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Abstract: The identification and classification of seeds are of major technical and economical
importance in the agricultural industry. To automate these activities, like in ocular inspection one
should consider seed size, shape, color and texture, which can be obtained from seed images. In this
work we complement and expand a previous study on the discriminating power of these
characteristics for the unique identification of seeds of 57 weed species. In particular, we establish
statistical bounds and confidence levels on the results reported in our preliminary study.
Furthermore, we discuss the possibility of improving the naïve Bayes and artificial neural network
classifiers previously developed in order to avoid the use of color features as classification
parameters. Morphological and textural seed characteristics can be obtained from black and white
images, which are easier to process and require a cheaper hardware than color ones. To this end we
boost the classification methods by means of the AdaBoost.M1 technique, and compare the results
obtained with the performance achieved when using color images. We conclude that the
improvement in classification accuracy after boosting the naïve Bayes and neural classifiers does
not fully compensate the discriminating power of color characteristics. However, it might be
enough to make the classifier still acceptable in practical applications.
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1. INTRODUCTION

Reliable and fast identification/classification of seeds is of major technical and economical
importance for the agricultural industry. Common practices based on specialized technicians are
slow, have low reproducibility, and possess a degree of subjectivity hard to quantify. Machine
vision seems a suitable technique to automate this task, since numerous image-processing
algorithms are available for extracting classification features from seed images. Like in the standard
ocular identification, automatic classification should be based on knowledge of seed size, shape,
color and texture (i.e., greytone variations on the surface, see Haralick et al., 1973 and Galloway,
1975).

Most previous attempts to identify seeds by machine vision have concentrated on cultivated
varieties (Draper and Travis, 1984, Keefe and Draper, 1986, Sapirstein et al., 1987, Chen et al.,
1989, Symons and Fulcher, 1988; Zayas et al., 1989; Neuman et al., 1989a,b, Neuman et al., 1987).
In these studies image analysis was essentially restricted to basic geometrical measurements to
obtain different parameters (shape factor, aspect ratio, length/area, etc.). In addition, color was
successfully used to separate red-, amber- and white-colored wheat. More recent studies have used
color images to establish seed quality and hardseededness of some annual pasture legumes (Jansen,
1995), to characterize fungal damage, viral diseases and immature soybean seeds (Ahmad et al.,
1999), etc.
 



 Besides varietal identification and cereal grain grading, early identification of weeds from the
analysis of strange seeds is also of major interest in the agricultural industry. This can be done for
the purpose of chemically controlling weed growth or, as occurs in many countries, it can be
routinely performed as part of official requirements before a seed batch can be made commercially
available (purity analysis). In particular, Argentina’s law regulations require the analysis by registered
laboratories of a small batch sample before a seed batch can be made commercially available. In these
analyses, commercial and strange seeds present are separated, and the latter ones identified one by one.
The studies in the present work are part of a development to avoid the continuous training of new
technicians to perform this task, providing an automatic classifier that can be used by less skilled
operators. Weed seeds are also identified by seed testing stations and seed corporations to measure
the purity of the harvest, and by research stations to detect changes in seed banks in the soil.
Another possible application is the identification of very strange seeds in botanical gardens, although
this would require a very large database.
 
 An early attempt to identify weed seeds (Petersen and Krutz, 1992) showed the importance of using
color instead of black and white images to improve classification accuracy. More recently, Chtioui
et al. (1996) compared the capabilities of linear discriminant analysis and artificial neural networks
(ANNs) to identify weed seeds from morphological and textural parameters. However, these
investigations considered only four different species, which does not provide a good
characterization of inter-species seed variations. In a previous work (Granitto et al., 2000), we
assessed the discriminating power of different seed characteristics for the unique identification of
seeds of weed species. We used a simple Bayesian approach (naïve Bayes classifier) to evaluate
morphological, color and textural characteristics measured from video images, establishing their
importance as classification features for weed seeds identification. The final classifier based on the
optimal set of features showed a remarkable good performance. In addition, we presented
classification results obtained using the same feature set as input of a committee of ANNs. These
preliminary studies were conducted on a much larger basis than previous ones (Petersen and Krutz,
1992; Chtioui et al., 1996), including seed images of frequent weeds found in Argentina’s
commercial seed production industry. In particular, to avoid introducing a bias in the selection of
species considered we restricted ourselves to the 58 species listed by the Secretary of Agriculture as
prohibited and primary- and secondary-tolerated weeds. From this list we finally considered 57
species for which a good number (~ 40) of young exemplars were available in the seed bank of the
Seed Analysis Laboratory at the Oliveros Experimental Station of the National Institute for
Agricultural Technology (INTA).
 
 In this work we complement and expand our previous study on automatic seed identification in two
different ways:
• First, we establish statistical confidence bounds for the discriminating power of different seed

characteristics reported in Granitto et al. (2000). For this, we perform 30 independent
experiments to obtain mean values and standard deviations of the figures previously reported. In
addition, we present results for paired t-tests between the different classification methods
considered, in order to assess the significance of the obtained performance differences.

• Secondly, we explore the possibility of improving the classifiers developed in Granitto et al.
(2000) in order to achieve similar identification capabilities without using the color variables as
classification features. For this, we use the standard boosting algorithm AdaBoost.M1 (Freund
and Schapire, 1997).

 The first goal is important to establish how robust the results previously reported are. That is, how
repetitive they are under changes in training and test sets, randomness in the learning methods, etc.
Parts of this study have been recently presented in Granitto et al. (2002). The second one points to



avoiding the use of the color variable, which would simplify the hardware requirements for a
commercial system with the concomitant reduction in cost and operational complexity (black and
white cameras and image acquisition boards are much cheaper than RGB ones, control of
illumination conditions is far less important in processing gray-tone images than color ones, etc.).
 
 This work is organized as follows. In Section 2 we discuss the statistical error bounds and
confidence levels for the results given in our preliminary work (Granitto et al., 2000). In Section 3
we introduce the boosting algorithm AdaBoost.M1, and discuss the efficiency of the boosted
classifiers based only on morphological and textural seed characteristics. Finally, in Section 4 we
summarize our work and draw some conclusions.
 
 

 2. STATISTICAL EVALUATION OF FEATURES AND CLASSIFIERS
 

 Image Database and Feature Extraction
 
 We have built a database containing 3163 images of the 57 species considered (a list of these species is
available on request). Details on the experimental settings used to capture these images can be found in
Granitto et al. (2000). They consist of 768×512 pixel arrays whose entries are 24-bit records,
corresponding to the 256 pixel intensity levels (8 bits) for each of the red (R), green (G) and blue (B)
channels.
 
 From the raw seed images we selected nearly optimal sets of 10 morphological, 7 color and 7 textural
features to be used as classification parameters. For this selection we implemented standard
sequential forward and backward algorithms (Jain and Zongker, 1997), using the performance of a
naïve Bayes classifier as the selection criterion. The naïve Bayes classifier fits the class conditional
probabilities with a product of distributions of the individual features —we used Gaussian
distributions in this implementation— and, in spite of this simplification, it performs well on the
problem at hand (see below). The same selection procedure applied to the whole 24 parameters
retained 12 (6 morphological, 4 color and 2 textural) features, which were finally used to build the
classifiers. A description of these parameters and the selection algorithm can be found in Granitto et
al. (2000). Here, in building the boosted classifiers we will keep the original 10 morphological and
7 textural features to evaluate the possibility of disregarding color information.
 

 Discriminating power
 
 To compare the discriminating power of the different sets of features, in Table 1 we present the
generalization capabilities of naïve Bayes classifiers built solely in terms of either the 10
morphological, 7 color or 7 textural features. Unlike the results previously reported, which were
obtained in a single run, here, and in all the subsequent tables, the figures correspond to an average
over 30 independent experiments as described next. In each experiment, we split the 3163 images of
the 57 species considered in training and test sets, randomly choosing, for each species, 80% of the
images to build the classifier and including the remaining 20% in the test set. This leaves 2530
images for training and 633 images for testing the system. Table 1 gives the average performances
and standard deviations over the 30 experiments for both the training and test sets.  It also shows
how performance increases when the system assigns a test image to any of the n most probable
classes. The different cases considered are indicated in the table as First Option (n=1, standard
classification), First Two Options (n=2) and First Three Options (n=3). Notice that for n > 1 the
classification is considered as correct if the test image corresponds to any of the n classes with the



largest probabilities. This possibility is very useful in practice, since untrained operators can easily
select the correct option by simple visual comparison with stored representative seed images of the
n classes suggested by the classifier.
 
 Table 1: Naïve Bayes classifier performances as percentage of correct seed identifications using only one
particular set of features at a time. Mean values and standard deviations are estimated from 30 independent
experiments, as described in the main text.

 First Option  First Two Options  First Three Options
 Features

 Training  Test  Training  Test  Training  Test

 Morphology  86.7 ± 0.3  84.5 ± 1.1  95.8 ± 0.5  94.4 ± 0.9  98.2 ± 0.1  97.3 ± 0.5

 Color  60.2 ± 0.7  57.2 ± 1.7  73.6 ± 1.5  70.3 ± 2.1  81.6 ± 0.4  78.6 ± 1.6

 Texture  55.3 ± 0.5  53.1 ± 1.4  69.3 ± 1.3  66.7 ± 2.2  76.9 ± 0.5  74.2 ± 1.5

 
 

 A quick look at Table 1 confirms the conclusions anticipated in Granitto et al. (2000) on the basis
of a single realization: The largest discriminating power corresponds to morphological features, and
color and texture characteristics are not very good as classification parameters. Furthermore, the
best generalization results for a combination of two type of characteristics corresponds to
morphology and color (see Table 2). Notice, however, that using morphology and texture would
require to consider only black and white images, which, as stated in the Introduction, constitutes an
important simplification and a reduction in hardware cost. Finally, the performances of naïve Bayes
classifiers built in terms of the optimal set of 12 features are given in Table 3.
 
 Table 2: Naïve Bayes classifier performances as percentage of correct seed identifications using different
combination of two sets of features. Mean values and standard deviations are estimated from 30 independent
experiments, as described in the main text.

 First Option  First Two Options  First Three Options
 Features

 Training  Test  Training  Test  Training  Test

 Morphology + Color  96.6 ± 0.2  94.8 ± 0.8  99.1 ± 0.1  98.2 ± 0.6  99.4 ± 0.1  98.9 ± 0.4

 Morphology + Texture  91.7 ± 0.3  89.1 ± 0.9  97.6 ± 0.3  95.9 ± 0.7  98.7 ± 0.1  97.5 ± 0.5

 Color + Texture  83.2 ± 0.3  80.4 ± 1.3  91.0 ± 0.7  88.6 ± 1.4  94.6 ± 0.3  92.5 ± 0.1

 
 Table 3: Performances of different classifiers as percentage of correct seed identifications using the optimal
set of 12 features. Mean values and standard deviations are estimated from 30 independent experiments, as
described in the main text.

 First Option  First Two Options  First Three Options
 Classifier

 Training  Test  Training  Test  Training  Test

 Naïve Bayes  97.5 ± 0.2  95.8 ± 0.9  99.4 ± 0.1  98.7 ± 0.4  99.7 ± 0.1  99.2 ± 0.3

 Single ANN  100  95.6 ± 0.8  100  98.6 ± 0.4  100  99.4 ± 0.3

 MR  100  96.6 ± 0.7  100  98.3 ± 0.5  100  98.5 ± 0.4 Committee
 AP  100  96.7 ± 0.7  100  99.0 ± 0.5  100  99.5 ± 0.3

 



 It is important to stress that differences in performance scores in Tables 1 and 2 are statistically
significant in all cases, with at least 29 out of the 30 experiments performed behaving consistently
with these differences. For instance, color features have larger discriminating power than textural
ones in 29 out of the 30 experiments [remember that ideally 22/30 would correspond to a 99%
confidence level, although there are risks in applying the paired-difference t-test to different random
train-test splits of the data (Dietterich, 1996)].
 

 Neural network classifier
 
 Like in Granitto et al. (2000), to compare with the naïve Bayes classifier we have also developed a
classifier based on ANNs (Bishop, 1995). For this we used the same feature set selected in the
Bayesian approach and trained feedforward networks with 12 input, h hidden, and 57 output units.
The numbers of input and output units correspond to the number of parameters used and seed
species to be identified respectively. The number of hidden units was varied from h=20 to h=80,
monitoring the performance on cross-validation samples set aside from the training data; the results
presented below correspond to h=40 units, which lead to the smallest classification error on these
samples. We employed output units with softmax (normalized exponential) activation functions to
allow the interpretation of outputs as class probabilities. Furthermore, a cross-entropy error measure
was used, which is the standard choice for classification problems. We trained the ANNs with the
usual backpropagation rule until convergence, since only negligible overfitting problems were
observed. This avoided the use of part of the training set for validation purposes (except for the
initial selection of the optimal number of hidden units).
 
 The performance of a single (generic) ANN and the results obtained by structuring 10 networks in a
committee are shown in Table 3. In the case of the ANN committee we considered two options: i)
each network votes for the class with the largest probability according to its own outputs, and the
image is finally assigned to the class with the majority of votes (Majority Rule, MR), and ii) the
class probabilities output by the 10 networks are added and the image is assigned to the class with
the largest sum value (Added Probabilities, AP). Again in this case, all the results quoted
correspond to an average over 30 independent realizations of the whole procedure.
 
 A complete comparative description of the different methods’  performances is given in Table 4,
where the entry (i,j) gives the number of experiments in which the method in row i produced better
results (at first option) than the method in column j. Using standard paired t-tests with the proviso
mentioned above concerning random splits of the data, these figures show that the two ANN
committee implementations are better than the naïve Bayes and single ANN classifier with more
than a 99% confidence level. Moreover, the strategy of adding probabilities in the committee is
better than the majority-rule vote with a confidence level also above 99%.
 
 Several comments are in order at this point. First, we stress the excellent performance of the naïve
Bayes classifier, which might be related to an effective near independence of the selected
classification parameters. Secondly, since in the ANN approach the performance of a single
network is already very good, there is little room left for improvement by adding several predictors
in a committee. Notice that when the system is allowed to suggest three options for class
membership, from the 633 images in the test set only 5 images are misclassified by the naïve Bayes
classifier and 4 images by the single ANN (for both methods the performance reaches 100% with
five options). Of course, for a much larger number of species the classification problem would be
more demanding and the ANN committee might have an advantage over other simpler methods.
Furthermore, feature selection should be performed using this classifier as selection criterion to



obtain an optimal set for the ANN approach. In passing we mention that there are more
sophisticated feature selection methods than the one implemented in this work (Jain and Zongker,
1997, Chtioui et al., 1998).  Finally, we stress the fact that different realizations of training and test
sets do not substantially change performances (Tables 1 to 3), as indicated by the low standard
deviations observed in the 30 independent runs. Consequently, all the above findings support the
conclusions already drawn in Granitto et al. (2000).
 
 Table 4: Number of experiments in which the classification methods indicated on the left column perform
better than the methods indicated on the top row, for the 30 independent experiments performed.

 Method  Naive
 Bayes

 Single
 ANN

 Committee
 MR          AP

 Naïve Bayes   16  6  7

 Single ANN  14   0  0

 MR  24  30   5 Committee
 AP  23  30  25  

 

 3. BOOSTING CLASSIFIERS: THE ADABOOST.M1 ALGORITHM

Boosting

Boosting is a general method to improve the performance of any learning algorithm that
consistently generates classifiers with misclassification errors smaller than 50% on a given problem.
The first effective boosting algorithm was developed by Schapire (1990); more recently, Freund and
Schapire (1997) introduced AdaBoost, a new algorithm that has undergone intense theoretical study
and empirical testing in the last years. In particular, in this work we will implement the simplest
extension of AdaBoost to multiclass problems, the so called AdaBoost.M1 algorithm, whose
pseudocode is given next.

AdaBoost.M1 Algorithm

Input: Data set D={ (xi, yi), i=1,m} ,  where  xi∈X  and  yi∈Y={ 1, ..., k}
Base learning algorithm WeakLearn
Integer T

Initialize:      wi(1) = 1/m    ∀ i=1,m

For t = 1, 2, ..... , T:
• generate data set Dt by re-sampling m examples from D with probability wi(t)
• train WeakLearn on Dt to obtain the base classifier ht : X → Y
• compute the error of ht:  εt = Pri~Dt [ht (xi) ≠ yi]
      If εt > ½, then T = t – 1 (abort loop)
• assign βt = εt /(1-εt)
• update distribution w(t):

      wi(t+1) = wi(t) × t  if  ht (xi)≠ yi

 1 otherwise



• normalize distribution wi(t+1)

Zt=∑i=1,m wi(t+1) w(t+1) = w(t+1)/Zt

Output: Final hypothesis

hBoost(x)  =  argmax      ∑  log(1/βt )
                                                        y∈ Y       t: ht (x)=y   

AdaBoost.M1 takes as inputs a dataset D={ (xi, yi) , i=1,m}  with m examples, where xi ∈ X is an
attribute vector and yi ∈ Y the corresponding class label (we will consider k classes), and a weak
classification method (WeakLearn). It calls repeatedly WeakLearn, applying, in each iteration t, this
algorithm on a training dataset Dt obtained by re-sampling from D with probability wi(t). That is,
WeakLearn finds a new classifier ht : X → Y seeking to minimize the training error εt = Pri~Dt [ht(xi)
≠ yi] (notice the error is measured with respect to the distribution of examples in Dt).  This process
is iterated T times, and the hypotheses h1, ..., hT obtained are combined in a final classifier hBoost.
The re-weigthing of examples in D (starting from w1(t) = 1/m) and the way of combining the
succesive hypotheses ht are indicated in the algorithm’s pseudocode above. Other boosting schemes
change these particular rules. The idea behind boosting techniques is that “easy”  examples that are
correctly classified by most previous hypotheses get a small weight, while “hard”  examples usually
wrongly classified get larger weights. Thus, boosting concentrates the efforts of WeakLearn in those
examples that are difficult to learn by this base algorithm. The final classifier is a weighted voting
of the weak hypotheses obtained during the T iterations. The most important fundamental property
of this technique is the fact that if WeakLearn has consistently errors εt < ½, then the
misclassification error of hBoost on D drops to zero exponentially fast. Of course, this does not mean
that the test error will be small. However, if T is not too large, theoretical and empirical
investigations indicate that hBoost may have very good generalization capabilities.

The main drawbacks of boosting are: 1) The base learner must produce hypotheses with
misclassification errors εt < ½. For random guessing among k classes the expected error is 1 – 1/k,
so that for k > 2 the requirement on εt can be difficult to achieve. Fortunately, for the problem under
consideration in this work the weak classifiers used (Naïve Bayes and ANN) have errors smaller
than ½ (see Fig. 2 below). 2) For very noisy datasets, containing many misclassified objects, the
algorithm places too much attention on these wrong examples and the generalization performance
deteriorates. In these cases regularization methods become necessary.

Alternatively, one may use a simpler committee method like bagging (for boostrap aggregation, see
Breiman, 1996). Bagging simply trains T base classifiers on boostrap re-samples of D, and outputs
as final hypothesis

hBagging(x)  =  argmax    ∑  Pr[ht (x)=y] .

         
y∈ Y      t=1,T

 
 That is, it assigns instance x to the class with the largest added probability according to the T base
classifiers. In the following we will use the performance of this committee method as an additional
basis of comparison for the performance of the more sophisticated boosting algorithm.
 



 As stated in the Introduction, we have boosted the base classifiers described in the previous section
(naïve Bayes and ANN) without using the color features. For this we considered only the intensity
I=(R+G+B)/3 instead of the three color channels. In the case of the naïve Bayes classifier, we
considered two standard ways of representing the class distribution of the individual features: i) by
fitting a normal distribution, like in the calculations in Section 2, and ii) by using a discrete
histogram and optimizing the number of bins. This last alternative gives more flexibility to the base
classifier, allowing it to learn perfectly all the training examples after some rounds of the boosting
algorithm. Although this seems to be preferable from a methodological point of view (no examples
are “too hard”  for the base classifier), we will see that overfitting problems deteriorate the final
results.  In Fig. 1 we give the misclassification error, averaged over the 30 experiments, for the
training and test sets, as a function of the number of ensemble members (equivalent to boosting
rounds T). The training error plot shows, as salient feature, the flexibility of ANN and discrete naïve
Bayes base learners, whose errors reach zero after some rounds of the algorithm. From the test error
plot we see that boosting performs always slightly better than bagging for all learning algorithms,
and that ANNs produce the best generalization results for this problem. A summary of the most
relevant results is given in Table 5. In Fig. 2 we plot the error εt on the re-weighted training set Dt

during the boosting process. We see that, for all base learners, εt stays below 0.5 as required, being
particularly small for the oversized ANNs used that are able to fit even the hardest examples.
 

 Fig. 1: Training and test errors as a function of the number of ensemble members. Full and open symbols
indicate the results of boosting and bagging the base learners. Squares and triangles correspond to naïve
Bayes with Gaussian distributions and discrete histograms respectively; circles are the results for ANN.
 
 The means and standard deviations of the results obtained after 30 runs of AdaBoost.M1 are given
in Table 5. For the sake of comparison, in this table we include also the results obtained in Section 2
without boosting the classifiers, both using the optimal set of 12 features (first column) and only the
10 morphological and 7 textural parameters (second column). These last results correspond to the
average performances of the first classifiers obtained while running AdaBoost.M1 for each base
learning method (T=1). The third column in Table 5 gives the results of simply bagging 20
classifiers, and the last column contains the results of AdaBoost.M1 with T=20. A larger number of
iterations of the algorithm does not lead to a sensible improvement in the final results. A few
comments are in order at this point: i) The comparison of the first and last columns clearly shows
that the performance of a single classifier improves via boosting, but this is not enough to regain the
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accuracy obtained with the inclusion of color features. ii) Although the AdaBoost.M1 algorithm
produces the best black-and-white images classifiers, the improvement over the standard classifiers
and the simpler bagging approach is not substantial. This certainly points to the fact that, for this
problem, the naïve Bayes and ANN approaches are already producing very good classifiers, without
leaving much room for improvement. iii) The histogram implementation of the naïve Bayes
classifier shows the largest improvement due to boosting. Unfortunately, this base learner has a
poor performance due to overfitting and the boosted classifier does not reach a competitive
performance.
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 Fig. 2: Error εt evolution as a function of boosting rounds t, for different single base learners: Naïve Bayes
with Gaussian distribution (squares) and discrete histograms (triangles) and ANNs (full circles).
 
Table 5: Average results and corresponding standard deviations of 30 boosting experiments with T=20, for
the base classifiers indicated and using black and white images. Also given for comparison, results
corresponding to the standard (single) classifiers and 20 bagged base learners and performances obtained in
the previous section using color images.

 Black and White Images
 Method  Color

Images  Standard  Bagging  Boosting

 Gaussian  95.8±0.9  89.0±1.0  89.8±1.1  90.7±1.1 Naïve
Bayes  Histogram  -  76.0±2.3  81.6±1.2  82.0±2.0

 Single  95.6±0.8  90.4±1.0  93.1±1.0  93.7±0.8 ANN
 Committee  96.6±0.7  -  -  -

As mentioned previously in connection with Table 3, instead of simply trying to identify the seed
one can let the system suggest several probable options to the operator, so that he/she can make the
final decision. In this practical situation, boosted ANNs predict the correct species within three
options with (98.8±0.4)% of accuracy.  This performance might be acceptable for a commercial
system, which opens up the possibility of adapting the existing software to work only with gray-
tone images.
 
 



 4. SUMMARY AND CONCLUSIONS
 
 We performed a statistical analysis of the discriminating power of different characteristics of weed
seeds measured from color images, using the performance of a naïve Bayes classifier as evaluation
criterion. In agreement with the preliminary conclusions in Granitto et al. (2000), we established
that size and shape are the principal characteristics for seed identification (see Table 1), although
color and texture must be also considered to obtain a good performance. These last properties have
approximately the same discriminating power when considered independently of morphology.
 
 The implementation of a naïve Bayes classifier on the basis of the selected parameters produced
excellent results, as shown in Table 3. This is in part due to the careful parameter selection, which
lead to a set that approximately fulfills the independence of classification features assumed by the
naïve Bayes approach. Table 3 also gives the performances of classifiers based on ANNs for
comparison. In particular, the best ANN committee correctly identified 99.5% of the test images
within the three most probable classes for each case. Furthermore, we determined with a 99%
confidence level that this ANN committee performs better than the simple Bayesian approach
(Table 4).
 
 In addition to these statistical studies, which support the conclusions in Granitto et al. (2000), we
have also investigated the possibility of avoiding color features in the identification problem. For
this, we improved the Bayesian and ANN methodologies by boosting them via the AdaBoost.M1
algorithm. The purposes here were simplifying operating conditions (illumination control) and
reducing the cost of a potential commercial system based on the current development. The boosted
classifiers developed on gray-tone features (morphology and texture) were not able to achieve the
same performance reached by using color characteristics of the seeds. Notwithstanding this, the best
result reported in Table 5 of approximately 94% of accuracy at first option, and the 98.8% within
three options quoted at the end of the previous section, might well be acceptable in commercial
applications.
 
 For the number of species considered in this study, the preprocessing of images and the careful
selection of measured features reduced considerably the complexity of the classification problem.
However, one might expect this problem to become more demanding for databases containing
several hundreds of species, as required in some applications. In such a case, the improvement of
base classifiers via boosting might be more important. Work in this direction requires the lengthy
acquisition of an extended database, which is currently in progress.
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