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Abstract 
 
In this preliminary study the Flow Shop Scheduling Problem (FSSP) is solved by hybrid 
Evolutionary Algorithms. The  algorithms are obtained as a combination of an evolutionary 
algorithm, which uses the Multi-Inver-Over operator, and two conventional heuristics (CDS and a 
modified NEH) which are applied either before the evolution begins or when it ends. Here we 
analyze the genotype and phenotype distribution over the final population of individuals trying to 
establish the algorithm behavior. Although the original Evolutionary Algorithm was created to 
provide solutions to the Traveling Salesman Problems (TSP), it can be used for this particular kind 
of scheduling problem because they share a common chromosome representation.   
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1. Introduction 
The Flow-Shop Sequencing Problem is generally more precisely described as follow: There are m 
machines and n jobs, each job consists of m operations, and each operation requires a different 
machine.  n jobs  have to be processed in the same sequence on m machines.  The processing time 
of job i on machine j is given by tij (i=1,.....,n; j=1,.....,m).  In other words, jobs are to be processed 
on multiple stages sequentially. There is one machine at each stage. Machines are available 
continuously. A job is processed on one machine at a time without preemption, and a machine 
processes no more than one job at a time. The objective is to find a sequence of jobs minimizing the 
maximum flow time, which is called makespan [5].   
Many different Evolutionary Algorithms (EAs), including parallel approaches, have been 
successfully applied to solve flow-shop sequencing problems [2, 3, 4,  6, 7, 16, 17, 19]. This kind of 
problem is essentially a permutation schedule problem, and the permutation of jobs can be naturally 
represented by a sequence of genes.  In consequence, the algorithms, that were created to solve the 
TSP, can also be used for this kind of problems.   This is the case of Multi-Inver-Over Evolutionary 
Algorithm [8, 9, 10]. 
In this work the conformation of final solutions, which were obtained by EAs and their 
combinations are studied.  Although in a previous paper [14] better results were obtained combining 
the EA with local search techniques as Simulated Annealing and Tabu Search, an great 
computational effort was needed. For that reason, the hybridization with other techniques is 
investigated.  These techniques are heuristics which specifically created for solving the FSSP.  They 
are the CDS heuristic [1] and a modified version of the NEH heuristic [15]. 
  
2. Hybridized Algorithms 
 
The Inver-Over Evolutionary Algorithm (IO) was developed first by Michalewicz [8]. This 
algorithm is currently considered as one of the best heuristics to solve TSP.  In previous works we 
improved its performance by using a multirecombined method [10]. Further enhancement were 
achieved by HMEAs  (Hybrid Multi-inver-over Evolutionary Algorithms), which consist in 
hybridizing multirecombined evolutionary algorithms (global search) with simulated annealing and 
tabu search (local search) [11, 12, 13, 14].  The Hybrid Multi-Inver-Over Evolutionary Algorithms 
presented here incorporate CDS heuristic and a modified NEH heuristic to the multirecombined IO 
versions (IO-n1);  where n1 is the number of times that the Inver-Over operator is applied. 
IO can be seen as a set of m-parallel hill climbing procedures. In each procedure, the number of 
inversions and the segment to be inverted depend on the current population. The algorithm is an 
evolutionary one, with an adaptive operator, which is a combination of inversion and crossover (e.g. 
the city to go is selected on the basis of another individual from the population).   
The Nawaz, Enscore, and Ham (NEH) heuristic is based on the assumption that a job with a higher 
total processing time on all machines should be given higher priority than a job with a lower total 
processing time [15].  The NEH algorithm builds the final sequence in a constructive way, adding a 
new job at each step and finding the best partial solution.  The elimination of the first step in the 
NEH heuristics is the modification that was made in this algorithm.  This change was carried out to 
find different schedules from distinct sequences of a same instance.  
The Campbell, Dudek and Smith (CDS) heuristic is basically an extension of Johnson´s algorithm 
[1].  Its efficiency relies on two properties: 

ü Uses Johnson´s rule in a heuristic fashion. 
ü Then, by solving m-1 two machine problems, creates several schedules from which a 

best schedule can be chosen. 
   



This HMEA includes the above-described heuristics to the IO-n1 versions separately.  Each 
heuristic is applied to a percentage of individuals of the initial population and the evolutionary 
algorithm begins from this improved population.  Individuals can be selected randomly (R), or they 
are the best (B) or the worst (W) in the population.  In the case of NEH, the heuristic is applied in 
the final population, too.  As a result the following algorithms were designed (w is a wild card 
standing for R, B, or W indistinctly): 
§ IO-n1+CDS-w. Applies CDS in its original version.  As CDS produces a unique best 

schedule from different sequences of the same instance, a number of identical individuals are 
inserted in the initial population.  

§ IO-n1+CDS1.  This modified heuristic procedure inserts all the schedules created during the 
different stages of CDS, in the initial population. 

§ IO-n1+NEH1-w.  Applies the modified NEH version in the initial population. 
§ IO-n1+NEH2-w.  Applies the modified NEH version in the final population. 
 

CDS and CDS1 heuristics are only applied to the initial population because they always produce the 
same set of schedules. The modified version of NEH can be applied also in the final population 
because the schedule created depends on the initial sequence provided by the individual to be 
hybridized. 
 
3. Experiment Description 
 
According to the above described hybrid algorithms, a set of experiments were performed. All of 
them used the multirecombined inver-over operator. Five different approaches, IO-1 to IO-5 were 
conducted applying from 1 to 5 inver-over operations, respectively. 
All approaches were tested for fourteen instances, extracted from [18].   They are: 
 

Instances ID Size 
n x m 

Upper Bound 

Tail001, Tail003, 
Tail005, Tail007 & 

Tail009 

T001, T003, 
T005, T007 & 

T009 
20 x 5 

1278, 1081, 1235, 1234, & 
1230, respectively . 

Tail012, Tail014, 
Tail016, Tail018  & 

Tail020 

T012, T014, 
T016, T018 & 

T020 
20 x 10 

1659, 1377, 1397, 1538, & 
1591, respectively. 

Tail033 & Tail037 T033 & T037 50 x 5 2621 & 2725 respectively  
Tail044 & Tail049 T044 & T049 50 x 10 3063 & 3897 respectively  

 
For each instance a series of fifty runs was performed. All the Multirecombined Evolutionary 
Algorithms used the following parameter settings. Population size of 100 individuals, probability p 
set to 0.02, elitism to retain the best valued individual found so far, maximum number of 
generations fixed at 4000 and a stop criterion is established as follow: once the first 500 generations 
are accomplished the algorithm stops if the best individual does not change after 100 consecutive 
generations. The heuristics are applied over a 5% of population.   

 
4. Results 
 
To evaluate the algorithms the following relevant performance variables were chosen: 
§ Ebest:  It is the percentile error of the best-found individual when compared with the known, 

or estimated, optimum value opt_val.  
§ Epop: It is the percentile error of the population mean fitness when compared with opt_val.  
§ Gbest: Identifies the generation where the best individual (retained by elitism) was found. 



§ SD: Standard Deviation. 
 

Algorithm T001 T003 T005 T007 T009 T012 T014 T016 T018 T020 T033 T037 T044 T049 
IO-1 1286 1098 1278 1269 1245 1696 1394 1423 1559 1610 2655 2776 3220 3087 

IO-2 1281 1096 1275 1269 1236 1684 1398 1412 1563 1613 2647 2758 3197 3039 

IO-3 1278 1089 1271 1269 1237 1681 1392 1415 1554 1612 2641 2745 3170 3031 

IO-4 1278 1098 1268 1269 1247 1678 1393 1410 1555 1610 2640 2741 3165 3025 

IO-5 1278 1088 1271 1269 1240 1678 1389 1406 1549 1603 2630 2736 3158 3012 

IO-1+CDS1 1284 1098 1244 1239 1247 1692 1410 1423 1566 1614 2631 2750 3144 3032 

IO-2+CDS1 1278 1087 1243 1239 1240 1685 1393 1416 1550 1619 2626 2735 3134 3000 

IO-3+CDS1 1278 1095 1243 1239 1230 1678 1395 1407 1558 1605 2624 2746 3125 2995 

IO-4+CDS1 1278 1096 1243 1239 1230 1673 1385 1412 1550 1604 2625 2737 3126 2976 

IO-5+CDS1 1278 1088 1236 1239 1233 1677 1388 1403 1555 1610 2624 2736 3116 2979 

IO-1+CDS-R 1279 1097 1244 1239 1243 1703 1404 1424 1558 1612 2631 2763 3171 3030 

IO-2+CDS-R 1278 1089 1244 1239 1240 1688 1398 1410 1559 1610 2624 2754 3162 2991 

IO-3+CDS-R 1278 1088 1236 1239 1230 1679 1392 1408 1548 1608 2622 2746 3135 2991 

IO-4+CDS-R 1278 1088 1241 1239 1233 1676 1393 1405 1549 1591 2624 2746 3120 2980 

IO-5+CDS-R 1279 1081 1236 1239 1230 1672 1394 1397 1551 1599 2624 2746 3106 2973 

IO-1+CDS-W 1279 1089 1236 1239 1251 1692 1404 1408 1564 1624 2631 2765 3179 3002 

IO-2+CDS-W 1278 1088 1244 1239 1237 1678 1392 1418 1556 1613 2624 2755 3147 2989 

IO-3+CDS-W 1278 1087 1236 1239 1230 1690 1388 1406 1544 1609 2624 2756 3149 3002 

IO-4+CDS-W 1282 1081 1236 1239 1230 1660 1389 1410 1546 1608 2624 2746 3129 2975 

IO-5+CDS-W 1278 1081 1235 1239 1230 1682 1387 1401 1553 1610 2622 2736 3126 2972 

IO-1+CDS-B 1278 1090 1236 1239 1252 1697 1395 1416 1559 1613 2631 2763 3176 3024 

IO-2+CDS-B 1278 1088 1243 1239 1240 1673 1402 1414 1560 1620 2622 2758 3141 2999 

IO-3+CDS-B 1278 1089 1236 1239 1239 1678 1393 1408 1546 1614 2622 2750 3139 2983 

IO-4+CDS-B 1278 1088 1243 1239 1230 1685 1393 1401 1554 1610 2622 2746 3132 2988 

IO-5+CDS-B 1278 1086 1235 1239 1230 1672 1388 1402 1554 1611 2621 2736 3126 2974 

IO-1+NEH1-R 1278 1091 1236 1239 1238 1686 1389 1419 1561 1605 2627 2732 3105 2987 

IO-2+NEH1-R 1278 1088 1235 1239 1241 1674 1391 1417 1556 1608 2621 2732 3113 2970 

IO-3+NEH1-R 1278 1081 1235 1239 1230 1667 1387 1408 1554 1596 2622 2732 3106 2976 

IO-4+NEH1-R 1278 1088 1237 1239 1230 1664 1383 1397 1544 1606 2621 2725 3118 2987 

IO-5+NEH1-R 1278 1081 1235 1239 1230 1664 1391 1397 1553 1602 2622 2732 3110 2982 

IO-1+NEH1-W 1278 1088 1236 1239 1240 1675 1392 1417 1560 1611 2621 2732 3115 2985 

IO-2+NEH1-W 1278 1088 1235 1239 1235 1675 1390 1400 1548 1612 2626 2732 3099 2971 

IO-3+NEH1-W 1278 1088 1235 1239 1230 1677 1386 1411 1555 1598 2623 2732 3114 2965 

IO-4+NEH1-W 1278 1088 1235 1239 1230 1679 1392 1407 1554 1591 2621 2725 3111 2959 

IO-5+NEH1-W 1278 1088 1235 1239 1230 1664 1377 1406 1555 1604 2622 2732 3105 2974 

IO-1+NEH1-B 1278 1089 1243 1239 1230 1679 1392 1417 1559 1613 2624 2725 3121 2986 

IO-2+NEH1-B 1278 1087 1239 1239 1230 1671 1392 1400 1554 1609 2621 2732 3110 2980 

IO-3+NEH1-B 1278 1088 1236 1239 1233 1668 1383 1411 1553 1608 2621 2732 3110 2981 

IO-4+NEH1-B 1278 1081 1236 1239 1230 1671 1387 1407 1548 1604 2623 2736 3104 2978 

IO-5+NEH1-B 1278 1081 1235 1239 1230 1672 1383 1406 1556 1608 2622 2726 3110 2975 



 
Algorithm T001 T003 T005 T007 T009 T012 T014 T016 T018 T020 T033 T037 T044 T049 

IO-1+NEH2-R 1281 1089 1243 1239 1253 1676 1400 1421 1555 1615 2627 2735 3116 3000 

IO-2+NEH2-R 1283 1094 1244 1239 1250 1685 1379 1418 1560 1615 2639 2746 3114 3009 

IO-3+NEH2-R 1278 1088 1239 1239 1238 1677 1394 1415 1554 1614 2639 2743 3110 3014 

IO-4+NEH2-R 1278 1088 1235 1239 1237 1670 1393 1398 1551 1607 2634 2739 3110 2999 

IO-5+NEH2-R 1278 1089 1235 1239 1230 1679 1379 1406 1550 1610 2627 2738 3113 2996 

 IO-1+NEH2-W 1278 1098 1246 1239 1244 1689 1394 1424 1569 1618 2635 2736 3123 2995 

IO-2+NEH2-W 1278 1098 1236 1239 1240 1684 1390 1414 1562 1613 2638 2736 3118 2988 

IO-3+NEH2-W 1278 1090 1243 1239 1244 1676 1393 1406 1551 1608 2629 2736 3108 2992 

IO-4+NEH2-W 1279 1085 1235 1239 1233 1684 1379 1415 1553 1610 2637 2736 3125 2996 

IO-5+NEH2-W 1281 1087 1239 1239 1230 1659 1387 1406 1552 1610 2624 2736 3115 3007 

IO-1+NEH2-B 1288 1090 1250 1251 1255 1692 1401 1424 1565 1618 2635 2751 3118 3017 

IO-2+NEH2-B 1297 1091 1244 1247 1253 1688 1403 1442 1573 1636 2640 2758 3119 3017 

IO-3+NEH2-B 1297 1100 1248 1249 1253 1695 1397 1424 1572 1641 2632 2738 3121 3022 

IO-4+NEH2-B 1286 1088 1250 1250 1260 1686 1393 1433 1553 1636 2637 2746 3138 3025 

IO-5+NEH2-B 1286 1097 1250 1249 1253 1694 1392 1431 1564 1641 2636 2753 3126 3025 

Table 1: The best makespan values found by each algorithmic option 
 
Table 1 shows the lower makespan values obtained by each algorithm in every instance. Boldfaced 
values indicate that an algorithmic option has reached the upper bound for a particular instance.   
Any algorithmic option is quite good for smaller instances (20 x 5 size), but most hybridized 
options work better for bigger instances. 
Figures 1, 2, 3 and 4 show minimum and mean Ebest and Epop values for representative instances 
of their respective sizes.  
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Figure 1: Ebest and Epop values for Tail007 Instance Figure 2: Ebest and Epop values for Tail012 Instance 
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Figure 3: Ebest and Epop values for Tail033 Instance Figure 4: Ebest and Epop values for Tail044 Instance 

Min. Ebest Mean Ebest 
Min. Epop Mean Epop 



 
A general overview on Ebest and Epop values, suggests that best individuals in the final population 
are surrounded by many other individuals.  It can be inferred for two reasons:  

1. The difference between both performance measures is small. 
2. The behavior pattern is very similar for both error values. 

The Epop values are lesser than 10%; that means the final population is close to the upper bound 
values.  Besides in most cases Ebest values are equal or next to zero which means that best 
individuals  attains or are very close to the optimum or estimated optimum. 
In a more detailed analysis, better Ebest and Epop values are observed when the heuristic is applied 
to initial populations over random individuals or worst individuals (diversification helps). 
In figure 5 the average of Minimum and Mean Gbest values for all instances is shown.  Here we can 
see that the algorithms, which apply the heuristic in the initial population, obtain their best 
individual in earlier generations and consequently, lesser computational effort is required.  Also, 
these curves follow the pattern showed by the Ebest and Epop values.  This indicates that a better 
performance is reached when the heuristic is applied to initial populations. 
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Figure 5:  Average of Minimum and Mean Gbest Values for all instances. 

 
4.1. Genotypic Distribution in the final Population 
 
In this section we discuss on genotype distribution over the final population. The idea is to find a 
possible pattern of jobs allocation on chromosomes. We show here results for the same four 
representative instances. The following figures illustrate he number of occurrences where a job 
appears in a determined position.  In the Y-axis, jobs (C1, C2…) are sequenced in non-decreasing 
order of processing time.  The X-axis represents the positions on chromosomes, and the Z-axis 
shows the number of occurrences of a job in a determined position.  
 
In figure 6 an almost uniform distribution is observed for Tail007 instance. Some deviations are 
present in the 20th position, were a short and a medium job predominate. Besides, in this position 
the absence of some long jobs is almost total. Hardly ever some medium or long job appear in the 
first locations.  These characteristics are repeated for every algorithm with this instance.  
In the case of the Tail012 instance, the ten shortest jobs begin by grouping from intermediate 
positions and then towards one of the borders (endmost position in the chromosome), while in the 
opposite border they are almost absent. The remaining jobs are distributed in a relative uniform 
way.  These characteristics are given under any algorithmic option. 
 
In Tail033 instance (fig. 8), the job allocation is also quite similar under any algorithmic option.  
Here, shortest jobs are almost uniformly distributed on the chromosome, while the remaining jobs, 
are concentrated in one of the borders. 



In the last instance (Tail044, fig. 9) a similar job distribution is observed for each algorithm. But 
there is not a pattern, which does not allow us to describe the job allocation in relation with their 
length.  
 
Summarising, for each particular instance jobs are distributed following a quite similar pattern 
under any of the hybrid algorithms used to solve the problem. Consequently, we can infer that the 
evolutionary algorithm orients the job distribution independently of the heuristic.  This happens 
because heuristics are only applied on some individuals of the initial or final populations. A uniform 
job distribution means that different schedules are produced; then a high genotypic diversity is 
obtained.  

 
 

 

 p
os

 1
 

 p
os

 5
 

 p
os

 9
 

 p
os

 1
3 

 p
os

 1
7 C1 

C20 
0 

2000 
4000 
6000 
8000 

10000 
12000 

Tail007 Instance 
 

 p
os

 1
 

 p
os

 5
 

 p
os

 9
 

 p
os

 1
3 

 p
os

 1
7 C1 

C20 

0 
2000 
4000 
6000 
8000 

10000 

Tail012 Instance 

 
Figure 6: Jobs Distribution for Tail007 instance Figure 7: Jobs Distribution for Tail012 instance 
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Figure 8: Jobs Distribution for Tail033 instance Figure 9: Jobs Distribution for Tail044 instance 

 
 
Figures 10 and 11 show the job allocation at best individual chromosomes for two different problem 
sizes. In general the shortest and longest jobs have a tendency to group in the endmost positions of 
the chromosomes, while the rest of them are located in the internal positions. 
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Figure 10: Jobs Distribution for the best indiv. in T007  Figure 11: Jobs Distribution for the best indiv. in T012 

 
 
4.2. Phenotypic distribution in the final population 
 
 
As the main characteristics of the phenotypic behaviour are quite similar for all different kinds of 
instances selected in this work, we only illustrate here the behaviour achieved under distinct 
multiplicity levels (1,2,…,5) of the IO-n1 plus NEH1 algorithms, for the Tail044 instance. Figure 
12.  shows the mean makespan value for each of the 50 final populations obtained from the 50 runs 
of the algorithm under each multiplicity level. 
 
In more detailed analysis it was determined that the standard deviation of individuals in the final 
population is less than one, for all algorithmic options.  Also, the makespan values were decreased 
(improved) significantly when the multiplicity was augmented. This means that the combination of 
multiplicity and hybridization features provides better solutions without altering phenotypic 
diversity.  Furthermore, these low standard deviations indicate a not too high variety of makespans 
values.  
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Figure 12:  Mean Makespan for Tail044 instance under IO-n1+NEH1 

 
The uniform job distribution, the low standard deviation of makespan values and the small Epop 
values (less than 10%), indicate a big number of schedules, which are built of many different ways 



and give high quality solutions.  These solutions are close to the known optimum value and in many 
cases this value is reached.  
 
5. Conclusions 
 
We have studied and analyzed the combination of conventional heuristics and evolutionary 
algorithms, for solving scheduling problems, in particular the Flow Shop Scheduling Problem.  The 
Evolutionary Algorithm searches and drives the search toward lower makespan values for each 
instance, while the conventional heuristics introduce individuals with problem specific knowledge. 
Consequently, the AE does a quicker and more efficient search. The hybridization used here 
provide good solutions without the computational effort required when tabu search or simulated 
annealing is applied to some individuals of the evolving population. 
 
In our genotypic study we observed that similar patterns are obtained independently of the 
conventional heuristic used. Therefore, we can conclude that due to the level of hybridization, the 
heuristics (CDS and NEH) and the type of EA (Multi-inver-over) used, the latter is the main 
responsible of building the final solutions. 
 
In our phenotypic study we observed low standard deviation of makespan values and low Ebest and 
Epop values. This ensures to provide a significant number of schedules, which are constructed by 
different permutations and are close to, or reach, the known optimum value. To have at hand a set 
of quasi optimal schedules is of utmost importance when the availability of ready jobs can change 
in the system. 
 
Future work will be devoted to similar studies related with the behaviour of evolutionary 
approaches by analysing genotypic and phenotypic characteristics of the individuals in the final 
population. 
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