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Abstract

In this prdiminary sudy the How Shop Scheduling Problem (FSSP) is solved by hybrid
Evolutionary Algorithms. The  dgorithms ae obtaned as a combindion of an evolutionary
dgorithm, which uses the Multi-Inver-Over operator, and two conventiona heurigtics (CDS and a
modified NEH) which are gpplied either before the evolution begins or when it ends. Here we
andyze the genotype and phenotype didribution over the find population of individuds trying to
edablish the dgorithm behavior. Although the origind Evolutionary Algorithm was cregied to
provide solutions to the Traveling Salesman Problems (TSP), it can be used for this particular kind
of scheduling problem because they share a common chromosome representation.
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1. Introduction

The FHow-Shop Sequencing Problem is generdly more precisdy described as follow: There are m
machines and n jobs, each job conssts of m operaions, and each operaion requires a different
machine. n jobs have to be processed in the same sequence on m machines. The processng time
of job i on mechine j isgiven by tj; (i=1,.....,n; j=1,.....,m). In other words, jobs are to be processed
on multiple stages sequentialy. There is one machine & each dage. Machines are available
continuoudy. A job is processed on one machine & a time without preemption, and a machine
processes no more than one job a a time. The objective is to find a sequence of jobs minimizing the
maximum flow time, which is caled makespan [5].

Many different Evolutionary Algorithms (EAs), including padld gpproaches, have been
successfully gpplied to solve flow-shop sequencing problems [2, 3, 4, 6, 7, 16, 17, 19]. Thiskind of
problem is essentidly a permutation schedule problem, and the permutation of jobs can be naturdly
represented by a sequence of genes. In consequence, the agorithms, that were created to solve the
TSP, can dso be used for this kind of problems.  This is the case of Multi-Inver-Over Evolutionary
Algorithm [8, 9, 10].

In this work the conformaion of find solutions, which were obtaned by EAs and thar
combinations are studied. Although in a previous paper [14] better results were obtained combining
the EA with locd search techniques as Smulaed Anneding and Tabu Search, an great
computationd effort was needed. For that reason, the hybridization with other techniques is
investigated. These techniques are heuristics which specificdly created for solving the FSSP.  They
are the CDS heurigtic [1] and amodified verson of the NEH heurigtic [15].

2. Hybridized Algorithms

The Inver-Over Evolutionary Algorithm (10) was deveoped fird by Michdewicz [8]. This
agorithm is currently consdered as one of the best heurigtics to solve TSP.  In previous works we
improved its performance by usng a multirecombined method [10]. Further enhancement were
achieved by HMEAs (Hybrid Multi-inver-over Evolutionary Algorithms), which conds in
hybridizing muitirecombined evolutionary dgorithms (globa search) with smulated anneding and
tabu search (local search) [11, 12, 13, 14]. The Hybrid Multi-Inver-Over Evolutionary Algorithms
presented here incorporate CDS heurigtic and a modified NEH heurigtic to the multirecombined 10
versons (10-n;); where n isthe number of timesthat the Inver-Over operator is applied.
IO can be seen as a set of m-pardld hill climbing procedures. In each procedure, the number of
inversons and the segment to be inverted depend on the current population. The dgorithm is an
evolutionary one, with an adaptive operator, which is a combination of inverson and crossover (eg.
the city to go is selected on the basis of another individua from the population).
The Nawaz, Enscore, and Ham (NEH) heurigtic is based on the assumption that a job with a higher
totd processng time on al machines should be given higher priority than a job with a lower totd
processing time [15]. The NEH dgorithm builds the find sequence in a condructive way, adding a
new job a each sep and finding the best patia solution. The dimination of the fird sep in the
NEH heurigtics is the modification that was made in this dgorithm. This change was carried out to
find different schedules from distinct sequences of a same instance.
The Campbdl, Dudek and Smith (CDS) heuridtic is bascdly an extenson of Johnson's adgorithm
[1]. Itsefficiency relies on two properties:

v Uses Johnson’srulein a heurigtic fashion.

v' Then, by solving m-1 two machine problems, creates severd schedules from which a

best schedule can be chosen.



This HMEA includes the above-described heurigics to the 10-n; versons separately. Each
heurigtic is gpplied to a percentage of individuds of the initid population and the evolutionary
dgorithm begins from this improved population. Individuds can be sdected randomly (R), or they
are the best (B) or the worst (W) in the population. In the case of NEH, the heuristic 5 gpplied in
the find population, too. As a result the following adgorithms were designed (w is a wild card
ganding for R, B, or W indigtinctly):
= ]O-n+CDS-w. Applies CDS in its origind verson. As CDS produces a unique best
schedule from different sequences of the same indtance, a number of identical individuds are
insarted in theinitid population.
= |O-m+CDS1. This modified heuristic procedure insarts dl the schedules created during the
different stages of CDS, in theinitia population.
= ]O-n+NEH1-w. Appliesthe modified NEH versonin theinitid population.
= |O-n+NEH2-w. Appliesthe modified NEH verson in the find population.

CDS and CDS1 heurigtics are only gpplied to the initid population because they aways produce the
same set of schedules The modified verson of NEH can be applied adso in the find population
because the schedule created depends on the initid segquence provided by the individua to be
hybridized.

3. Experiment Description

According to the above described hybrid agorithms, a set of experiments were performed. All of
them used the multirecombined inver-over operator. Five different approaches, 10-1 to 10-5 were
conducted gpplying from 1 to 5 inver-over operations, respectively.

All approaches were tested for fourteen instances, extracted from [18]. They are:

Instances ID Size Upper Bound
nxm
Tail001, Tail003,  T001, TOO3, 1278, 1081, 1235, 1234, &
Tail005, Tail007 & TO005, TO0O7& 20x5 1230, respectively.
Tail009 TO009
Tail012, Tail014, TO012, TO14, 1659, 1377, 1397, 1538, &
Tail0l6, Tail018 & TO016,T018& 20x 10 1591, respectively.

Tail020 T020
Tail033 & Tail037 TO033 & TO37 50x5 2621 & 2725 respectively
Tail044 & Tail049 TO044 & TO49 50x 10 3063 & 3897 respectively

For each indance a saies of fifty runs was peformed. All the Multirecombined Evolutionary
Algorithms used the following parameter settings. Population sze of 100 individuds, probability p
st to 002, ditian to retan the best vaued individud found so far, maximum number of
generations fixed at 4000 and a stop criterion is established as follow: once the first 500 generations
are accomplished the agorithm stops if the best individua does not change after 100 consecutive
generaions. The heurigtics are agpplied over a5% of population.

4. Results

To evduate the dgorithms the following relevant performance variables were chosen:
= Ebest: It is the percentile error of the best-found individua when compared with the known,
or estimated, optimum vaue opt_val.
= Epop: Itisthe percentile error of the population mean fitness when compared with opt_val.
»  Gbest: Identifies the generation where the best individud (retained by ditism) was found.



SD: Standard Deviation.

Algorithm

T001

T003

T005

T007

T009

T012

T014

T016

T018

T020

T033

T037]

T044

T049

10-1
10-2
10-3
10-4
10-5

1286
1281
1278
1278
1278

1098
1096
1089
1098
1088

1278
1275
1271
1268
1271

1269
1269
1269
1269
1269

1245
1236
1237
1247
1240

1696
1684
1681
1678
1678

1394
1398
1392
1393
1389

1423
1412
1415
1410
1406

1559
1563
1554
1555
1549

1610
1613
1612
1610
1603

2655
2647
2641
2640
2630

2776
2758
2745
2741
2736

3220
3197
3170
3165
3158

3087
3039
3031
3025
3012

10-1+CDS1
10-2+CDS1
10-3+CDS1
|0-4+CDS1
|0-5+CDS1

1284
1278
1278
1278
1278

1098
1087
1095
1096
1088

1244
1243
1243
1243
1236

1239
1239
1239
1239
1239

1247
1240
1230
1230
1233

1692
1685
1678
1673
1677

1410
1393
1395
1385
1388

1423
1416
1407
1412
1403

1566
1550
1558
1550
1555

1614
1619
1605
1604
1610

2631
2626
2624
2625
2624

2750
2735
2746
2737
2736

3144
3134
3125
3126
3116

3032
3000
2995
2976
2979

|0-1+CDS-R
|0-2+CDS-R
|O-3+CDS-R
|0-4+CDS-R
|O-5+CDS-R

1279
1278
1278
1278
1279

1097
1089
1088
1088
1081

1244
1244
1236
1241
1236

1239
1239
1239
1239
1239

1243
1240

1230
1233

1230

1703
1688
1679
1676
1672

1404
1398
1392
1393
1394

1424
1410
1408
1405
1397

1558
1559
1548
1549
1551

1612
1610
1608
1591
1599

2631
2624
2622
2624
2624

2763
2754
2746
2746
2746

3171
3162
3135
3120
3106

3030
2991
2991
2980
2973

10-1+CDS-W
10-2+CDS-W
10-3+CDS-W
10-4+CDS-W
10-5+CDS-W

1279
1278
1278
1282
1278

1089
1088
1087
1081
1081

1236
1244
1236
1236
1235

1239
1239
1239
1239
1239

1251
1237
1230
1230
1230

1692
1678
1690
1660
1682

1404
1392
1388
1389
1387

1408
1418
1406
1410
1401

1564
1556
1544
1546
1553

1624
1613
1609
1608
1610

2631
2624
2624
2624
2622

2765
2755
2756
2746
2736

3179
3147
3149
3129
3126

3002
2989
3002
2975
2972

|0-1+CDS-B
|0-2+CDS-B
|0-3+CDS-B
|0-4+CDS-B
|O-5+CDS-B

1278
1278
1278
1278
1278

1090
1088
1089
1088
1086

1236
1243
1236
1243

1235

1239
1239
1239
1239
1239

1252
1240
1239
1230
1230

1697
1673
1678
1685
1672

1395
1402
1393
1393
1388

1416
1414
1408
1401
1402

1559
1560
1546
1554
1554

1613
1620
1614
1610
1611

2631
2622
2622
2622

2621

2763
2758
2750
2746
2736

3176
3141
3139
3132
3126

3024
2999
2983
2988
2974

10-1+NEH1-R
10-24NEH1-R
10-3+NEH1-R
10-4+NEH1-R
IO0-5+NEH1-R

1278
1278
1278
1278
1278

1091
1088

1081
1088

1081

1236
1235
1235
1237

1235

1239
1239
1239
1239
1239

1238
1241
1230
1230
1230

1686
1674
1667
1664
1664

1389
1391
1387
1383
1391

1419
1417
1408
1397
1397

1561
1556
1554
1544
1553

1605
1608
1596
1606
1602

2627
2621
2622
2621
2622

2732
2732
2732
2725
2732

3105
3113
3106
3118
3110

2987
2970
2976
2987
2982

|0-1+NEH1-W
10-2+NEH1-W
|0-3+NEH1-W
|0-4+NEH1-W
|O-5+NEH1-W

1278
1278
1278
1278
1278

1088
1088
1088
1088
1088

1236
1235
1235
1235
1235

1239
1239
1239
1239
1239

1240
1235
1230
1230
1230

1675
1675
1677
1679
1664

1392
1390
1386
1392
1377

1417
1400
1411
1407
1406

1560
1548
1555
1554
1555

1611
1612
1598
1591
1604

2621
2626

2623
2621
2622

2732
2732
2732
2725
2732

3115
3099
3114
3111
3105

2985
2971
2965
2959
2974

10-1+NEH1-B
10-2+NEH1-B
10-3+NEH1-B
10-4+NEH1-B
10-5+NEH1-B

1278
1278
1278
1278
1278

1089
1087
1088
1081
1081

1243
1239
1236
1236

1235

1239
1239
1239
1239
1239

1230
1230
1233

1230
1230

1679
1671
1668
1671
1672

1392
1392
1383
1387
1383

1417
1400
1411
1407
1406

1559
1554
1553
1548
1556

1613
1609
1608
1604
1608

2624
2621
2621
2623

2622

2725
2732
2732
2736
2726

3121
3110
3110
3104
3110

2986
2980
2981
2978
2975




Table 1 shows the lower makespan vaues obtained by each agorithm in every insance. Boldfaced

Algorithm

T001

T003

T005

T007

T009

T012

T014{T016|T018[ T020| TO33| T037| T044| T 049

10-1+NEH2-R
10-2+NEH2-R
10-3+NEH2-R
10-4+NEH2-R
10-5+NEH2-R

1281
1283
1278
1278
1278

1089
1094
1088
1088
1089

1243
1244
1239
1235
1235

1239
1239
1239
1239
1239

1253
1250
1238
1237
1230

1676
1685
1677
1670
1679

1400|1421 (1555|1615(2627|2735|3116 (3000
1379|1418(1560]|1615(2639|2746|3114 (3009
1394|1415|1554|1614|2639|2743|3110|3014
1393]1398(1551|1607(2634|2739|3110(2999
1379|1406(1550|1610(2627|2738|3113(2996

10-1+NEH2-W
|0-2+NEH2-W
10-3+NEH2-W
|0-4+NEH2-W
| O-5+NEH2-W

1278
1278
1278
1279
1281

1098
1098
1090
1085
1087

1246
1236
1243
1235
1239

1239
1239
1239
1239
1239

1244
1240
1244
1233
1230

1689
1684
1676
1684
1659

1394]1424(1569|1618(2635|2736|3123|2995
1390|1414(1562|1613(2638|2736|3118(2988
1393|1406(1551|1608(2629|2736|3108(2992
1379|1415(1553|1610(2637|2736|3125(2996
1387|1406|1552|1610|2624)|2736|3115|3007

10-1+NEH2-B
10-2+NEH2-B
10-3+NEH2-B
10-4+NEH2-B
10-5+NEH2-B

1288
1297
1297
1286
1286

1090
1091
1100
1088
1097

1250
1244
1248
1250
1250

1251
1247
1249
1250
1249

1255
1253
1253
1260
1253

1692
1688
1695
1686
1694

1401|1424(1565|1618(2635|2751|3118(3017
1403|1442(1573|1636(2640|2758|3119(3017
1397|1424(1572|1641(2632|2738|3121(3022
1393|1433(1553|1636(2637|2746|3138(3025
1392|1431(1564|1641(2636|2753|3126|3025

Table 1: The best makespan values found by each algorithmic option

vauesindicate that an dgorithmic option has reached the upper bound for a particular instance.

Any dgorithmic option is quite good for smdler ingances (20 x 5 dze), but mogt hybridized
options work better for bigger instances.
Figures 1, 2, 3 and 4 show minimum and mean Ebest and Epop vaues for representative instances
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Figure 1. Ebest and Epop valuesfor Tail007 Instance

Figure 2: Ebest and Epop valuesfor Tail012 Instance
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Figure 3: Ebest and Epop values for Tail033 Instance

Figure 4: Ebest and Epop values for Tail044 Instance



A generd overview on Ebest and Epop vaues, suggests that best individuds in the find population
are surrounded by many other individuals. It can be inferred for two reasons

1. Thedifference between both performance measuresis smal.

2. The behavior pattern isvery smilar for both error vaues.
The Epop vaues are lesser than 10%; that means the find population is close to the upper bound
vaues. Beddes in most cases Ebest values are equa or next to zero which means that best
individuds attains or are very close to the optimum or estimated optimum.
In a more detailed andlysis, better Ebest and Epop vaues are observed when the heurigtic is gpplied
to initid populations over random individuds or wordt individuds (divergfication helps).
In figure 5 the average of Minimum and Mean Gbest vaues for dl ingtances is shown. Here we can
se tha the dgorithms, which goply the heurigic in the initial population, obtain ther best
individud in earlier generations and consequently, lesser computationd effort is required.  Also,
these curves follow the pattern showed by the Ebest and Epop values. This indicates that a better
performance is reached when the heuritic is gpplied to initia populations.

Gbest Values
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Figure5: Average of Minimum and Mean Gbest VValuesfor all instances.

4.1. Genotypic Digribution in the final Population

In this section we discuss on genotype digtribution over the find population. The idea is to find a
possible pattern of jobs dlocation on chromosomes. We show here results for the same four
representative indances. The following figures illusrate he number of occurrences where a job
appears in a determined postion. In the Y-axis, jobs (C1, C2...) are sequenced in non-decreasing
order of processng time. The X-axis represents the podtions on chromosomes, and the Z-axis
shows the number of occurrences of ajob in adetermined position.

In figure 6 an dmost uniform didribution is observed for Tal007 ingtance. Some deviations are
present in the 20" position, were a short and a medium job predominate. Besides, in this position
the absence of some long jobs is dmost totd. Hardly ever some medium or long job appear in the
fird locations. These characterigtics are repeated for every agorithm with thisingtance.

In the case of the Tal012 ingtance, the ten shortest jobs begin by grouping from intermediate
positions and then towards one of the borders (endmost postion in the chromosome), while in the
opposite border they are dmost absent. The remaining jobs are digributed in a reative uniform
way. These characterigtics are given under any dgorithmic option.

In Tal033 ingance (fig. 8), the job dlocation is dso quite Smilar under any agorithmic option.
Here, shortest jobs are dmost uniformly distributed on the chromosome, while the remaining jobs,
are concentrated in one of the borders.



In the lagt ingtance (Tal044, fig. 9) a smilar job digribution is observed for each dgorithm. But

there is not a pattern, which does not dlow us to describe the job dlocation in reation with ther
length.

Summarisng, for each paticular ingance jobs are didributed following a quite smilar pattern
under any of the hybrid agorithms used to solve the problem. Consequently, we can infer that the
evolutionary dgorithm orients the job didribution independently of the heurigtic.  This happens
because heurigics are only gpplied on some individuds of the initid or find populaions. A uniform

job didribution means that different schedules are produced; then a high genotypic diversity is
obtained.

Tail007 Instance

Tail012 Instance
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Figure 6: Jobs Distribution for Tail007 instance Figure 7: Jobs Distribution for Tail012 instance
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Figure 8: Jobs Distribution for Tail033 instance Figure 9: Jobs Distribution for Tail044 instance

Figures 10 and 11 show the job alocation a best individud chromosomes for two different problem

szes. In generd the shortest and longest jobs have a tendency to group in the endmost postions of
the chromosomes, while the rest of them are located in the interna positions.
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Figure 10: Jobs Distribution for the best indiv. in TO07 Figure 11: Jobs Distribution for the best indiv. in T012

4.2.  Phenotypic distribution in the final population

As the main characteridics of the phenotypic behaviour are quite smilar for dl different kinds of
instances sdected in this work, we only illudrate here the behaviour achieved under digtinct
multiplicity leves (1,2,....,5) of the 10-n1 plus NEH1 dgorithms, for the Tail044 ingtance. Figure
12. shows the mean makespan value for each of the 50 find populations obtained from the 50 runs
of the dgorithm under each multiplicity leve.

In more detalled andlyss it was determined that the standard deviation of individuas in the find
population is less than one, for al agorithmic options. Also, the makespan values were decreased
(improved) ggnificantly when the multiplicity was augmented. This means that the combinaion of
multiplicity and hybridization features provides better solutions without dtering phenotypic

diversty. Furthermore, these low standard deviaions indicate a not too high variety of makespans
vaues.

Tail044 instance
3420 |
3400 {r——rrihH e e ety :
TT 1 II P ' II|||I |III| m2
3380
£3360 ﬁ-—-w—-% 3
T N R e X5
X 1
5520 (e R B S
DY % XX X
3300
3280 T T T T
0 10 20 30 40 50
#pop

Figure 12: Mean Makespan for Tail044 instance under |0-n1+NEH1

The uniform job didribution, the low standard deviation of makespan vaues and the smal Epop
vaues (less than 10%), indicate a big number of schedules, which are built of many different ways



and give high qudity solutions. These solutions are close to the known optimum vaue and in many
cases this vaue is reached.

5. Conclusons

We have dudied and andyzed the combination of conventiond heurigtics and evolutionary
dgorithms, for solving scheduling problems, in particular the Flow Shop Scheduling Problem.  The
Evolutionary Algorithm searches and drives the search toward lower makespan vaues for each
ingance, while the conventiond heurigtics introduce individuas with problem specific knowledge.
Consequently, the AE does a quicker and more efficient search. The hybridization used here
provide good solutions without the computationa effort required when tabu search or dmulated
annedling is gpplied to some individuas of the evolving population.

In our genotypic study we observed that smilar patterns are obtained independently of the
conventionad heuristic used. Therefore, we can conclude that due to the levd of hybridization, the
heurigics (CDS and NEH) and the type of EA (Multi-inver-over) used, the latter is the main
responsible of building the find solutions.

In our phenotypic study we observed low standard deviation of makespan vaues and low Ebest and
Epop vaues. This ensures to provide a sgnificant nhumber of schedules, which are congtructed by
different permutations and are close to, or reach, the known optimum value. To have a hand a st
of quas optima schedules is of utmost importance when the avallability of reedy jobs can change
in the sysem.

Future work will be devoted to dmilar sSudies reaed with the behaviour of evolutionary
approaches by anaysng genotypic and phenotypic characterisics of the individuds in the find

population.
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