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Abstract

In this work we present an approach to model an action-oriented system controlled by
BDI agents using a defeasible argumentation formalism to represent its knowledge. Here,
our main concern will be modelling the software agents that drive the physical robots.
The chosen agent architecture will be BDI and it will use defeasible argumentation to
perform the reasoning part of the system. Provided that our laboratory has the basic
setup to implement a robotic soccer team, that is the application domain selected to test
this approach.
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1 Introduction

This article addresses the problem of having a robot that must reach a certain goal by means

of a given set of actions. In order to achieve this, other problems must be solved first, from

the construction of the robots to knowledge representation. Here, our main concern will be

modelling the software agents that drive the physical robots. We have chosen the BDI ar-

chitecture [9, 10], which is “...one of the most promising architectures for the development of

intelligent agents, and has become one of the most studied and well known in the literature” [3].

In the BDI model, reasoning about beliefs, desires and intentions must be performed; we will

use Defeasible Logic Programming (DeLP) [4] as the reasoning module. DeLP is an argumen-

tative formalism [1, 8] that relies on a defeasible logic program. In our work, this program will

contain rules that combine desires and beliefs to provide the agent with the capability of deriv-

ing intentions. Then, when the current intention is determined, the robot will use its effectors

to perform the physical action that best accomplishes what the software agent intended.

Finally, the application domain chosen is robotic soccer, a system with enough complexity to

show the capabilities of our approach. A soccer-playing robot has a variety of actions available
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(e.g., make a pass, carry the ball), and it can perform one at a time. Furthermore, the robot

has a clear goal, i.e., to score, and a single intention that can fulfill that task: to shoot on goal.

This paper is organized as follows: Section 2 will describe the agents architecture used in

our approach; Section 3 will explain the scenario and how knowledge is represented in the form

of defeasible rules; Section 4 will show how this approach is applied in a robotic soccer domain.

2 Agents Architecture

In this paper, agents will be implemented using a BDI architecture. An agent built upon a

BDI architecture has an internal state that relies on three sets: Beliefs (B), Desires (D) and

Intentions (I). At a given moment the agent will have a set of beliefs B ⊆ B, a set of desires

D ⊆ D, and a set of intentions I ⊆ I.
The set B of Beliefs will include the current state of the world and some parameters that

define the role of the agent. The main idea is that everything that is perceived by the agent

(explicitly or implicitly) as well as the parameters that rule its personality are contained in this

set.

The set D of Desires will contain the mental attitudes that allow the agent to reach its final

goal. Every element can be seen as a sub-goal, as the agent will be willing to accomplish it in

an appropriate moment to fulfill its task. A particular subset Dc of D will be distinguished: the

one containing only the desires that (according to B) can be currently fulfilled; this subset Dc

will be the Current Desires set (see Definition 3.1).

The set I of Intentions will be a subset of Dc. Observe that there is a link connecting

intentions and actions, provided that an action will be an effort to fulfill an intention, given

the faulty nature of the robot’s domain.

The BDI architecture describes a two-phase loop (Figure 1) that requires to perform rea-

soning: first, the set D is filtered to build the set Dc and then an intention has to be selected

among the elements of Dc. In our approach, we will use DeLP to represent knowledge and

derive intentions. Therefore, the argumentation process performed regarding each desire will

model the reasoning part of the system. The defeasible knowledge under representation will

be based on beliefs and desires encoded as a Defeasible Logic Program P = (Π, Δ), where Π

denotes the set of facts and strict rules, while Δ denotes the set of defeasible rules:

• Facts, which are ground literals representing atomic information or the negation of atomic

information (using the strong negation “∼”).

• Strict Rules of the form L0← L1, . . . , Ln, where L0 is the head and {Li}i>0 is the body.

Each Li in the body or the head is a literal.

• Defeasible Rules of the form L0 –≺L1, . . . , Ln, where L0 is the head and {Li}i>0 is the

body. Each Li in the body or the head is a literal.



Figure 1: BDI architecture using DeLP as a reasoning module

In DeLP a literal L is warranted if there exists a non-defeated argument A supporting L. In

order to establish if 〈A, L〉 is a non-defeated argument, argument rebuttals or counter-arguments

that could be defeaters for 〈A, L〉 are considered, i.e., counter-arguments that by some criterion

are preferred to 〈A, L〉. Since counter-arguments are arguments, there may exist defeaters for

them, and defeaters for these defeaters, and so on. Thus, a sequence of arguments called an

argumentation line is constructed, where each argument defeats its predecessor in the line (the

interested reader should refer to [4] in order to obtain a more detailed explanation1).

In DeLP, given a query Q the possible answers will be: YES, if Q is warranted; NO, if the

complement of Q is warranted; UNDECIDED, if neither Q nor its complement are warranted;

and UNKNOWN, if Q is not in the language of the program.

3 Knowledge, Actions and Desires Representation

In this work we will consider the problem of having an action-oriented system with a single

goal. This is a common scenario in the mobile robotics domain, where a robot has certain

effectorial capabilities, along with a given task. An interesting issue arises when there is just

one action that can be performed at a time, that is, the agent has to select the right one out

of an available set of actions. Therefore, the suitability of each action must be weighed. The

agent must have the ability of selecting the right action at every moment, i.e., the action that

gets it closer to the goal.

1The implementation (interpreter) of DeLP that satisfies the semantics described in [4] is currently accessible
online at http://lidia.cs.uns.edu.ar/DeLP.



3.1 Defeasible Logic Program

As stated in Section 2, in this model knowledge will be encoded as a defeasible logic program

and the reasoning will be performed by a formalism of defeasible argumentation. In this kind

of logic programs, the programmer must assert reasons for and against certain literals, written

in the form of rules. We will consider the following scheme of rules:

δi –≺ βi1 , ..., βin (defeasible)

δj← βj1 , ..., βjm (strict)

Where every δi is a literal that stands for a reason for or against a desire. The literals βij

will represent beliefs.

In addition to this, if a reason for a desire holds, it must be considered as a reason against

every other desire. Keep in mind that each desire is directly related to a physical action, and in

this work we are assuming that just one action can be performed at a time. Hence, whenever

the agent has a reason to perform an action, that must be automatically thought as a reason

against the rest of the available actions (e.g., if you have a reason to watch TV, you will have a

reason against reading this paper, and vice versa). For that reason, the following type of rules

must be added to the program for all desires:

δi –≺ δj, such that i �= j

Having this rules implies that a warranted argument for a desire will be a strong opposition

against the possibility of warrant of the rest of the desires. Although this seems to mean that

the warrant of more than one desire will never happen, the influence of the beliefs within an

argument can override this property and allow more than one desire to be warranted.

According to the rules described above, the defeasible program will represent the agent’s

knowledge by stating reasons for and against every element of the set of Desires based on the

set of Beliefs and the set of Desires itself. Let’s see an example, where we model the desires

and beliefs of a soccer-playing agent that has the ability of performing passes and carrying the

ball; then, the sets B and D are:

• B = {
noOneAhead(P ) (true if player P has no players in front of him),

hasBall(P ) (true if player P has the ball in his possession),

betterPosition(P1, P2) (true if player P1 is in a better position than P2)}
• D = {

pass(Src, Tgt) (represents a reason for player Src to perform a pass to player Tgt),

carry(P ) (represents a reason for player P to carry the ball)}



And the defeasible logic program representing the agent’s knowledge will be:

P = (Π,Δ) = {
(pass(Src, Tgt)–≺ betterPosition(Tgt, Src)),

(∼pass(Src, )← not hasBall(Src)),

(carry(P )–≺ noOneAhead(P )),

(∼carry(P )–≺ not hasBall(P ))}

Rules of the form δi –≺ δj must be written in order to establish that, when a reason for

carrying the ball holds, then there is a reason against performing a pass to a teammate, and

vice versa. Therefore, according to the set D, this rules are:

(∼pass(P, )–≺ carry(P ))

(∼carry(P )–≺ pass(P, ))

Preference criteria

Here we will address the methodological question of how to choose a preference criterion and we

will guide the implementation of a suitable criterion for an agent built following this approach.

First, we will introduce the notion of preference criterion, and then, some necessary definitions

will be presented.

Given an argument structure A2 that is a counter-argument for A1, in order to decide which

one prevails, these two arguments must be compared by some criterion. For example, in [4],

if the counter-argument A2 is better than A1 w.r.t. the comparison criterion used, then A2

prevails and it will be called a proper defeater for A1. If neither argument is better nor worse

than the other, a blocking situation occurs, and we will say that A2 is a blocking defeater for

A1. If A1 is better than A2, then A2 will not be considered as a defeater for A1, and A1

prevails.

Definition 3.1 (Current desires) Given the Beliefs (B) and Desires (D) sets within a BDI

architecture, the Current Desires (Dc) set will be defined as follows:

Dc = {δ ∈ D | there is no warrant(δ)}

Then, the set Dc will be a subset of the set D containing just the desires that, in concordance

with the beliefs, can be satisfied in the current situation.

According to the four possible answers in DeLP, the set Dc is defined:

Dc = {δ ∈ D | answer(δ) �= no}



Before stating a necessary property for the comparison criterion, a couple of concepts must

be introduced first: disagreement sub-argument and supporting literal. As explained in [4], if

〈A1, h1〉 counter-argues 〈A2, h2〉 at literal h, then the sub-argument structure 〈Ad, h〉 will be

called the disagreement sub-argument. In addition to this, we will call supporting literals to

those that appear on an argument and are not on the head of any defeasible rule included in

that argument.

Definition 3.2 (Comparison criterion) Given two arguments A1 and A2, such that A2 is

a counter-argument for A1, and the disagreement sub-argument of A1 is Ad, then A2 is bet-

ter than A1 if, and only if, A2’s supporting literals contain, at least, one desire, and Ad’s

supporting literals contain none.

Any preference criteria used in a system designed by this approach must agree with Defin-

ition 3.2. This condition states that desire-based reasons are stronger than those based merely

on beliefs. The following example will show how this criterion works. Consider this sets of

beliefs, desires and rules:

Δ = {(a1 –≺ v),

(∼a1 –≺ b),(∼a1 –≺ a2),

(a2 –≺ x),(a2 –≺ y),

(∼a2 –≺ d),(∼a2 –≺ a1)}

D = {a1, a2, a3}
B = Π = {v, x, y, b, d}

Dialectical tree for argument
<{~a1-<b, b},

~a1>

<{~a1-<b,
b},

~a1>

<{a1-<v,
v},
a1>

<{~a1-<a2,
a2-<x,

x},
~a1>

<{~a2-<d,
d},

~a2>

<{~a1-<a2,
a2-<y,

y},
~a1>

<{~a2-<d,
d},

~a2>

Figure 2: Dialectical tree for query ∼a1

In Figure 2 we can see a dialectical tree for query ∼a1 that shows the notion of defeat

determined by this comparison criterion works. The root of this tree is blocked by a single

defeater, and that argument is properly defeated by two arguments holding ∼a1; this defeat



relationship is justified by the fact that a1 is supported by the reason v, and the defeaters

support their conclusions ∼a1 with the action-related desire a2. Finally, at the bottom, both

proper defeaters are, in turn, blocked by the same argument, ending both argumentation lines.

We will get a variety of dialectical trees representing the reasoning process performed to

achieve the answer. The interested reader may refer to http://lidia.cs.uns.edu.ar/DeLP.

3.2 Actions and Intentions

In this model, actions will be assumed as a move (or sequence of moves) performed by a robot

trying to fulfill an intention previously derived by the software agent. Thus, an intention will

be defined in terms of some analysis of the state of the warrant of the current desires, and the

actions just will try to mirror the currently selected intention in the best possible way.

Definition 3.3 (Intention) An intention I is a current desire that is enabled by a set P of

preconditions and a set C of constraints of the form not Ci. Policies for obtaining intentions

will be denoted in the following way:

I ⇐ {P1, ..., Pm}, not{C1, ..., Cn}

Notice that the notation not {C1, ..., Cn} represents {not C1, ..., not Cn}.
Let K = (Π, Δ) be an agent’s knowledge base, I will be an enabled intention if every pre-

condition Pi has a warrant built from K and every constraint Ci fails to be warranted.

In the model presented in this paper, intentions are derived from desires. According to the

changes in the environment, there could be, eventually, more than one enabled intention, so

a preference order must be introduced to make the final choice. Nevertheless, proper agent

design should avoid this; if the policies are correctly set, the chances of having a completely

undecided situation will be highly diminished.

The selection of the intention will define the agent’s personality and may be subordinated

by its role in the multi-agent system. The reader must notice that having an intention selected

does not mean that the effects of its associated action can be taken as facts.

The effects of the actions cannot have a predictable correlation in the agent’s beliefs, because

they will be ultimately carried out by a physical robot and its actions can fail or be imprecise.

Therefore, the beliefs revision function will be performed by the sensing system of the robot,

updating the geometric data, i.e., the coordinates of all the objects in the playfield.

In this section we presented how the faulty nature of the physical environment (where the

actions are performed) brings shortcomings which do not exist on a simulation. Because the

effects of the actions cannot be determined in advance, there are no planning capabilities and

the reasoning must be executed on-the-fly.



4 Application Domain: Robotic Soccer

Robotic soccer has proven to be a complex enough system to test many of the features of any

reasoning system. The robots are controlled by software agents, each of which has a set of

high-level actions to perform, such as kicking the ball with a given strength or moving in a

given direction. Every moment an agent has to choose which action to do next, and that choice

can be made by using a reasoning system, in this case, a defeasible argumentation system.

In this section we will consider a software agent that controls the behavior of a physical

robot according to the model explained in this article. For the sake of simplicity, we will assume

that the agent has the possession of the ball, and analyze the cases under this assumption. This

will suffice to get the overall idea of the system’s function.

The basic setup to start a robotic soccer match includes: a video camera, infra-red trans-

mitter towers, the robots and computers devoted to run the agents and the video/command

servers. This system works as it follows: The agent perceives its environment through the cam-

era (that takes the whole playfield); then, a video server analyzes those images, recognizing the

positions of the objects (ball and robots) and sending this information to the software agents.

From this data the agents will build their (almost identical, they will differ just on personal

features, such as their roles) B set describing the current state of the world. Next, from sets

B and D, it will generate the set Dc. Finally, it will select an element from the Dc set as the

current intention.

4.1 Agents Architecture

According to Section 2, the BDI sets to describe the internal state of a soccer-playing robot are

the following:

• B = {
marked(P ) (true if player P is marked),

oppositeF ield(P ) (true if player P is in the opposite side of the field),

noOneAhead(P ) (true if player P has no players in front of him),

goalieAway(T ) (true if the goalkeeper of team T is bad positioned),

hasBall(P ) (true if player P has the ball in his possession),

teammate(P ) (true if player P is a teammate of the player calling the predicate),

betterPosition(P1, P2) (true if player P1 is in a better position than P2),

playerBetween(P1, P2) (true if there is a player between P1 and P2),

gameResult(R) (true if R is the current result of the game),

playerRole(R) (true if R is the role of the player calling the predicate)}
This set has predicates built upon the information gathered from the sensorial data and

represents the state of the agent’s world.



• D = {
shoot(P ) (represents a reason for player P to shoot on goal),

pass(Src, Tgt) (represents a reason for player Src to perform a pass to player Tgt),

carry(P ) (represents a reason for player P to carry the ball)}
This set is hard-wired to the robot’s knowledge and contains the available desires that

may be elected as an intention at any moment of the game. At every moment during the

match, it is filtered and the Dc set is built.

• I = [shoot(P ) | pass(Src, Tgt) | carry(P )]

The intention currently selected as explained in Section 3.2.

4.2 Defeasible Argumentation

The defeasible logic program has to define reasons for and against every element belonging to

the set D and it does so via the following rules:

P = (Π,Δ) = {
(shoot(P )–≺ oppositeF ield(P ), noOneAhead(P )),
(shoot(P )–≺ oppositeF ield(P ), not marked(P )),
(shoot( )–≺ goalieAway(opposite)),

(∼shoot(P )← not hasBall(P )),
(∼shoot(P )–≺ pass(P, )),
(∼shoot(P )–≺ carry(P )),

(pass(Src, )–≺marked(Src)),
(pass(Src, Tgt)–≺ betterPosition(Tgt, Src)),

(∼pass(Src, )← not hasBall(Src)),
(∼pass(Src, Tgt)–≺ playerBetween(Src, Tgt)),
(∼pass( , T gt)–≺marked(Tgt)),
(∼pass(Src, )–≺ shoot(Src)),
(∼pass(Src, )–≺ carry(Src)),

(carry(P )–≺ noOneAhead(P )),

(∼carry(P )← not hasBall(P )),
(∼carry(P )–≺ shoot(P )),
(∼carry(P )–≺ pass(P, ))}

In the following examples we will show how a player makes a decision based on this model.

Every scenario has a a couple of players belonging to the blue team and two or three yellow

team players. We will analyze the reasoning performed by the blue team player labeled ‘self’.

Regarding knowledge representation, the beliefs predicates will be written according to the

Close World Assumption, and everything that cannot be proved will be assumed false.



Figure 3: Player ‘self ’ decides to make a pass Figure 4: Completely undecided situation

4.3 Situation One: a straightforward decision

In this situation, as can be seen in Figure 3, the player has the following Beliefs set:

B = {marked(self), oppositeF ield(self), noOneAhead(t1), hasBall(self), teammate(t1),

betterPosition(me, t1), playerRole(forward)}
Once built the internal representation of the world, the agent performs DeLP queries over the

elements of its set D, gathering their corresponding answers:

• shoot: NO; there are no reasons for shooting on goal, because the opposite goalkeeper is

well-positioned, the player ‘self’ is marked, etc. On the other hand, there is one undefeated

reason for not shooting on goal: a pass can be performed to teammate ‘t1’, who is free.

• pass: YES; there is an undefeated reason to perform a pass to teammate ‘t1’: player ‘self’

is marked by opponent ‘o3’.

• carry: NO; there are no reasons for carrying the ball, because the path between ‘self’ and

the goal is obstructed by opponent ‘o3’. But there is a reason for not carrying the ball:

a pass can be performed to teammate ‘t1’.

In this situation, the player has a clear choice: the selected intention must be perform a

pass to ‘t1’, because it is the only current desire and it is warranted.

4.4 Situation Two: reasoning upon indecision

In this case, shown by Figure 4, player ‘self’ builds the following Beliefs set:

B = {marked(self),marked(t1), oppositeF ield(self), oppositeF ield(t1), hasBall(self),

teammate(t1), betterPosition(t1,me), playerRole(forward)}
The querying process over each desire throws the following answers:



• shoot: UNDECIDED; there are no reasons supporting this argument; on the other hand,

there are two arguments holding not to shoot on goal, based on different reasons to

perform a pass to ‘t1’, but both are, in turn, defeated by an argument saying that ‘t1’ is

marked by opponent ‘o2’.

• pass: UNDECIDED; the fact that both players are marked by an opponent, despite ‘t1’

is better positioned than player ‘self’, results in the reasoner module being incapable of

deriving a definite answer.

• carry: UNDECIDED; as can be seen in the Figure, ‘self’ cannot advance with the ball,

so there are no arguments for it. Two reasons support not to carry the ball, and they are

defeated in the same fashion as the reasons for not to shoot on goal were.

Now, in this situation, what should the agent do?, it couldn’t make a decision for one of its

three possible actions, but it has to choose one among them. Taking into consideration that

the ‘UNDECIDED’ answer points that no warrant could be built for the queried literal nor its

complement, the agent should determine its final intention with a policy like:

shoot(self)⇐ not{∼shoot(self)}

Therefore, when the not to shoot on goal (negated form of) desire is not warranted, the

agent chooses to shoot on goal as its intention. This kind of policy describes the personality of

an agent that shoots whenever it has an opportunity.

5 Conclusions

This article presents an approach to solve the problem of having an action-oriented system such

as a robot with effectorial capabilities and a goal to complete. The robots are controlled by

software agents based on a BDI architecture that reason via a defeasible argumentation module

(DeLP). This module uses a defeasible logic program in the form of rules that combines desires

and beliefs. Therefore, the agent will query about its desires and will derive a single intention,

depending on the answers obtained. Finally, the robot will perform an action trying to satisfy

the selected intention.

The application domain selected is interesting in the sense that its usefulness is two-folded:

it give us the possibility of grounding the theoretical ideas developed in our laboratory, as well

as the necessary feedback to fine-tune them. We also have the basic setup to verify the result

of the physical actions made by real robots. Now that we have a concrete approach, we can

start the development of a robotic soccer team that uses argumentation to perform reasoning.
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