO CONSTRAINED CONTINUOS PROCESSES

J. PUCHETA, R. FULLANA, C. SCHUGURENSKY Y B. KUCHEN

Instituto de Automdatica - Facultad de Ingenieria. Universidad Nacional de San Juan
Av. Libertador 1109 (0), 5400 San Juan, Argentina. E-mail: ipucheta@inaut.unsj.edu.ar

Abstract.

Constrained continuous processes can be optimally controlled through dynamic programming
techniques that solve it as a numeric sequence. These techniques are a powerful tool,
regardless the nature of the system and its proposed performance index. This technique is a
powerful tool, regardless the system’s nature and arbitrary performance index. However,
some problems may arise in calculations as the problem dimensionality increases -a factor
closely related to the desired accuracy for the numeric solution. An alternative is used here to
solve the dimensionality problem, both to approach the performance index and the control
law. The present work aims at outlining the approximate optimal control applied to infinite
horizon continuous processes. A main contribution is to generate an application methodology
that ensures the convergence of the algorithm. Upon obtaining the approximate control law, a
comparative analysis of the controller performance demonstrates the potential of the
proposed control scheme.

Key words: Optimal control, neural network, nonlinear systems.

I. INTRODUCTION

Typically, the optimal control of constrained continuous processes can be described with the
classical control theory, which solves it without regarding constrains. Once a solution has been
found, if it verifies that the constraints are met, it is accepted as the problem’s solution. However,
the solution is not always reached with this approach. An alternative technique deals with dynamic
programming that renders a numerical solution to the problem in a form of a look-up table. This
technique is a powerful tool, regardless the system nature or its arbitrary performance index. Its
main limitation is found when increasing the dimension of the problem as, for example, to obtain a
greater precision. With an increased problem dimension, the computer and computations
requirements grow as well —something difficult to overcome with ordinary computer equipment.
This approach is more visible in a real process application, because the controller’s implementation
demands a sizable memory space in order to store the control action values for each possible system
state.

This dimensionality problem has been approached in several ways, in an attempt to decrease the
number of table values (Luus, 1989). An alternative way is to generate a compact table through an
approaching function. This methodology was formalized in Bertsekas (1996), approaching both the
performance index and the control law. This technique will be applied here to solve the optimal
control problem for a nonlinear process, with a non-quadratic index.

II. STATEMENT OF THE CONTROL PROBLEM

The process dynamic model, the cost function, and the control and state variable limitations make
up the optimal control problem. At times, constrains are omitted, a solution is found and, if under

execution it verifies the restrictions, such a solution is accepted. This methodology solves the
problem in several real applications requiring heuristic knowledge, so that the controller
performance be efficient. In the following steps, the optimal control problem will be stated by
considering all the elements simultaneously, where the problem solution will be the optimal control
law itself.

N
EDIRRTNRY (1)
k=0
Xy = f(x(k) > Uiy k), k=0,,.N-1 @)
xeScR"
uesUcR"™ 3)

where:
J: cost function to be minimized (bounded and positive definite function).
g('): performance index (bounded and positive definite function).
f("): process dynamic model.
X: system states; within a closed and bounded subset SCR”".
u: system inputs; within a closed and bounded subset UcR™.

We seek for a decision function of “optimal policy”, which makes the system -with the dynamic
model (2)- evolve from any state and initial time until the evolution’s end, i.e. its N-th stage. The
decisions sequence must comply with constraint (3) and minimize as well the cost function of
Eq.(1). The control scheme is shown in Fig. 1, where the control law is the optimal policy. This
outline tries to solve a finite horizon problem, but it can be extended to a problem of infinite
horizon by making N — o, and by verifying that the proposed cost function (1) is bounded and
continuous as regards its arguments.

The typical method to solve the above-stated problem tries to find a control law p(xq)) with

u:R"™ — R™. In real cases, however, it is difficult to find an analytic solution, which leads to resort

to numerical methods, where the control law is represented as a look-up table (Luus, 1989;
Bellman, 1962).

- f(x7 u, k)

u X

Control law n x(k)) <

Fig. 1. Optimal control scheme.

ITI. A SOLUTION PROPOSAL

In this section, we will use a technique called approximate policy iteration (Bertsekas, 1996) in
order to find a compact approaching expression for the control law M(X(k))~ After presenting

theoretical elements of the technique, a variable transformation will ease the calculations in
approaching the control law.

In describing finite horizon problems, i represents each value that the state variable x(), may take,
both in magnitude and in time, aiming at discerning its value at any given time from that of other
times. The new state variable 1 has a limited numbery of possible values. It belongs to a data set S as
shown in Eq. (4). For example, if a single state variable takes two different values at three different
instants of time, it will have 6 different values (size of S = 6).

ieScR, xR “4)

S={ieS:[i-p,|<r} (5)

A difference arises when dealing with infinite horizon control problems, because the problem
statement becomes time independent. The data set S will not show any difference between state
values at different time intervals; therefore, Eq. (5) will represent the 1 data set.

A function is intended whose behavior approaches the performance index. Once this
approximate cost function is obtained for each process state, together with the system model, the
controller for the real process can be implemented. Then, the system can be controlled with a
function having an approximate performance to that of the optimal control. The usual practice is to
control a real process, which is continuous in nature with respect to the magnitudes that its variables
may assume.

A. Introduction of the Approaching Function

A function T:R" — R is sought that, for values of domain (6), generates an image whose
magnitude is approximately similar to that of the cost function (1). Let J*; be the cost value that
represents the cost-to-go from state i to the final stage, using the stationary policy control p. Then,
T#(,r) is the approximation of J*(") into domain (3).

S=f{ies:fi-p|<7} 6)

Policy update

Approximate policy
evaluation <

Fig. 2. Optimal policy search process diagram.

The vector r contains all the tunable parameters of the approximate cost-to-go function, and the r
dimension depends on the number of parameters that achieve an appropriate approximating
performance.

By adequately tuning the parameter vector r, a cost can be approached, needed to arrive at the
final state from the current state 1, using the stationary policy .

In order to adjust the parameters of r, the calculation process is divided twofold, as shown Fig. 2.
First, an evaluation of a given stationary policy p (initially random) is carried out, where costs are

calculated for all process states. The second part is for policy updating. Both tasks are done
approximately, if compared to the actual system.

Any device capable of approaching the performance of functional one (1) in domain (3) is useful
to carry out this solution statement. Generally, r -the parameter vector of the approaching function-
should be found. This vector will have as many parameters as required by the problem’s
complexity. In this work, the approaching function will be a neural network of five neurons, with
one hidden layer whose neurons operate with hyperbolic tangent functions and one output neuron
that operates with a linear function. The network behavior requires to calculate two matrixes W
and W, whose elements are represented by a parameter vector r containing all the tunable
parameters of the neural network.

min Y. (T(i,r) - C(i))* (7)

ieS
r=r+yVI(ir)Ci)-T(r) Vi (8)
p=arg min (g(i,u)+T(j.r)) vi)

A representative data set S is defined, and for each state i € S there exist cost values C(i) of the
function J*;. The rest of the data set S will be considered by the approaching function as a
generalization, because they will be used to validate its performance. By minimizing expression (7)
the parameters vector r is tuned. The improved policy is obtained as indicated in (9). Therefore,
given the stationary policy p, the values of J* will not be calculated exactly because an

approximation is used through T“(-,r). Thus, in an approximate policy iteration an error source

arises due to the approximator structure 7”(-,r), that is not powerful enough (just few neurons).

Another error source is found in the inadequate adjustment of r parameters (faulty algorithm
tuning).

Once the function T (-,r) is available, @ can be obtained from Eq. (9). A method requirement is

that the initial policy be as good as possible on the sense of associated costs; else, the parameters
vector r will be fixed. Usually, initial random values —varying between 0 and 1- are assigned to
matrixes W; and W,. Then, the associated costs to each state are evaluated, denoted by T“(-,r), and
when the associated costs to all states are available, we proceed to the second process stage (see
Fig. 2). This stage is a policy update, aimed at improving its performance, and where the parameters
of vector r and the neural network take this update as new data to start again a new cost calculation
for each state. For the present case, the Levenberg-Marquard method was used to tune r (Bishop, C.
1995; Nergaard, M. 1997).

At the real application moment, the above method has a drawback in that Eq.(9) should be
solved, which requires a numerical minimization whichever the state the system may be staying at.
Because, the method is used to a limited extent in many of the actual processes, a control statement
is sought for a more compact scheme (Fig. 1), involving another neural network to generate each
control action.

B. Using an action network

To implement any control scheme implies to obtain the control action to be applied to the system
from the states vector value.

X ety = T (X1, W 1), K) (10)
() = M(X(k))

u(x(k)) pn:R"™ — R™ are the decisions of the optimal policy function, for a given system state X).

The function p is the analytical solution of the optimal control problem. By means of the
approximate policy iteration technique an approach is sought. As before, variable i represents each
value that the state variable x, may take, both in magnitude and in time, to make a time instant
different from another. Now we look for a function with a form u(-, V) as an approximation of the

u() function, where v is the tunable parameter vector. The dimension of v depends on the proposed
structure for the approaching function.

§={ieS:li-p) <t} (11)

The following methodology will try to obtain H(-, V), which presents a similar performance to
that of the analytic solution p("). The control actions of the improved policy H(i) are calculated with
Eq. (9) , within the data set S (11). The decision law is represented by H(i,v).

(12)
mvmgg“ 1V H
vi=v+ Vil v)(p(i) - (v)) (13)

The incremental gradient iteration of Eq. (13) adjusts the parameters of v. Two problems are solved
at the same time, because, given p, an approximate policy evaluation is carried out to find T of J*.
Given T, the improved policy [t is calculated for some states; then, the new policy H(-,v) becomes
available.

With function u(-, V) , it is possible to obtain the control actions starting from any state i€S. The

control scheme is shown in Fig. 1, excepting that the control law -instead of being H(X(k))' will be

u(x(k), V). Function ﬂ(-, V) is implemented by a multiplayer perceptron type neural network. It has 5

neurons, one hidden layer whose activation functions are of hyperbolic tangent type, and the output
neuron operates linearly. The parameter vector v has all the neural network elements, which are the
weight coefficients, expressed by matrixes Wi and Wja.

C. Stability consideration

In order to assure stability for algorithm convergence of the policy iteration, special care should
be taken in the policy update of Eq. (9), because a state j should have been used in the Eq. (7) to
generate the cost approximation function. If a policy gets improved with respect to a value

generated by the approaching function T“(j,r) it is possible that the value be located very far as

regards the real value J“() and, consequently, the policy instead of improving, will worse its
associate cost.

om = Maxq

ueU(i

i—gli,u)) Vie$ (14)

T=1+0m (15)

An alternative means to ensure the policy improvement, is to set a relative location for the data
set S and S, verifying that every potentially reachable state j -for a given a policy improvement-
will belong into the set S . This condition makes that § be contained in S, thus assuring that T be

greater than £ and, consequently, there will exist a minimum margin dm of difference between
them as given by Eq. (14).

IV. APPLICATION EXAMPLE

The above technique will be applied to a linear system with input restrictions, as shown in Fig. 3.
The system to be controlled is nonlinear and the performance index is non-quadratic, which hinders
the use of classical methods. The implementation methodology can be used in any continuous
process, by following the dynamic programming application method detailed in Bellman (1962) and
by considering the necessary premises for the approach that are presented in Eq. (14).

A. Two state variables system

For the system modeled by Eq.(16) through dynamic programming with approximate performance
index, the decisions sequence u is computed, which complies with constraints (17) and minimizes
the defined performance index; with 1.5, the desired value of the system output.

Y,

Fiy = = (16)
X)) ST+2-S+3
0<ux<?2 (17)
limy, =1.5 (18)

t—o0

The process model is transformed from the continuous to the discreet domain with sampling time Ty
equal to 6/109 sec.

/ u y
»> Process ——»

Y

Control law

Fig. 3. Control scheme.

The performance index is proposed in such a way as to incorporate the required parameters to
control the process.

g(y.u)=0, |y -1.5+6, P (19)
where:

0,,0,: weigh coefficients.
P: Constraints function.

I(you)= [gly,u)de (20)

The problem formulation of the optimal control is to find a control law function that fulfills the
restrictions (17) and minimizes the cost function (20).

B. Solution through neuro dynamic programming

By following the above detailed steps for the approximate optimal control, the statement for the
state variables of the system is carried out. The data set S is formed by the attainable values of
vector x. The data set S is composed by those values that conform the domain space for the
approaching function J(. y), whereas the set § corresponds to the domain of the control policy

function (. y). By meeting the constraint set by Eq. (14), a selection -shown in Eq. (21)- is made
for S and showin in Eq. (22)- for S. Fig. 4 shows the graphic representation.

-1<x, <1 (21)
-1<x, <1
0<x,<0.7 22)
0<x,<0.7

A
\J

\J

Fig. 4. Spatial location of the approaching function domain.

21,301019385 93,4055549692 -43,7661740917
2,8789199952 14,0757506682 -7,23691854700
2,51827024874 13,0084092351 -6,69509322111
3,34784834103 15,956248038 -8,18651110583
-2,60630689115 -12,6594639291 6,5271312701

Table 1. W4 of the action network.

0,197999145547761
36,2385195503809
-8,59419701523366
-19,7653877925509
9,08449917289846
0,996075106524353

Table 2. WZAT of the action network.

300

2501

2001

[0] to the final state

1501

[
o
o

T

Cost to go from x

3
o

5 10 15
Iterations

Fig. 5. Policy convergence to the optimal policy.

20

25

Output
=

100

Cost
3

Control actions

0 1 1 1
0 5 10 15
Time [sec.]

Fig. 6. System evolution using NPD. C{=64.58.

25 30

C. Controller performance

To evaluate the optimal controller performance by means of an approximate index, we make a
quantitative comparison with the controller obtained with the classical control theory. This
controller is represented by the matrix K=[13.74 11.89]. The introduction of noise into the model
turns uncertain its knowledge. Nevertheless, the control objective should be completed, in certain
extent. The noise that disturbs the values of system states will be random and short at first; then,
they will be long and with a certain amplitude.

% NDP DDP Linear
0 64.58 100.16 118.95
20 253.32 411.52 546.55
40 559.87 77746 913.28

100 1.6910° 2.5210° 2.5510°

Table 3. Cost values obtained with the controllers with sustained perturbations using neuro-dynamic
programming, direct dynamic programming and linear optimal control.

% NDP DDP Linear
0 64.58 100.16 118.95
20 105.14 40491 603.03
40 1997.28 4488.37 5866.51

100 7.3110° 8.1910° 1.04 10’

Table 4. Cost values obtained with the controllers under stepwise perturbations using neuro-
dynamic programming, direct dynamic programming, and linear optimal control.

Output

5 4001 - - - - - - m ottt m ot m oo s
o
O200 -+ st emesssasesesneseseet e T
" 30
c
el
S
]
5 1
)
c
8 0 1 1 1 1 1
0 5 10 15 20 25 30

Time [sec.]

Fig. 7. System evolution using linear controller (0-) and the approximated optimal controller (.-).
Perturbations equaling 20% of state measurement.

15!
o © | —%— Linear
s 2r wwq —— NDP
O . —— DDP
] 5%, e 0000000 ‘
,;g.' V% L L 1
0 5 10 15 20 25 30
1000 ‘ ‘ ! ! !
8 500F T
@)

0 5 10 15 20 25 30
Time [sec.]

Control actions

Fig. 8. System evolution using the linear controller (¢), approximated controller(.-), and by mean
of direct dynamic programming (7-). Perturbations of 80% of state measurements.

i
15 20 25 30

Time [sec.]

Fig. 9. 80% Perturbations that modifies the evolution of the system.

V. CONCLUSIONS

The optimal control approach offers an attractive methodology for the designer. However, this
general solution becomes hindered when the process is nonlinear or the performance index is non
quadratic.

The classical theory of optimal control generates a function that renders the optimal policy
according to a specified performance index. This function —called p(")- has the control actions as
image to apply to the system according to the state i where it is staying at. Thus, the search for this
function is not always analytically viable. In this sense, the alternative approach that we use here
with dynamic programming solves the optimal control problem for any system with any
performance index. As a result from this, a table of values is created that links the control actions
with the states. To obtain the optimal policy function, the approximate policy iteration method is
known as neuro dynamic programming. This technique was detailed and applied in a case example
to study the potential use in continuous constrained processes. It is necessary to assure an
approximate cost function that guarantees its image for the entire space where the policy gets
improved, showing a quick convergence and without further oscillations.

The results obtained -starting from the comparative analysis of controllers- shows the power of
the technique, because a robust controller is obtained that is capable of operating under noise and
interference conditions.

In some cases, only the performance index can be approached, and a controller is obtained in
which a minimization should be carried out as regards the control actions. Other times, this
approximate performance index is enough, and it can be considered the problem solution. On the
other hand, if the application does not admit a minimization expression, on account of time or
technological problems, an extra neural network can be used so that it may behave as the control
law. In this work, it was called the action network.

REFERENCES

Bellman R. and S. Dreyfus (1962). Applied dynamic programming. Princenton university press.

Bertsekas D. and J. Tsitsiklis (1996). Neuro-dynamic programming. Chapters 5 and 6. Athena
scientific. MIT.

Bishop, C. (1995). Neural Networks for Pattern Recognition. Pp. 290 292. University Press.
Oxford.

Larson and Casti. (1978). Principles of dynamic programming (Part I). Marcel Dekker Inc.

Luus R. (1989). Optimal Control By Dynamic Programming Using Accesible Grid Points And
Region Reduction. Hung. J. Ind. Chem. 17, 523-543.

Norgaard M. (1997). Neural Network Based System Identification Toolbox. Tech. Report. 97- E-
851, Department of Automation, Technical University of Denmark.

