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ABSTRACT

In this work a solution usng evolutionary dgorithms with pendty function for the non-guillotine
cutting problem is presented. In this particular problem, the rectangular pieces have to be cut from
an unique large object, being the goa b maximize the tota vaue of cut pieces. Some chromosomes
can hold pieces to be cut, but some pieces cannot be arranged into the object, generating nfeasible
solutions. A way to ded with this kind of solutions is to use a pendizing drategy. The used pendty
functions have been origindly developed for the knapsack problem and they are adapted for the
cutting problem in this paper. Moreover, the effect on the dgorithm performance to combine
pendty functions with two different sdection methods (binary tournament and roulette whed) is
dudied. The dgorithm uses a binary representation, one-point crossover, big-creep mutation and in
order to evaluated the qudity of solutions a placement routine is conddered (Heurigic with
Efficet Management of Holes). Experimentd comparisons of the performance of the resulting
dgorithms are caried out usng publicly avalable benchmarks to the nonguillotine cutting
problem. We report on the high performance of the proposed models at similar (or better) accuracy
with respect to exiging dgorithms.

Keywords. Non-guillotine Cutting Problem, Evolutionary Algorithm, Pendty Function, Selection
Methods.
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. INTRODUCTION

The optimization plays a centrd role in operations research/management science and engineering
design problems. There are different techniques to resolve but some problems are very complex in
nature and difficult to solve with conventional optimization techniques. One example of them is the
Cutting Problem (CP), in which there is an objective function in presence of a st of condraints on a
gpecific domain and the solution that sdtisfied dl the condraints is cdled a feasible solution to the
problem. The collection of dl such solutions forms the feasible region. The conventiona solution
methods for this kind of problems are very complex and not very efficient. For them, in the last
years there has been a growing effort to apply some meta-heuristics to obtain good solutions in a
limited time. In particular the Evolutionary Algorithms are a technique that provide a good qudlity
of solutions and dlow to try the infeasble solution with different drategies such as regecting,
repairing or pendizing it.

In the Cutting Problem there are a set of smdl objects (‘products, ‘pieces, ‘items) that is
necessay to dlocate in a sat of large objects (‘materid’, ‘object’), which in generd is cdled
containment region. The objective is to obtain the more efficient dlocation without overlapping,
maximizing the quantity of smal objects and/lor minimizing the quantity of large object used for
them. CP can be found in areas such as computer science, industrid engineering, logigtics,
menufecturing, etc. A typology of CP given by H. Dyckhoff [6, 7] disinguishes among the
dimenson of objects (1, 2, 3, ..., N), the kind of assgnment and the structure of the set of large
objects and of small objects.

In many cases there is specid requirement on the cutting patterns only orthogona guillotine cuts
are dlowed, i.e, pieces may only be cut horizontdly or verticdly from one border to the one
opposite. Furthermore, the number of the sages of such cuts is often limited in red word
goplications. In some specific gpplications the pieces have a fixed orientation (not alow rotation).
In same real contexts the rotation of elements (usualy by 90°) can be accepted in order to generate a
better assgnments. For example, rotation is not alowed in newspaper paging or when the items to
be cut are decorated or corrugated, whereas orientation is free in the case of plain materids and in
other contexts. The quillotine condrant is frequently present in cutting problems, due to
technologica characteristic of automated cutting machines.

In this paper the two-dimensona cutting problem is tackled, in paticular the condtrained two-
dimendgond non-guillotine cutting problem, where rectangular pieces are required to be cut from
only one rectangular object of material. Each piece has a defined vaue, so the objective is to
maximize the tota vaue of cut pieces. In order to solve this problem, an evolutionary option to
obtain an optima solution is proposed which is hybridized with our heurigtic [B]. The last one made
an efficient management of free spaces closed by yet assgned pieces. As infeasble solutions are
generated for the EA, pendty technique was added to the objective function. Moreover different
methods to sdect parents were incorporated in this evolutionary dgorithm. The main objective of
this work is to determine the best combination of pendty drategy and sdection methods for the
problem under congderation.

The organization of the paper is as follows. Section Il mentions the different approaches proposed
in the literature to solve the generd two-dimensond cutting problem. Meanwhile Section Il
describes the congtrained two-dimensond nontqguillotine cutting problem and the notation adopted
in this research. Section IV describes the solution representation that is used. The following section
detalls the heurigic placement routine. In Section VI the pendty techniques are described. Section
VIl summarizes and extends the results in order to anayze the evolutionary agorithm proposed in
thiswork. Findly, concluding remarks and future works are presented.



. SOLUTION APPROACHES

A firg gpproach on one dimendon cutting problem based on linear programming was proposed by
Gilmore and Gomory [10]. In this mode each column of the condraint matrix corresponds to a
feedble cutting pettern of a sngle sock length. The totd number of columns is very large in
practicad ingances s0 tha only a subsat of columnsivaridbles can be handled explicitly. The
continuous relaxation of this modd was solved usng the revised smplex method and heurigic
rounding was gpplied to obtain feasble solutions. Under conditions of cyclic regular production, the
solution of the continuous relaxaion is optimum for a long-term period because fractiond
frequencies can be trandferred/stored to the next cycle. Heurigtic rounding of continuous solutions
produces an integer optimum in most cases.

The unconstrained two-dimendgonal n-stage cutting problem was introduced in [LO], where an exact
dynamic programming agpproach was proposed. The problem has snce received growing attention
because of its red-world gpplications. Meanwhile for the constrained verson, a few approximate
and exact approaches are known: [2, 12, 13, 14, 16, 18, 20]. Among exact dgorithms, the most
successful are linear programming based enumerdtion without column generation [16] and non:
linear programming based enumeration [14].

Combinatorid heurigics are usudly cdled heurigics, which do not use any linear programming
rdlaxation of the problem. Many contributions condgder evolutionary agorithms for one-
dimengond cutting problem (see[8, 23]) and dso for two-dimensond cutting problem [20].

Ancther group of approaches is based on the structure of the problems. To begin, the various kinds
of Firs-, Next-, and Best-Fit dgorithms with word-case performance andyss are mentioned [22].
The sequentid approaches [11, 15, 19] for one-dimensond CP and Wang's combination agorithm
[21] and the extended substrip generation algorithm (ESGA) of Hifi [L3] two-dimensond CP are
more sophigticated. Beadey presents a heurigic agorithm for the condrained two-dimensond non
guillotine cutting problem in [4]. This agorithm is a population heurigic, where a population of
solutions to the problem is progressvely evolved and the heuridtic is based on a new, non-linear,
formulation of the problem. This last problem is aso solved by Beraudo €. d in [5], here an
evolutionary dgorithm is used and aso different placement heurisics are analysed, one of them is
considered here with dight modifications.

[11.  CONSTRAINED TWO-DIMENSIONAL NON-GUILLOTINE CUTTING PROBLEM

The congrained two-dimensonad non-guillotine cutting problem is the one that refers to cutting
sndler pieces from a sngle large planar stock rectangle dso caled object. Each planar stock
rectangle has fixed dimensons (Lo ,W, ) where Ly is the length and W is the width, whereas each
type of pieces i has a length L, and a width W (i=1,...,m), congdering m as the number of different
types of pieces. Each type of piece i has fixed orientation (i.e. cannot be rotated). It must be cut (by
infinitdy thin cuts) with its edges pardld to the edges of the stock rectangle (i.e. orthogona cuts);
and the number of pieces of each type i that are cut must lie between R and Q (O£ P, £ Q; ). Each
type of piece i has an associated value v; and the objective is to maximize the totd vaue of the cut
pieces. It is usud to assume that dl dimensons (Li ,W; ) i=0,1,...,.m ae integers without entering
into a sgnificant loss of generdity. To ease the notation in this pgper we shdl use M =3 [4]
which represents the total number of pieces.



V. CHROMOSOME REPRESENTATION

The possible solutions to this problem can be encoded indgde the chromosome dructure. There are
many ways to do this, being some better than others. For the condrained two-dimensond non
guillotine cutting problem Beedey [4] proposed a combined binary/red—numbered solution
representation. In thiswork only the binary part is used:

| =1ifthep’th copy (p=1,...,Q;) of type of piecei is cut from (Lo, Wp).
P 1 =0otherwise.

In order to show an example of this representation, the following problem is consdered: m = 3,
M=5, Lo=10, W=10, L;=3, W=7, Q=2, L=10, Wo=2, Q=1, Ls=8, Ws=2, =2. A posshle
chromosome conformation is as follows:
Piece (i) 1 1 2 3 3
Copy (p) 1 2 1 1 2
Zp o|l1]1]0]1

In this example the first copy of piece 1 is not cut (z11=0), while the second copy of piece 1 is cut
(z12=1). Other pieces to be cut are the only copy available of piece 2 and the second copy of piece 3.
FPlece and Copy lists are used as reference to interpret the binary part of adl chromosomes. They are
maintained unchanged during al the run. The Pece lig is built consdering dl the pieces involved
in a particular ingance, each piece is numbered and that number is repeated depending on Q. The
Copy list enumerates the copies for each piece.

V. HEURISTIC WITH EFFICIENT MANAGEMENT OF HOLES

The quality of the layout depends on the sequence in which the rectangles are presented to the
heurigtic placement routine. The task of the heuristic is to search for a good ordering of the items. A
placement routine is then needed to interpret the chromosome and evauate its qudity.
The Heurigic with Efficient Management of Holes were deveoped in [5]. At the beginning the
pieces, with zp=1, are ordered by their width. Then, to accommodate a piece, the heuristic acts in
the following way. The fird piece is put a the bottom-left border (or corner). After that, the
fallowing pieceistaking into account:
Case 1.The heuridic tries to accommodate this piece over dready placed pieces in the left
margin. If it is not possible, the heuristic continues with case 2.
Case 2:The heuridic tries to locate the piece in a free hole. This hole mugt have an adequate size
and it must be located in the leftmog. If it is not possble, the heurisic continues with
case 3.
Case 3:The heuridtic tries to locate the piece in the bottom border of the object a the right of
aready placed pieces.
Case 4:In other case the piece cannot be cut in any other possible way.
If there are more pieces to accommodate, the heuristic comes back to first case. Note that a hole is
afree space on the object, which is delimited by 2 or more pieces. See Figure 1 for an example.
This heuristic, as many others, can generate solutions where pieces with zp=1 could not be placed
on the same object. In this way, infeasble solutions are produced and a pendizaion of these
solutions is necessary. Note that, here the objective is to maximize the total vaue of cut pieces.
Different pendization techniques are described in the next section.
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Figure 1. Obtained layout applying the heuristic .

VI. PENALTY FUNCTION

The pendty approach consders infeasble solutions from search space. In an optimization problem,
the search space has two parts. a feasble area and an infeasble area. The main idea of the pendty
technique is in the desgn of pendty function. This function should guides the genetic search to
promising solution space, in an effective way.
The pendty vaue corresponds to the amount of its infeasibility under some measurement. There is
no generd guiddine on desgning pendty function, and condructing an efficient pendty function is
quite problem-dependent [9] . An evauation function would be written as:

Eval(X)=F(x) £ Pen(x)
Where x represents a chromosome, F(x) the objective function of problem, and Pen(x) the pendty
term. For maximization problems, the following is considered:

Pen(x)=0 if x isfeasble
Pen(x)<0 otherwise
Michalewicz propose the following function to calculate the fitness:

m
[o]
Eval(x)=aA ZpVi - Pen(x),
i=1
where z,=1, represents the chosen piece for cutting; v; is an associated value for each piece.
For this working three different kinds of pendty functions, Pen(x), have been implemented
consdering the proposed ones by Michalewicz for the Knapsack Problem [17]:

m

o 1
Linear Penalty: Pen(x)=r @ Zip &

i=1

g _,
Quadratic Penalty: Pen(X)=(r @ Zip & )
i=1

m
o 1

L ogarithmic Penalty: Pen(x)=log, (1+1 A Zip & )
i=1

Where r= max=1.m [Vi/a], Zip =1when z, = 1 and the piece cannot be cut and g; is the surface
of piecei.



VII. EXPERIMENTAL TESTSAND RESULTS

We used a steady-dae evolutionary adgorithm, which objective is to maximize the fitness That is
to maximize the total value of cut pieces by applying a pendty function. This dgorithm uses binary
solution representation [5], the uniform crossover and big-creep mutation. The created child ever
should replace an individud from the population; the individua to be replaced is sdected randomly
from the ten worst individuals. Two diferent methods to select parents are used, one of them is the
Binary Tournament and another is the Roulette Whed method. For usng the las method is
necessary scding the fitness because sometimes the fitness is negative.  The used technique for
sding is the Normdizing technique, which was proposed by Cheng and Gen in [9]. For a
maximization problem, it takes the following form:

()= (fX) - fmin +9)/ (fmax — fmin +9)
where fax IS the maximum fitness frin is the minimum fitness f(X) is the fitness for individud X,
f'(X) is the scded fitness for individud x and g is a samdl postive red number which is usudly
restricted within the open intervad (0, 1). For those tests the g vdue is equd to 0.5, which was
obtained after to experiment with different vaues (for example 0.05, 0.5, 0.9).
The agorithms were tested for 14 ingtances of the CP from OR-Library [1, 3]. For each instance, a
sies of fifty runs was performed. The maximum number of deps was fixed a 15000 and
probabilities for crossover and mutation were set a 0.6 and 0.1, respectively. The population size
was fxed a 120 individuds. Those parameter vaues were set after many proof trids and they are
summarised in Table 1.

Evolutionary Algorithm Steady State Genetic Algorithm

Trials for each instance 50

Max. # steps 15000

Chromosome Representation Binary

Crossover Operator Uniform, Pc=6%

Mutation Operator Big-creep, Pm=1%

Population Size 120

Sdlection method for mating Binary Tournament and
Roul ette Wheel

Selection method for insert the new child | Random selection from the ten
worg individuas

Table 1. parameter value' s details of steady state genetic algorithm

In Table 2, for each test problem, the sze of the problem, the optima solution, the best vaues
found in the literature [4, 5], the results found by our proposed agorithms are shown. Last row of
Table 2 shows average results over dl instances obtained by each dgorithm. The boldface vaues
indicate that the dgorithm found the optimd for the respective ingance. Regarding this, when the
Linear and Logarithmic pendty (independently of sdection method) are used, the arisen agorithms
find the optimum in a bigger number of ingtances (for example 9 of 14 for Linear and 10 of 14 for
Logarithmic usng in both cases Roulette Whed Sdection) than the agpproach applying Quadratic
pendty (for example 8 of 14 under Roulette Whed Sdection). Comparing the results obtained by
the agorithms proposed here with the ones gppeared in the literaiure the following remarks can be
observed: (8) more ingtances (72% of them) are optimdly solved than in Beraudo’s paper [B] (36%
of them) and (b) the optimum for ingance 12 is only reached by the dgorithm combining
Logarithmic pendty with Roulette Whed Sdection; while others could not find it, even though
Beadey's dgorithm obtained the optimum for the rest of the indances. In Figure 2, as an example
of the found optima solution, the individud (chromosome and fitness) and the corresponding
layout are shown.



Table 3 shows the percentage error of the best individua, found by each dgorithm, in relaion with
the optimum vaue for the respective ingance. Last row, in this table, summarises average results
over dl instances obtained by each dgorithm. In average the dgorithms usng Linear pendty made
sndler errors (1.5%) than others approaches (1.83% for Logarithmic penalty and 2.6% for
Quadratic pendty); being the dgorithms with Quadratic pendty which produce the biggest error.
That means, in average the smalest distance between the best solution and the optimum is caused
by the use of linear pendty.

Figure 3 shows a percentage of the number of times that each dgorithmic gpproach obtains the
optima vaue. Note that, this percentage is cdculated taking into account fifty runs of the same
dgorithm for each ingance.

Problem Size o Berau- Beas- Tournament Selection E?)Lrjrlrféltieziwggila\lﬂilxg
pt. doet.alle [4]| Linear [Logarit.| Quad. [Linear [Logarit.| Quad.
Inst.|(Lo,Wg)| m M [5] Y p J ,

en. Pen. Pen. Pen. Pen. Pen.

1 (10,10) 10 164 | 164 | 164 | 164.00] 164.00 164.00 164.00 164.00 164.00)
2l (10,10) 7 17 230 | 230 | 230 | 230.00| 230.0q 230.0q 230.00] 230.00 227.00
3 (10,10) 10 21 247 | 233 | 247 | 217.000 200.00 212.00 222.00| 215.64 231.00
4 (15,10) 7 268 | 268 | 268 | 268.00 268.00 268.0q0 268.00] 268.04 268.00
5 (15,10) 7 14 358 | 358 | 358 | 358.000 358.00 358.00 358.00| 358.00 358.00
6 (15,10§ 10 15 289 | 273 | 289 | 282.000 283.49 273.00 289.00| 284.46 289.00
7l (20,20) g 430 | 426 | 430 | 430.000 430.0d0 430.0d 430.00 430.0d 430.00
8 (20,20 7 13 834 | 828 | 834 | 828.000 828.00 828.00 828.00| 828.04 828.00
9 (20,20) 10 1g 924 | 871 | 924 | 863.000 863.00 853.00 863.00| 863.00 863.00
10| (30,30) 13 1452 | 1383 | 1452 | 1452.00] 1452.00 1383.001452.00 1452.0q 1383.00
11| (30,30) 7 15 1688 | 1688 | 1688 | 1688.00| 1688.00 1570.001688.00 1688.00 1688.00)
12 (30,30) 10 22 1865 | 1826 | 1801 | 1841.00| 1842.43 1855.0011841.00| 1865.04 1749.00
13| (30,30) 15 15 1270 | - | 1270 | 1270.00] 1264.87 1237.001270.00] 1270.0¢1221.00
14 (30,30 7 71 1178 - 1178 [ 1178.00| 1178.0q 1178.001178.00] 1178.00 1178.00
Average|799.79|712.33(795.21 790.64 | 789.27 | 774.21 | 791.50 | 792.44 | 776.93

Table 22 Comparison among the best values found by other authors and by our proposed algorithms

Tournament Selection ?\I%l;:r?;tlfzivr\(geseclavl\g:g
nstance) U | Gan. | Pen. | pen. | Pon. | pen.
1 0.00% | 0.00% | 0.00% |0.00% [ 0.00% | 0.00%
2 0.00% | 0.00% | 0.00% |0.00% [ 0.00% | 1.30%
3 12.15% | 19.03% [ 14.17% [10.12%| 12.70% | 6.48%
4 0.00% | 0.00% | 0.00% |0.00% [ 0.00% | 0.00%
5 0.00% | 0.00% | 0.00% |0.00% [ 0.00% | 0.00%
6 2.42% | 1.91% | 5.54% |0.00% | 1.57% | 0.00%
7 0.00% | 0.00% | 0.00% |0.00% | 0.00% | 0.00%
8 0.72% | 0.72% | 0.72% | 0.72% | 0.72% | 0.72%
9 6.60% | 6.60% | 7.68% |6.60% [ 6.60% | 6.60%
10 0.00% | 0.00% | 4.75% | 0.00% | 0.00% | 4.75%
11 0.00% | 0.00% | 6.99% |0.00% [ 0.00% | 0.00%
12 1.29% | 1.21% | 0.54% |1.29% | 0.00% | 6.22%
13 0.00% | 0.40% | 2.60% |0.00% | 0.00% | 3.86%
14 0.00% | 0.00% | 0.00% |0.00% [ 0.00% | 0.00%
IAverage| 1.66%| 2.13%| 3.07%| 1.34%| 1.54%)| 2.14%

Table 3: percentage error of the best-found solution in comparison with the optimum
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Figure 2. Chromosome of the optimum for instance 12 and its corresponding layout.
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Figure 3: Success percentage of our proposed algorithms.

In generd, comparing the results obtained by our dgorithms the following remarks can be seen.
The sdection methods to form the mating pool do not present significant differences when the best
solutions are andysed. Now regarding the pendty functions the results obtaned by linear and
logarithmic pendties are better than the results reached by the quadratic one. Andysing both tables,
the logarithmic option finds the optimum more times but if this option cannot do it, the commit
percentage error is bigger than in the linear option.

Being the objective to study if there are or not differences in the qudity of diginct set of solutions
given by approaches here used, an andyss of variance of nonparametric classfication was made.
Since the assumption on the normdity and the homogeneity of the variances was impossible to
verify, the Kruska-Walis ANOVA by Ranks test was used. The null hypothesis (HO) is there are
not any differences among average find population vaues obtained by dl the dgorithms with
a=0.05. As the cdculated p-value is equd to O (minor than a), the HO is rejected. As the average
quaity of these sets is different, a multiple comparison was done concluding tha three different
agorithm groups are detected regarding the pendty function independently of the selection method.



VIII. CONCLUDING REMARKS

For the nonguillotine cutting problem, we presented a solution using evolutionary dgorithms with
pendty function in order to manipulate infeesble solutions during the evolution process. Also the
influence of different sdection methods was andyzed in the EA behaviour. Three pendty functions
were proposed for this problem origindly developed for the knapsack problem: linear, quadratic
and logarithmic. The last one presented a better behaviour, which can be seen for the good qudity
of solutions achieved for the dgorithm. About the sdection methods used they did not show a
dgnificant differences on its behaviour on the same pendty function. Furthermore we can remark
that the improvement in the result was only associated to the application of pendty functions
independently of the selection methods used.

Our next gseps will congs in andyze the applications of others techniques to handle the infeasible
solutions present in dl the congdraints problems such as repairing or rgecting those solutions. Also
andyzing the dgorithms peformances on ingances of largest dimensons is an important issue to
tackle in the future.
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