
Compositional Design Reuse

 Johannes R. Sametinger Rudolf K. Keller
 Johannes Kepler Universität Linz Zühlke Engineering AG
 Institut für Wirtschaftsinformatik Wiesenstrasse 10a
 A-4040 Linz CH-8952 Schlieren-Zürich
 sametinger@acm.org ruk@zuehlke.com

ABSTRACT

Object-oriented software development has proven effective for systems development, but the creation
of reusable and changeable software architectures is still a challenging task. Design patterns capture
the expertise for reusable design solutions, but there is no methodical approach to providing concep-
tual design building blocks in tangible and composable form. Design components have been sug-
gested to address this problem. We suggest compositional design reuse, which is a combined ap-
proach utilizing the ideas of design components and role models. We claim that design expertise in
composable form with explicit documentation provides many advantages. It provides alternative
views on software systems at a high level of abstraction, and it can help in prohibiting known design
flaws as well as design blurring and degradation during subsequent modifications. In this paper, we
refine the notion of design components, include role models, and discuss component types as well as
design composition.

Keywords
object-oriented design, design process, design component, design pattern, software architecture, role model, software re-
use

1. Introduction
Component-based software development stands for software construction by assembly of prefabri-

cated, configurable, and independently evolving building blocks [1, 7, 29]. Emerging software com-
ponent models, such as the Component Object Model [4] and JavaBeans [27] prescribe standards for
the collaboration of independent components and are aimed at improved development productivity
and at more resilience of software to changing requirements [17]. Current approaches to component-
based software development seem to be inadequate for the creation of reusable and changeable soft-
ware architectures. Architectural design is more than an adept combination of micro-applications. It
is an evolutionary process that requires abstract thinking and expertise in both the application domain
and software design. Successful software architectures usually arise from a continuous reassessment
of design alternatives and redistribution of responsibilities among system components. To accom-
plish this, deep insight into the components’ design is required. The apparent lack of design informa-
tion in today’s components is considered to be one of the most significant problems of software de-
velopment based on components [10]. In addition, reuse of architectural design issues has not been
an option on a compositional basis so far [25].

Large software companies face paramount difficulties when they have to adapt software systems
with millions of lines of code to rapidly changing requirements. Far too often, such systems have
evolved from an uncoordinated build-and-fix attitude and suffer from a lack of methodical support
during maintenance. The original design intents of the software systems are obfuscated or have dis-
appeared altogether. It takes immense effort to implement and test changes, as the effects on other
software parts and the impact on future reuse are hard to predict. We consider compositional design

This research was supported by the SPOOL project organized by CSER (Consortium for Software Engineering Research) which is funded by Bell Can-
ada, NSERC (National Sciences and Research Council of Canada), and NRC (National Research Council of Canada). This work was conducted when
Rudolf K. Keller was a full-time faculty at the University of Montreal.

reuse as a major step in overcoming at least some of the shortcomings mentioned above. We state
that design expertise in composable form with documentation leads to an increase in systematic de-
sign reuse, a decrease of implicit reuse of design flaws, less design blurring during subsequent modi-
fications, an alternative design view on software systems, and better documentation of design.

In Section 2 we start with the discussion of foundations of our work. Design components follow in
Sections 3. Section 4 provides a categorization of these components. Design composition is dis-
cussed in Section 5. Considerations about infrastructure are made in Section 6. Section 7 follows
with a review of related work. Section 8 draws conclusions and points out future work.

2. Foundation
Design patterns [11], the notion of design components [13] and role modeling [19, 23] build the

cornerstone of our approach to compositional design reuse.

Design Patterns
Object-oriented design patterns are patterns in the domain of object-oriented design. They are fre-

quently described as a problem/context/solution triple [6, 11]. "A design pattern systematically
names, motivates, and explains a general design that addresses a recurring design problem in object-
oriented systems" [11]. Design patterns are abstract ideas that can be illustrated in different ways and
that can be instantiated in many ways. They can be illustrated, for example, using class diagrams [6]
or using role models [23], or a combination thereof. Design patterns provide a common design vo-
cabulary, a documentation and learning aid, an adjunct to existing methods, and a target for refactor-
ing.

Throughout the paper we will use the Visitor pattern as an example. We use the visitor pattern be-
cause we have an object structure with differing classes and interfaces, and we want to perform op-
erations on these objects that depend on their concrete classes, see example in Section 6. Rather than
"polluting" the classes with distinct and unrelated operations, we want to keep related operations to-
gether by defining them in one class. Figure 2-1
depicts the structure of the visitor pattern with
two visitors and two elements in the object
structure. The visitor interface and the element
interface is defined in an abstract class in each
case [11].

Design patterns have gained wide-spread ac-
ceptance and use. But despite their definite ad-
vantages, there are impediments to pattern-
based software engineering. Design patterns are
treated only as non-software artifacts. Pro-
grammers create, extend, and modify classes
throughout the software and tend to lose sight
of the original patterns, which can lead to a ma-
jor maintenance problem. Design components,
as described in the next section, have been proposed as remedies to these problems.

Design Components
Design components address the blurring of design patterns during implementation and maintenance,

and suggest a more systematic approach to define, implement, and trace them within a component-
based development cycle [13]. Design components are reified design patterns, which according to
[13] may be instantiated, specialized, alterated, adapted, assembled, provided, and generated, see Fig.
2-2.

client AbstractVisitor
Visit(Element1)
Visit(Element2)

Visitor2
Visit(Element1)
Visit(Element2)

Visitor1
Visit(Element1)
Visit(Element2)

object
structure AbstractElement

Accept(Visitor v)

Element2
Accept(Visitor v)
OperationB()

Element1
Accept(Visitor v)
OperationA()

Figure 2-1: Visitor Pattern [10]

Collections of design components can be envi-
sioned that provide solutions to various design prob-
lems based on role models. These design compo-
nents are to be reused in a compositional way. It is
understood that they be adequately and systemati-
cally documented. With design components, design
patterns constitute the foundation of software devel-
opment. Design patterns are provided as tangible de-
sign components that are embedded in an incre-
mental and iterative design process. Design composi-
tion provides the concepts and mechanisms which
are necessary to make pattern-based software devel-
opment more practical.

Role Models
Role models are abstractions on object models

where patterns of objects are recognized and described as corresponding patterns of roles [19]. Role
models support separation of concern and describe static and dynamic properties. A role captures the
responsibilities of an object with respect to achieving the purpose needed in a collaboration. It de-
fines the abstract state and behavior of an object in a collaboration with other objects and can be ex-
pressed using adequate type or interface notation. The actual definition of a role is based on what the
other roles in a collaboration require in order to achieve a joint purpose [21]. An object can play sev-
eral roles at once, and several objects can play the same role. Role diagrams can be composed easily,
which makes them attractive for describing composite patterns [21], as well as design components.
Classes are the primary means for modeling object-oriented software systems, but class diagrams fail
in clearly presenting the distribution of responsibilities between objects. Role diagrams focus on sets
of collaborating objects. They describe how collaborating objects that play one or more roles achieve
a common goal. A role represents the view that other objects have on the object playing that role in a
certain collaboration [14, 20, 21]. Role models have been used in the OOram software engineering
method [19]. They also play an important factor in a design approach for frameworks [22, 23]. Typi-
cally, classes play many roles in an object-oriented software system. Often, roles correspond to meth-
ods in classes. But playing a role can also be mapped to part of a method, i.e., to particular declara-
tions and statements. Roles played by classes get easily obfuscated and the design becomes blurred
over several redesign and/or maintenance cycles. We take design components one step further by
substantiating them and including role models (Section 3) and by introducing additional component
categories (Section 4).

3. Design Components
We model the structure of design components at three levels of abstraction. We call these the de-

scription level, the role model level, and the implementation level:
- component description: why to choose a particular design.
- component role model: how to put the design into practice (programming language- independent).
- component implementation: how to map a role model to a programming language.

At the fourth level, instances of design components in specific software systems are described. De-
velopers instantiate design components based on information in the description level, choose a role
model that best fits their needs, and pick a concrete implementation for their specific platform, thus
resulting in an instantiation.

Reification

Instantiation Provision

Design
Components
(Repository)

Design Patterns

Generation
Design

Component
Instances

Specialization
Adaptation
Assembly
Alteration

Figure 2-2: Design Composition Process [12]

Component Description
The description of a design

component contains all its
constituents, i.e., name, classi-
fication, motivation, intent,
applicability, structure, vari-
ous diagrams, known uses,
etc. [11]. Fig. 3-1 depicts the
description of a design com-
ponent reifying the Visitor
pattern as described in [11].
The description as shown in
Fig. 3-1 does not provide
more information as is given
in design pattern descriptions as published in [11]. Rather, we segregate general information. Specific
information like implementation details is included in lower levels.

Role Model
The description provides gen-

eral information like motivation,
applicability and consequences.
It does not supply any hints on
how the design has to be in or-
der to achieve whatever the de-
scription promises, e.g., adding
new operations should be made
easy. The role model states how the design has to be made, if we recognize, that our situation is as
described in the component’s description. A role model to the design described in Fig. 3-1 is given in
Fig. 3-2. With the role model we aim at explicitly documenting the roles of a design component. Dur-
ing instantiation this information will be conserved by assigning roles to classes. Various classes will
play the roles of a design component in order to adhere to the design captured by this component. A
Visitor as depicted in Figs. 3-1 and 3-2 must visit each element of its object structure. Responsibility
for traversal can be put in the object structure, in the visitor, or in a separate iterator object [11]. We
suggest to offer different role models to cover such variants. Therefore, there can be several role
models for a single design component.

Component Implementation
At the implementation level a role model

is being mapped onto a specific program-
ming language and can be based on a spe-
cific class library or application framework.
Again, there can and typically will be sev-
eral implementations for a single role
model. This level is used to support differ-
ent implementation platforms. Many design
reifications will be independent of any pro-
gramming language and any class library.
However, an implementation has to be pro-
vided for various platforms in order to allow instantiations to be included in systems being developed

rolemodel {
 component: Visitor Pattern
 name: default
 description: A client that uses the Visitor pattern must create...
 roletype AbstractVisitor: defines a Visit operation for each class of ...
 roletype ConcreteVisitor: implements VisitorInterface ...
 roletype Abstract Element: defines an Accept operation that takes a ...
 roletype ConcreteElement: implements ElementInterface ...
 roletype ObjectStructure: can enumerate its elements, may ...
}

Figure 3-2: Role Model

implementation {
 component: Visitor Pattern
 rolemodel: default
 platform: Java2
 roletype AbstractVisitor is interface
 void visit($ConcreteElement$ e);
 roletype ConcreteVisitor implements AbstractVisitor
 roletype AbstractElement is interface
 void accept($AbstractVisitor$ v);
 roletype ConcreteElement implements AbstractElement
 public void accept($AbstractVisitor$ v)
 { v.visit$ConcreteElement$ (this); }
 roletype ObjectStructure
 void #doAnything#() { accept(new $ConcreteVisitor$()); }
}

Figure 3-3: Component Implementation

description {
 component: Visitor Pattern
 author: Gamma, Helm, Johnson, Vlissides
 date: 1995
 version: v1.0
 short: Design component based on Visitor Pattern by Gamma ...
 intent: Represent an operation to be performed on the ...
 motivation: Consider a compiler that represents programs as ...
 applicability: An object structure contains many classes of objects ...
 ...
 consequence: Visitor makes adding new operations easy. ...
 ...
 knownuse: The Smalltalk-80 compiler has a Visitor class ...
 IRIS Inventor is a toolkit for developing 3-D graphics ...
 To make adding new nodes easier, Inventor ...
}

Figure 3-1: Component Description

on these platforms. An implementation for the Java platform of the above role model of the Visitor
component is illustrated in Fig. 3-3. Note that we use interfaces rather than abstract classes for the
definition of visitors and elements. During instantiation, names enclosed by $-signs that match a role
name will be replaced by the names of the classes playing that role, e.g., $ConcreteElement$, $AbstractVisitor$

and $ConcreteVisitor$. Names enclosed by #-signs, e.g., #anyCode# and #doAnything#, will later be replaced by
instance-specific code. The code specified for a role can be instantiated many times, depending on
how many classes will play a role in an instantiation. In our example, the class playing the Abstract-
Visitor role will have a visit method per class playing the ConcreteElement role. Typically, imple-
mentations will be available for different programming languages, but there can also be a distinction
among used libraries, e.g., Java JDK 1.2 vs. Java JDK 1.3. Having the description and the role model
independent of implementation details is important in providing the same design components for dif-
ferent platforms and, thus, in gathering design expertise from and distributing it to various platforms.

Component Instantiation
An instantiation defines which roles specified in the role model are played by which classes of the

actual implementation. The instantia-
tions of several design components
typically interrelate with each other as
classes will play roles of several instan-
tiations. An instantiation can also con-
tain modifications and extensions to
specific roles in order to address a spe-
cific system’s functionality. Fig. 3-4
depicts a Java interface Visitor playing
the ‘AbstractVisitor’ role of the Visitor
pattern. javadoc comments [28] have
been used to capture the design compo-
nent information for this instantiation.
We use a @pattern tag which states the
name of the design component (Visi-
tor), the role being played (Abstract-
Visitor), and the name of the instantia-
tion (QuizVisitor).

Parameterization
Number and types of parameters will vary among components, but we imagine parameters for the

description, the role model, and the implementation. Design components will be instantiated based
on the specified parameters. Design pattern descriptions offer many possibilities for parameterization.
For example, an iterator can be implemented as being internal or external to the collection to be iter-
ated. An iterator can also be robust to changes in its collection. Several such decisions have to be
made when applying a certain design pattern in a specific context. It is our intent to make many of
these decisions explicit by providing parameters that have to be set when instantiating a design
component.

Parameters can be specific to a certain implementation, thus be associated with the implementation
level. In this case, the parameter can only be specified when the corresponding implementation has
been chosen. Such a parameter can be whether to use templates for a C++ implementation. The cho-
sen role model and implementation can also be considered as parameters of the design component.
The same general design decisions can lead to different systems. Consider design patterns as pub-
lished in [6, 11]. For all the patterns there are many variations and many ways to implement them.

package quiz;
/** represents an operation to be performed on the elements of a
quiz
 * @author Johannes Sametinger
 * @pattern Visitor.AbstractVisitor.QuizVisitor
 * declares a visit operation for each class in the quiz
 * (ConcreteElement)
 */
public interface Visitor {
 /** operation to be performed on quiz objects
 * @pattern Visitor.AbstractVisitor.QuizVisitor visit operation
 */
 void visit(Quiz e) {}
 /** operation to be performed on objects of class QuestionList
 * @pattern Visitor.AbstractVisitor.QuizVisitor
 * visit operation for QuestionList
 */
 void visit(QuestionList e) {}
 ...
}

Figure 3-4: Component Instantiation

Thus, instantiations of the same pattern component can look quite different. In order to make such
variations explicit and in order to document these variations, we not only propose to provide different
role models as well as different concrete implementations, but also to specify parameters for design
components. The levels of a design component form a tree with the description as the root. There can
be various implementation strategies for a component expressed through different role models. Addi-
tionally, there can be various implementations for each role model, such that a design component can
be instantiated for, say, a C++ system as well as a Smalltalk system. Parameters can be available for
the upper three models of a design component. Settings of these parameters are used to customize
component instantiations and can lead to the use of different platforms, e.g., programming lan-
guage/application framework, and also to different implementation strategies, e.g., transparent/safe
composite.

4. Component Categorization
Typical candidates for design components are design patterns. Thus, a design component represents

a reification of a design pattern. However, we want additional component types in order to com-
pletely describe software systems by design components, such that we have a design view on the en-
tire system rather than just on parts of it. The crucial point is that these additional components de-
scribe various design aspects by defining roles similar to components reifying design patterns. Be-
sides pattern components, we introduce model components, GUI components, aspect components
and architecture components for that purpose.

Pattern Components. Design expertise has been captured with design patterns. We use reification
of such patterns in order to make the design explicit and reuse good design decisions. The description
of components capturing design patterns can be deducted from various sources of information about
design patterns, e.g., [6, 11, 18, 24]. Information for the role model is usually available but not al-
ways given explicitly. The same holds for implementation strategies and implementation details, e.g.,
sections describing participants and sample code for C++ are given in [11].

Model Components. Modeling of an application can be done in several ways, for example by using
a UML editor [9]. The modeling process will result in a model, which can then be captured with
model components. Model components are fairly simple; they provide only a single role and are pri-
marily for the purpose of modeling the data of applications. Thus, model components define attrib-
utes, which will be assigned to the classes playing these roles, when the component is instantiated.
Model components seem superfluous at this point. However, they will prove useful later in the design
process, when a system has evolved, because the underlying data model will be easily available
through means of model component instantiations.

GUI Components. GUI components capture a system’s graphical user interface, e.g., a dialog or a
window. They have to define not only the static structure of the user interface, e.g., menus and but-
tons, but also its dynamic behavior, e.g., dimming of buttons and menu items, as well as the connec-
tion to a system’s functionality. Therefore, we imagine four different roles for GUI components, the
GUI role, the custom role, the glue role and the client role. The source code of the GUI role is typi-
cally created by a GUI builder. The custom role has to access application-specific data, i.e., model
components, and customize the user interface accordingly. The glue role is intended as a means of
attaching system functionality to user activities. The client can be another GUI component, e.g., the
main window can be the client of a GUI component representing the save file dialog.

Aspect Components. In order to keep track of aspects with possibly scattered source code, we use
aspect components with one primary and several secondary roles. The primary role is played by who-
ever plays the major role in an aspect, e.g., whoever starts a specific action. Any other participant
contributing to this action plays a secondary role. Aspect components are used to keep parts of the
system together that logically belong together but are spread all over the system, e.g., reading input

data with methods that are spread over many classes. Similar to model components, the necessity of
such components will become clear when the design of a large system becomes too complex to keep
track of all aspects.

Architecture Components. The architectural structure of software systems can also be captured
with design components, providing design alternatives on a rather abstract level. For example, a de-
sign component can capture the general design of a compiler, a domain which is well-understood,
and where similar designs have proven to be effective. Roles of such a component include lexical
analyzer, parser, semantic check, and code generation. Other examples for architecture components
are pipes/filters, event-based systems, layered systems, and state transition systems.

Further Component Types. All component types share one commonalty. They enfold source code
being spread over several classes. There are cases where source code, that is somehow logically be-
longing together, is neither one of the above mentioned component types, i.e., component types pre-
sented here are not adequate or sufficient in all problem domains. Another categorization with spe-
cific role models will be useful in such situations. The design of a software system can be captured
only with model, GUI and aspect components. For any non-trivial system the absence of any other
components will indicate poor design. Examples of component types can be found in the next Sec-
tion.

5. Design Composition
The use of design components does not impose any design process or a process model. Users are

free to do their design however they like. For example, they can create a model by means of the UML
and then implement this model by composing design components. They can also start with an empty
application and then evolve the application by adding and modifying design component instantia-
tions.

Say we want to build a quiz application that can be used to quiz users on questions. Various forms
of questions should be supported, e.g., single choice questions, multiple choice questions, text ques-
tions, and boolean questions. The system can be used to prepare for various tests, e.g., driver’s li-
cense, pilot license. A first evolutionary step creates the basic structure of the application with classes
for the application (class QuizApp), its
representation on the screen (class Qui-
zApplFrame), a dialog to pick files (class
FileDialog), and two classes containing
the questions of the quiz (classes Ques-
tionList and Question). Fig. 5-1 depicts
these classes, and also shows various
roles that are played by these classes. For
example, class QuizApp plays a secon-
dary role in the 'Save Quiz' aspect and is
the client for the quiz model, i.e., the ap-
plication has a reference to the data of the
quiz. Fig. 5-1 shows classes as first order
objects. Focusing on design components
rather than on classes yields a different
view, as is depicted in Fig 5-2. This illustration gives a better overview of the basic design of the ap-
plication. We can see that there are two GUI components, the main Quiz window and a save file dia-
log. The data structure is modeled as quiz and question list. And, for the moment, there is one aspect
available, i.e., the action of saving a quiz.

class QuizMain
GUI—Quiz

client
GUI

client

GUI

class FileDialogclass QuizApplFrame

Aspect—
Save Quiz

client
primary

secondary

GUI—
SaveFile

class QuestionList

Model—
Quiz

Model—
QuestionList

class Question

client

secondary

model

secondary

model

client

class QuizApp

Figure 5-1: Design overview with focus on classes

We argue, that the view on design components provides a better overview of the design than the
class view can. This is not obvious in
this simple example with only six classes.
But consider a class hierarchy with thou-
sands of classes on the one hand, and a
collection of, say, hundreds of compo-
nents representing GUIs, data models,
design patterns, and aspects on various
levels of abstractions on the other hand.
Classes are needed for full understanding,
but design components provide useful
information about how and why these
classes interact. Say we want to add
flexibility to our quiz application by add-
ing various output forms like HTML out-
put and LaTeX output. A visitor can add
such flexibility without the need of mak-
ing any changes to existing code. First, we check the description of the 'Visitor' component, that pro-
vides all the information necessary to decide whether to use this design in our particular scenario,
remember Fig. 3-1. Next, we have to pick a role model, remember Fig. 3-2, and its concrete Java im-
plementation. These Java roles have to be applied to either existing or new classes, see Fig. 5-3. The
‘AbstractVisitor’ role will be assigned to a new interface called Visitor, which according to the Java
implementation in Fig. 3-3 results in three visit methods being inserted, one for each concrete ele-
ment. The ‘ConcreteVisitor’ roles will be played by new classes, e.g., HTMLVisitor and LaTeXVisi-
tor, whereas the other roles will be assigned to existing classes, e.g., QuizApplication, QuestionList,
Question.

Rather than making extensions and modifications on the source code level alone, we propose to op-
erate on the design component level, i.e., to include new components, modify existing components,
or remove components. All these operations result in the creation, modification or removal of classes
or interfaces. Including new design components results in the assignment of the component’s roles to
existing or new classes. Thus, we add new methods to classes and insert new classes. The removal of
a design component leads to the removal of methods and even to the removal of entire classes,
should they play only a single role. Modifications of components include changes in instantiation-
specific code, role assignments to additional classes, removal of roles from classes, or even the pick-
ing of a different role model with new role assignments altogether. Most of a design component’s
source code will be modeled at the method level. Thus, a method typically belongs to one instantia-
tion of a design component. However, there are situations, where modifications or extensions have to
be made within existing methods, e.g., to reg-
ister an object as an observer to another one.
In such cases, methods belong to several
component instantiations. Should we decide
during maintenance of our quiz application to
modify source code in certain classes, this
will have an effect on roles of design compo-
nents. We should be aware of the roles being
played by the source code we are modifying
in order to prohibit changes against the origi-
nal intent of the design. Deleting source code
will also have an effect on roles of design

GUI
Quiz

client

GUI

Aspect
Save Quiz

client

secondary

primary

Model
Quiz

client

model

Model
QuestionList

client

model

GUI
SaveFile

client

GUI

class QuizMain

class FileDialog

class QuizApplFrame

class QuizApplication

class QuestionList

class Question

Figure 5-2: Design overview with focus on the design

Abstract Factory
Adapter
Bridge
Builder

Composite
Decorator

Factory Method
Prototype
Singleton

...
Visitor

Design Components

AbstractVisitor
ConcreteVisitor
AbstractElement
ConcreteElement
ObjectStructure

New...

Answer
ExamItem
ExamList
Question

QuestionCatalog
QuestionList

QuestionListFrame
QuizApp

QuizAppFrame
QuizBundle

QuizBundle_de
QuizFactory
QuizFrame
QuizMain

Roles Classes

Figure 5-3: Instantiation Process

components. This can leave components incomplete and suggest their removal as well. Studying
these components can also lead to the insight the deleting the source code was not a good idea from
the beginning.

6. Infrastructure
A basic infrastructure is indispensable in order to carry out development at the abstraction level of

design components and also in order to present a system’s design in an appropriate form to develop-
ment and maintenance personnel. Tools are needed for the application of design components on a
large scale. Tool support can be provided at the design and source code level, depending on the way
design component information is stored. At the design level, all development steps are done at the
design component level, and the source code is simply generated whenever wanted. Any application
specific code has to be integrated into design component instantiations. In this scenario, it is neces-
sary to have a compiler integrated into the system, such that errors and warnings can be shown at the
component level. At the source code level, all the information about design components is kept in the
source code, e.g., in special comments. Users can utilize any tools operating on the source code, and
they can use the design component tool, which extracts the design view out of the source, presents it
to the users, lets them make modifications, and makes the appropriate modifications in the source
code. The tool also has to check for inconsistencies, e.g., source code that does not belong to any de-
sign component.

Tool support can also be provided at both the source code and the design level. In this case, both
views will be available as separate documents. Thus, the tool can read in design information, but can
also extract this information out of source code. This tool can be used for both forward and reverse
engineering. If both design information and source code were available, then checks for inconsisten-
cies can and will have to be done. Documenting design components in the source code can be done
with comments like that used for javadoc [28]. The comments will contain information about name,
type, and role of design components. This information can be used to recreate design information.
The generated documentation can include a list of design component instantiations with links to all
involved roles as well as links to general information of the specific type of design component. As a
first step, we have developed an extension to javadoc to support this kind of documentation. A sim-
ple example documentation can be found in [26]. Currently, we are working on tools to administer
design components on a higher level of abstraction and to support design composition. For this pur-
pose, we have started to develop an extension to the Eclipse programming environment [5].

7. Related Work
In this section, we briefly review work that is related to compositional design reuse as presented in

this paper, i.e., library design patterns, aspects, literate programs, layered modeling, a design ap-
proach with role modeling, and architecture description languages.

Library design patterns have been proposed in [2]. The central idea is to store fundamental design
patterns in a library where they are easily accessible. Application of design patterns can be done by
inheriting from classes in the library. Disadvantages of library design patterns are that it is hardly
possible to adapt them in other ways than those that have been foreseen as well as the fixed use of
names. We are more flexible without any constraints on names. Aspects are meant to clearly capture
important design decisions that involve code being scattered throughout the system, i.e., they crosscut
the system’s functionality [12]. Aspects have been introduced because programming languages do
not provide abstraction and composition mechanisms for several design issues, i.e., for all kinds of
units a design process breaks a software system into. Aspects provide an important contribution in
trying to capture design issues that cannot be adequately expressed otherwise. Aspects cover only
specific design aspects, but can be generic in that they can be applied to classes and methods with
certain properties. We see the advantages of aspects but leave out genericity. Currently, we think that

capturing static aspects is sufficient for major design issues. Literate programming supports the idea
that we should not try to instruct the computer what to do, but rather we should try to tell humans
what we want the computer to do [15]. We agree with Knuth’s claim that literate programming is a
process which should lead to more carefully constructed programs with better, relevant system
documentation. Literate programming is related with aspect-oriented programming in that a literate
program typically consists of a description of various aspects of a system. These aspects are docu-
mented in sections in a literate program and contain source code that is typically scattered throughout
the code. Literate programming sections correspond to aspect components. Literate programs can ex-
plicitly describe design issues like patterns. However, there is neither a compositional support nor is
there any support of constraints.

Layered modeling of design patterns has been proposed in [16]. The three suggested layers com-
prise role models, type models and class models. The role model expresses a pattern in terms of ab-
stract state and behavioral semantics, thus, capturing the spirit of a pattern without non-essential de-
tails. The type model adds domain-specific refinements. The class model represents a deployment of
the type model in application-specific terms. We roughly capture their role and type model in our role
model and the class model in the implementation level. Thus, we do not explicitly refine role models
into type models. However, we additionally have introduced the instantiation level, where all the ap-
plication-specific information is kept. A framework design approach with role modeling has been
introduced in [23]. This design approach contains explicit description mechanisms not only for role
models, role types and role constraints, but also for frameworks, layers, and class models. Addition-
ally, it takes extension points, free role types, and built-on classes into consideration. Thus, it pro-
vides a more extensive means for design descriptions, especially for frameworks, than our design
components. Primarily concentrating on compositional reuse, we model only reusable design aspects,
but leave out framework and layer issues. Frameworks and layers are too specific and extensive to
have their design reused as a whole, i.e., for the development of other frameworks or layers. Archi-
tecture description languages provide notations for the description of software system structures in
terms of hierarchical configurations and interacting components. Aspects being modeled with such
languages are components, connectors, roles, ports, bindings, and configurations. Examples of archi-
tecture description languages include Darwin, UniCon, Aesop, and Wright [3]. We are able to in-
clude and model architectural knowledge to some extent. Experiences will have to show the usability
of such architectural components. Such components will be less powerful than existing architecture
description languages, but their compositional reusability is a definite advantage.

8. Conclusions and Future Work
The benefits of design patterns will not come to full fruition unless they are directly integrated into

the basic development activities of software engineers. In this paper, we elaborated on an approach in
which design issues constitute the foundation of software development. Designs are provided as tan-
gible design components that are embedded in an incremental and iterative design process. Classes
represent designs only badly. They are too fine-grained and language-dependent. We believe that de-
sign composition provides the concepts and mechanisms that are necessary to make pattern-based
software development more practical. Our approach does not contain a new design methodology, but
rather it provides a means of reusing design knowledge and keeping relevant information about de-
sign issues in a software system. There are several advantages of developing software with design
components. Consider the goals we have mentioned in the introduction:
- increase in systematic design reuse

Explicit availability of design expertise increases reuse at an abstraction level where it is much
more effective than at the source code level. Additionally, having explicit design information in
many systems will allow us to gain additional insights about properties of good and bad designs.

This will help in teaching design as well as in providing tool support for design checks, i.e., for
spotting locations where indications of good or bad designs have been found.

- decrease of implicit reuse of design flaws
The fact that design is explicitly available makes design and code reviews much more productive.
Design experts can easily see whether components have been used for purposes they were or were
not intended to, or whether a lack of such components indicates that the design can be improved.
Without explicit information provided by design components the design review process is more
tedious and less efficient.

- less design blurring
Information in design component instantiations must not get lost or blurred when maintaining a
system. On the one hand, software systems become better extensible and modifiable by compos-
ing well-known and proven designs. On the other hand, modifications can be done on the design
level, explicitly conserving design information by role assignments to classes.

- alternative design view on software systems
Without explicit design documentation, the source code remains the only trustable information
about software systems. With powerful tools, many aspects of systems can be inspected, e.g., in-
heritance hierarchy. Design components provide a view on systems that is essential in system
comprehension, but cannot be produced out of the source code alone by even the most powerful
tools.

- better documentation of design
With design components, design aspects and design decisions become documented without the
need of writing a single line of text. Additionally, the learning curve is reduced, because new
people on projects can immediately see how a system is composed of design components, many
of which will be known to them already. Far too often design decisions remain undocumented
due to time pressure. Another hindrance is the lack of design documents where such information
can be kept. Each instantiation of a design component represents a design decision. It is only
natural to keep any information that has lead to a specific instantiation with that instantiation.

We imagine additional benefits from composing software at the design level. For example, porting
a system to other platforms is quite easy, especially when the design components used in a system are
available also for these platforms. If not, these components will have to be implemented only once
and can then be used for the porting of other systems. Additionally, changes in the functionality of an
application can easily be redone for other platforms. When new, not upward-compatible versions of
class libraries and/or application frameworks appear and have to be integrated into the software sys-
tem, this process is often combined with tedious and often error-prone activities. When the same de-
sign components are available for both versions, then the shift is possible without any further activity
on the side of the application programmer. With design decisions explicitly available in many soft-
ware systems, we profit from doing analyses of more or less mature designs. Such analyses yield new
insights about properties of good designs that cannot easily be captured in systems where design de-
cisions are not easily accessible. We believe the idea of design components to be advantageous in
many respects. Yet, more work is needed to further refine the concepts of design components and to
prove their usefulness. First of all, a basic set of design components has to be defined with associated
roles. Infrastructure support is essential to ease the use of design components. As a next step, case
studies for the explicit capturing of the designs of systems built by design experts have to be done.
This will provide important insights in good designs. This reverse engineering step will also spark
the inclusion of new design components and indicate weaknesses and misconceptions in existing
components.

9. References
[1] Richard M. Adler. Emerging standards for component software. IEEE Computer, 28(3):68–77, March

1995.
[2] Ellen Agerbo and Aino Cornils. How to preserve the benefits of Design Patterns. OOPSLA Proceedings,

pages 134–143, 1998.
[3] Robert J. Allen. A Formal Approach to Software Architecture. Ph.D. Thesis, CMU-CS-97-144, May

1997.
[4] Don Box, Essential COM. Addison-Wesley. 1998.
[5] Eclipse Consortium, Eclipse Programming Environment, http://www.eclipse.org/eclipse/
[6] Frank Buschmann, et al.. Pattern-Oriented Software Architecture. Wiley & Sons, 1996.
[7] Paul Clements. From subroutines to subsystems: Component-based software development. In Alan W.

Brown, Ed., Component-based Software Engineering: Selected Papers from the Software Engineering
Institute, pages 3–6. 1996.

[8] Amnon H. Eden, Josep (Yossi) Cil, and Amiram Yehudai. Automating the application of design patterns.
JOOP, Vol. 10, No. 2, pages 44–46, May 1997.

[9] Martin Fowler, Kendall Scott. UML Distilled: Applying the Standard Object Modeling Language. Addi-
son-Wesley, 1998.

[10] David Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch or why it’s hard to build systems out
of existing parts. Proceedings of ICSE 17, pages 179–185, Seattle, WA, April 1995.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Elements of Reusable
Object-oriented Software. Addison-Wesley, 1995.

[12] Gregor Kiczales, et al.. Aspect-Oriented Programming. Proceedings ECOOP'97. Lecture Notes in Com-
puter Science, Vol. 1241. Springer 1997.

[13] Rudolf K. Keller and Reinhard Schauer. Design Components: Towards Software Composition at the De-
sign Level, Proceedings of ICSE 20, pages 302–311, Kyoto, Japan, IEEE, April 1998.

[14] Bent Bruun Kristensen and Kasper Osterbye. Roles: Conceptual Abstraction Theory and Practical Lan-
guage Issues. Theory and Practice of Object System. Vol. 2, No. 3. pages 143–160. 1996.

[15] Donald E. Knuth. Literate Programming. Stanford University Center for the Study of Languages and In-
formation, Leland Stanford Junior University, 1992.

[16] Anthony Lauder and Stuart Kent. Precise Visual Specification of Design Patterns. Proceedings of
ECOOP 98, Springer-Verlag, January, 1998.

[17] Oscar Nierstrasz and Laurent Dami. Component-oriented software technology. In Oscar Nierstrasz and
Dennis Tsichritzis, editors, Object-oriented Software Composition, chapter 1, pages 3–28. 1995.

[18] Wolfgang Pree. Design Patterns for Object-Oriented Software Development. Addison-Wesley, 1995.
[19] Trygve Reenskaug. Working with Objects – The OOram Software Engineering Method. Manning

Publications, 1996.
[20] Dirk Riehle. Describing and Composing Patterns Using Role Diagrams. WOON ’96: 1st Int’l Conference

on Object-Orientation. St. Petersburg Russia, 1996.
[21] Dirk Riehle. Composite Design Patterns. In Proceedings of the 1997 Conference on Object-Oriented

Programming Systems, Languages and Applications (OOPSLA '97). pages 218–228. ACM Press, 1997.
[22] Dirk Riehle, Thomas Gross. Role Model Based Framework Design and Itegration. Proceedings of the

Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA '98).
ACM Press, pp. 117-133, 1998.

[23] Dirk Riehle. Framework Design: A Role Modeling Approach. Ph.D. Thesis, No. 13509. Zürich, Switzer-
land, ETH Zürich, 2000. (http://www.riehle.org/diss/index.html)

[24] Linda Rising (ed.). The Patterns Handbook: Techniques, Strategies, and Applications. Cambridge Uni-
versity Press. 1998.

[25] Johannes Sametinger. Software Engineering with Reusable Components. Springer-Verlag. 1997.
[26] Johannes Sametinger. Sample HTML Documentation. http://www.swe.uni-linz.ac.at/research/deco/docu/
[27] Sun Microsystems. JavaBeans API Specification. http://java.sun.com/Beans/spec.html.
[28] Sun Microsystems. javadoc home page. http://java.sun.com/products/jdk/javadoc/.
[29] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-Wesley

1998.

