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ABSTRACT 
 
Evolutionary algorithms (EAs) can be used as optimisation mechanisms. Based on the model of 
natural evolution, they work on populations of individuals instead of on single solutions. In this 
way, the search is performed in a parallel manner. During the last decades, there has been an 
increasing interest in evolutionary algorithms to solve scheduling problems. One important feature 
in these algorithms is the selection of individuals. 
Selection is the operation by which individuals (i.e. their chromosomes) are selected for mating. To 
emulate natural selection, individuals with higher fitness should be selected with higher probability, 
and thus it is one of the operators where the fitness plays an important role. There are many 
different models of selection (some are not biologically plausible). Commonly, proportional, 
ranking, tournament selection and stochastic universal sampling are used. 
EAs considered in this work are improved with a multiplicity feature to solve the job shop scheduling 
problems (JSSP). The algorithm applied here, multiple crossovers on multiple parents (MCMP), 
considers more than two parents for reproduction with the possibility to generate multiple children. 
This approach uses a permutation representation for the chromosome. The objective of this work is 
to compare the algorithms performance using different selection mechanisms and to analyse the 
different crossover methods developed to apply MCMP with a permutation representation.  
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1. INTRODUCTION 
Evolutionary algorithms (EAs) are optimisation and search procedures inspired by genetics and the 
process of natural selection. Evolutionary algorithms operate on a population P of potential 
solutions (called individuals ai ∈ I, where I represents the space of all possible individuals) of the 
optimisation problem, which simultaneously sample the search space. The applied paradigm is the 
survival of the fittest individual to produce better and better approximations to a solution. The 
quality of an individual is measured by a fitness function f : I → R. After initialisation of the 
population P, a loop begins which consists in selection and recombination of its individuals until 
some termination criterion is reached. Each run of the loop is called a generation and P(t) = (a1

t ..., 
aµ

 t) ∈ Iµ (where µ is the population size) denotes the population at generation t. At each generation, 
a new set of approximations is created by the process of selecting individuals according to their 
level of fitness in the problem domain and breeding them together using operators borrowed from 
natural genetics. This process leads to the evolution of populations of individuals that are better 
suited to their environment than the individuals that they were created from, just as in natural 
adaptation.  
The selection operator is intended to improve the average quality of the population by giving to 
individuals of higher quality a higher probability to contribute with its genetic material for the next 
generation. Selection thereby focuses the search on promising regions in the search space. 
Recombination changes the genetic material in the population either by crossover or by mutation in 
order to exploit new points in the search space. 
A well-known property of a selection operator is selective pressure, which can be defined as the 
probability of the best individual being selected relative to the average probability of selection of all 
individuals. During the selection step of an EA, copies of the better ones replace the worst 
individuals. Consequently, part of the genetic material contained in these worst individuals 
disappears forever.  This loss of diversity is defined as the proportion of the population that is not 
selected for the next generation [3]. When the selection mechanism imposes a strong selective 
pressure then the loss of diversity can be high and to prevent a premature convergence to a local 
optimum then, either a larger population size or adequate crossover and mutation operators are 
needed. On the other side of the coin a small selective pressure can excessively slow the 
convergence rate. 
Improvements in evolutionary algorithms have been found by using different variants of a 
multiplicity feature [7, 8, 9, 10]. Multiple Crossovers on Multiple Parents (MCMP) supplies a 
balance in exploitation and exploration because the searching space is efficiently exploited (by the 
multiple application of crossovers) and explored (by a greater number of samples provided by 
multiple parents). MCMP provides a means to exploit good features of more than two parents selected 
according to their fitness by repeatedly applying one of the scanning crossover (SX) variants [5,6]: a 
number n1 of crossovers is applied on a number n2 of selected parents. From the n2 produced 
offspring, a number n3 of them are selected, according to some criterion, to be inserted in the next 
generation. Such a single population evolutionary algorithm is powerful and performs well on a 
broad class of problems, in particular with job shop scheduling problems (JSSP). 
In general, the task of scheduling is the allocation of jobs over time when limited resources are 
available, where a number of objectives should be optimised, and several constraints must be 
satisfied. A job is determined by a predefined set of operations, and the result of a scheduling 
algorithm is a schedule that contains the start times and allocation of resources to each operation 
[4]. The specification of an appropriate schedule representation is a decisive factor to get a good 
performance from an evolutionary algorithm. The main difficulty in scheduling problems is to 
determine which chromosome representation is the appropriate one to be used. One suitable 
representation is known as job based representation, which consists of a list of jobs and a schedule 



is constructed according to the sequence of jobs. Here we deal with permutations, consequently 
adequate genetic operators should be used in order to produce feasible offspring [11]. 
Evolutionary algorithms enhanced with MCMP were successfully applied to the job shop 
scheduling problem (JSSP) under others representations [13,15, 16, 18, 19]. It was shown that a 
greater number of crossovers for a given number of parents provide better results.  
This work aims at showing the effect of applying different selection mechanisms to a set of instances 
of different degree of complexity, for the JSSP. Moreover, the MCMP approach is included in the 
algorithm and modified SX methods [6] are considered in order to produce feasible offspring. 
Furthermore, SX methods are contrasted with Adjacency Based Crossover (ABC) [6], which is 
specially built for this kind of representation. For the two crossover methods we used the variants 
Uniform (U-XX) where all the parents have the same chance to be donors and Occurrence-Based 
(OB-XX) where the gene values are selected according to the number of occurrences. Details and 
examples of each of each crossover methods can also be found in [17].  
In the next section, a fast review of the diverse sampling mechanisms implemented is carried out. 
Section 3 gives a description for each method and a detail of the experiments. Results under different 
combinations are explained in section 4. Finally, section 5 reports the conclusions of this work. 
 
 
2. SAMPLING MECHANISMS 
2.1. Proportional Selection 
In proportional selection, an individual ai is chosen at random for mating from a population of size µ 
according to the following probability: 
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This is the simplest selection scheme also known as roulette-wheel selection or stochastic sampling 
with replacement. Here, individuals are mapped to contiguous segments in the real interval [0,1] in 
such a way that a segment corresponding to an individual has a size equal to the individual fitness. 
Then a random number in such interval is generated and the individual whose segment encompasses 
the random number is selected.  
 
2.2. Rank-based selection 
In linear ranking, the selective pressure can be controlled more directly than using proportional 
selection and consequently the search process can be accelerated remarkably. Whitley [21] pointed 
out that ranking acts as a function transformation assigning a new fitness value to an individual 
based on its performance relative to other individuals. The Baker’s original linear ranking method 
assigns a selection probability that is proportional to the individual’s rank. Here, according to Bäck [1] 
the mapping rank: I→{1,...,µ}  is given by: 

{ } { } )()(:1,...,1)(:,...,1 1+≤≥−∈∀⇔=∈∀ jji afafjiaranki µµ  

where ≤≥ denotes the ≤ relation or the ≥ relation for minimization or maximization problems, 
respectively.  Consequently the index i of an individual ai denotes its rank. Hence, individuals are 
sorted according to their fitness resulting a1 the best individual and aµ  the worst one. Assuming that 
the expected value for the number of offspring to be allocated to the best individual is ηmax =µP(a1) 
and that to be allocated to  the worst one is  ηmin =µP(aµ)  then   
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As the following constraints must hold 
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it is required that:  maxminmax ηηη −=≤≤ 2 and 21 . 

The selective pressure can be adjusted by varying ηmax. As remarked by Baker [2] if ηmax = 2.0 then all 
individuals would be within 10% of the mean and the population is driven to convergence during every 
generation. To restrain selective pressure, Baker recommended a value of ηmax =1.1. This value for 
ηmax close to 1 leads to Psel (ai) ≅ 1/µ , almost the case of random selection.   
 
2.3. Tournament Selection 
In tournament selection q individuals are randomly chosen from the population and then the best-fitted 
individual, designated as the winner, is selected for the matting pool. The parameter q is known as the 
tournament size and usually it is fixed to q = 2 (binary tournament). If q = 1 then there is no selection at 
all: each individual has the same probability to be selected. As long as q increases the selective 
pressure is augmented. 
As Blickle [3] affirms, tournament selection can be implemented efficiently having the time 
complexity O(µ) because no sorting of the population is necessary but, as a counterpart,  this also leads 
to a  high variance in the expected number of offspring resultant from µ independent trials. 
As showed by Bäck [1], the selection probability for individual ai , (i ∈ {1,...,µ} ) for q-tournament 
selection is given by: 
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2.4. Stochastic Universal Sampling (SUS)  
The idea, introduced by Baker [2], is to make a single draw from a uniform distribution and use it 
for determining the exact number of copies from each parent. In this method the individuals are 
mapped to contiguous segments of a line, such that each individual’s segment is equal in size to its 
fitness exactly as in proportional selection. But here equally spaced pointers are placed over the line 
as many as individuals have to be selected. If n is the numbers of the individuals to be selected, then 
the distance between the pointers is 1/n and the position of the first pointer is given by a randomly 
generated number in the range [0, 1/n]. 
 
 
3. EXPERIMENT DESCRIPTIONS 
The experiments were developed for a set of selected instances of the JSSP, under permutation 
representation. EA runs were made for each combination of crossover methods and selection 
mechanisms. Moreover for each of these combinations, trials were obtained varying n1 (number of 
crossovers) and n2 (number of parents). Finally, 50 EA runs were made for each experiment, and the 
results were averaged. 
To distinguish EAs by selection mechanisms, six different EA´s resulted: 

§ PS-EA: this EA formed the mating pool using proportional selection. 
§ RS-EA: EA working with rank based selection. 
§ TS-EA: EA with tournament selection. 
§ TpS-EA: in this algorithm the tournament selection was modified in the way of selecting the 

individuals to compete: the q individuals were chosen by the use of proportional selection. 
§ SUS-EA: EA plus SUS. 
§ RndS-EA: this EA chooses randomly the selection mechanism generation by generation. 

All previous methods were considered.  



Elitism to retain the best-valued individual was implemented. The population size was fixed at 100 
individuals. USX, OBSX, OBABC and UABC were implemented and for insertion in the next 
generation the best child was chosen (n3 = 1). Number of crossovers and parents were set to: 1 ≤ n1 
≤ 4 and 3 ≤ n2 ≤ 5, respectively. For mutation, an interchange operator was used. The algorithms 
evolved for a minimum of 500 generations, after that a control on the progress of the population 
mean fitness began: if this value remained within a determined range for 20 consecutive generations 
the algorithm stops. Probabilities for crossover and mutation were fixed at 0.7 and 0.2, respectively. 
These values were determined as the best combination of probabilities after many initial trials.  
Proportional selection and SUS were applied in the conventional way. In the case of raking 
selection, ηmax was set to 1.1. In tournament selection, the size q was fixed to 2. Four instances [12], 
with known optimal makespan were used (table 1). 
 

Table 1: Selected instances 
Instance  Size Optimum 

la01 10 × 5 666 
la06 15 × 5 926 
la12 20 × 5 1039 
la15 20 × 5 1207 

 
The following relevant performance variables were chosen: 
§ Ebest = (Abs(opt_val - best value)/opt_val)100 

It is the percentile error of the best found individual when compared with the known, or estimated, 
optimum value opt_val. It gives us a measure of how far the best individual is from that opt_val.  

§ Epop = (Abs(opt_val- pop mean fitness)/opt_val)100 
It is the percentile error of the population mean fitness when compared with opt_val. It tell us 
how far the mean fitness is from that opt_val. 

§ Avg_ebest/Avg_epop : average of ebest/epop values for a particular approach. 
 
4. RESULTS  
In what follows, results on la06 and la12 instances will be discussed as demonstrative ones because 
similar conclusions can be derived from the other instances selected. In the next tables boldfaced 
values correspond to the best-found values for each performance variable considered. 
Values in table 2 summarise average ebest values for la06 instance, which were obtained as an 
average of all ebest values reached for each (n1, n2) combination. In this table boldfaced values 
correspond to the best-found value for each crossover method. When U-Scan or U-ABC are 
applied, both PS-EA and SUS-EA get a zero ebest value showing that the optimum is reached in all 
runs. This also happens in RndS-EA under U-Scan. Analysing OB-Scan, PS-EA has the minimum 
average ebest followed by SUS-EA. An opposite situation is observed in OB-ABC. 
Results in table 2 also show that, both U-Scan and U-ABC obtain better ebest values than OB-Scan 
and OB-ABC respectively, independently of the selection methods. Most EAs employing U-Scan 
obtained better results than those using U-ABC.  
 

Table 2: average ebest under EA approaches for la06 instance. 
 PS-EA RS-EA TpS-EA TS-EA SUS-EA RndS-EA 

U-Scan 0.00000 0.60295 0.00900 0.02700 0.00000 0.00000 
OB-Scan 0.31497 0.50396 0.57595 0.53096 0.43197 0.46796 
U-ABC 0.00000 0.44096 0.17099 0.08099 0.00000 0.14399 

OB-ABC 0.44096 0.58495 0.77394 0.68395 0.39597 0.80994 

 
 



Table 3:  average ebest under EA approaches for la12 instance. 
 PS-EA RS-EA TpS-EA TS-EA SUS-EA RndS-EA 

U-Scan 1.17902 3.20821 2.30189 1.78858 1.06673 2.21367 

OB-Scan 3.10395 3.39269 3.05582 3.48893 2.84729 3.44883 

U-ABC 1.53994 3.00770 2.22169 2.35002 1.65223 2.39012 
OB-ABC 3.10395 3.30446 3.20019 3.37664 3.03978 3.44883 

 
Table 3 summarises average ebest values for la12 instance. SUS-EA presents the lowest average 
ebest for most crossover methods, with the exception of U-ABC where PS-EA reaches an inferior 
value. According to these average ebest values, the best performer is SUS-EA using U-SCAN (with 
an error value of 1.07%) followed by PS-EA using the same crossover (1.18%). Moreover, U-
SCAN crossover provides better results than the other approaches (four of the six combinations of 
crossovers and selection mechanisms), independently of the selection adopted. U-ABC follows it 
with two of the six combinations. U-XX crossover methods have reached better ebest values than 
OB-XX crossovers, as in the previous instance. 
 
In what follows a deeper analysis of ebest behaviour as a function of (n1,n2) combinations is 
considered. For this study, and guided by the results observed in previous tables, we concentrate in 
U-Scan crossover, SUS and PS selection. 
Table 4 shows ebest values for la12 instance. In most cases, SUS-EA has lower errors than PS-EA. 
But the deviation of best values respect to the average for PS-EA is generally less than the 
corresponding to SUS-EA. With regard to the mean ebest, both algorithms exhibited rather similar 
values. Now analysing these results according to the (n1,  n2) combinations (number of crossovers, 
number of parents), when n1 is fixed to 2 or 3 lowest errors are reached for both algorithms 
independently of n2. When only one crossover is carried out, ebest values are quite big compared 
with others n1 values. 
Table 5 indicates the population errors for la12 instance. SUS-EA presents higher epop values than 
PS-EA in the majority of the cases. When n1 changes from 2 to 3, a strong difference is observed in 
the corresponding epop values for both algorithms. Moreover, if the number of crossover applied is 
3 or 4, epop and ebest values are similar, indicating that most individuals belonging to the final 
population are quite similar, in quality, to the best individual found so far. 
Figures 1 and 2 show how individuals are spread in final populations when the number of parents is 
fixed, and the number of crossovers changes (similar picture is presented in remaining final 
populations). When the number of crossovers is increased, populations including individual
 

Table 4: ebest values for la12 instance. 
PS-EA SUS-EA n2 n1 

ebest Avg_ebest dev Ebest avg_ebest dev 

1 1.73244 3.30703 7.11641 1.63619 3.5572710.12566

2 0.76997 2.47546 7.39012 1.44370 2.67565 8.37635

3 1.15496 2.56015 7.84805 0.67372 2.55630 9.91424
3 

4 1.73244 2.66410 6.73838 0.67372 2.6718010.53964

1 1.34745 3.4398510.481881.25120 3.3166510.44951

2 0.76997 2.42348 9.62923 0.38499 2.66987 7.99952

3 0.76997 2.70452 9.10315 0.48123 2.7699710.90458
4 

4 0.96246 3.02406 9.81895 0.67372 2.8161710.08497

1 1.82868 3.73821 9.95574 2.02117 3.6361911.04405

2 0.86622 3.1106811.202110.67372 2.7699710.56233

3 0.76997 3.0298410.341591.25120 2.91242 9.41516
5 

4 1.44370 3.31088 9.79171 1.63619 3.4071210.19604

Table 5: epop values for la12 instance. 

PS-EA SUS-EA n2 n1 
epop  avg_epop dev epop avg_epop dev 

1 16.82419 21.27944 32.2879517.06895 21.84160 29.71571

2 5.39742 15.86333 32.3252412.15493 16.65155 22.69353

3 1.34191 11.05726 59.49887 1.53106 10.76689 53.50390
3 

4 1.73244 6.43885 45.83055 1.15496 8.02566 52.66961

1 13.08437 20.21564 32.3473915.00076 19.36752 27.80081

2 9.55332 14.29027 21.0861010.58736 14.77719 25.46321

3 0.76997 6.82334 57.21803 1.34745 8.91348 53.79106
4 

4 0.96246 3.75289 25.79113 0.82803 5.01895 43.71177

1 12.29599 18.65617 27.6052513.44596 18.90383 27.23307

2 4.79249 14.15772 31.7494611.08114 14.44205 20.87464

3 1.16718 6.96309 51.07711 1.42729 8.08333 55.75630
5 

4 1.44370 3.71299 21.94697 1.63619 3.73865 13.53900
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Figure 1: Final populations for PS-EA for the 

same n1 and different n2. 
Figure 2: Final populations for SUS-EA for the 

same n1 and different n2 
 
with more similar makespan are observed, independently of the selection method adopted. When n1 
is equal to 4, the makespan of individuals remains between 1050 and 1100 for PS-EA, but for SUS-
EA a more concentration around a 1050 value is observed. This fact is confirmed by epop values in 
the (4,4) combination (table 5). The gene conformation shows that these individuals represent the 
same schedules. In both algorithms, the greatest dispersion is presented when n1 is set to one.When 
two crossovers are applied, the greatest concentration of makespan values are between 1150 and 
1300, but also individuals with makespan near to 1050 are observed in the majority of the 
populations. A similar situation happens when n1 is set to 3. 
Figures 3 to 6 outline the relationship between the population mean fitness (fluctuating curves) and 
the best individual fitness (bottom curves) through the evolution process for la12 instance. The 
horizontal axis plots the generation number while the vertical axis plots the makespan values. 
Figures 3 and 4 show this relation for a fixed number of parents and variable number of crossovers. 
Although the curve corresponding to population mean fitness in (4,4) combination presents the 
same fluctuation as others through generation changes, it exhibits a bigger similarity to the curve 
corresponding to the best individual found, in both algorithms. Contrasting values from table 4 and 
5 for the same combination, this strong similarity can also be perceived. Curves representing (2,4) 
and (3,4) population mean fitness for PS-EA (figure 3) fluctuate between similar values during the 
first half of the evolution, but in the last part (3,4) combination is below others. For the same 
algorithm, (1,4) combination presents the biggest distance between best and average curves. 
Examining SUS-EA (figure 4), the (1,4) curve representing population mean fitness is above to the 
(2,4) one until half of the evolution, but the inverse situation is observed in the rest of the evolution. 
For the (3,4) combination, the population mean fitness curve remains close to that representing the 
makespan of the best individual.  
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Figure 3: Evolution of the best and average 
values for the same n2 = 4 and different n1  

for PS-EA. 

Figure 4 Evolution of the best and average 
values for the same n2 = 4 and different n1  

for SUS-EA. 
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Figure 5: Evolution of the best and average 
values for the same n1 = 2 and different n2  

for PS-EA. 

Figure 6 Evolution of the best and average 
values for the same n1 = 2 and different n2  

for SUS-EA. 
 
An earlier stop of the evolution (near generation 500) can be observed in the (4,4) combination for 
both algorithms. This means that the population mean fitness value remained within a determined 
range for 20 consecutive generations, and no further improvement was found. 
Figures 5 and 6 introduce the relationship between the number n1 of crossover and n2 of parents by 
fixing n1 and changing n2 for the la12 instance, we opt for n1=2 regarding best ebest value in Table 
4. In both algorithms it can be observed a bigger difference in the fluctuation limits of population 
mean fitness values for the distinct (n1,n2) combinations. For both algorithms, the (2,3) association 
reaches a stagnation of the mean and best makespan in early generations.   
 
Now a genotype analysis follows. Figures 7 and 8 were obtained from the chromosomal 
conformation of all best individuals found in each run. From there, we want to analyse how the 
jobs, in function to their length, are positioned in the chromosome for optimum or near optimum 
solutions to a particular instance, trying to find a pattern of allocation of jobs in the chromosome. 
Moreover, this gives us an idea about the genotype diversity of the best individuals found. Jobs in 
these figures are sorted according to their total processing time, which is calculated as the sum of 
the duration of all operations for a particular job. The X-axis represents chromosome positions, the 
Y-axis shows the number of occurrences of a job in a given position and the Z-axis represents the 
different jobs. 
The genotype distributions of best individuals, found under both PS-EA and SUS-EA (instance 
la06, figure 7), have a strong similarity. The shortest job (job 2) appears frequently at the end of the 
chromosome. Short jobs are distributed at the first half positions while average length jobs are 
generally located in the second half positions. Long jobs appear with more frequency at the 
beginning of the chromosome.  
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Figure 7: Job distribution for la06 instance 
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Figure 8: Job distribution for la12 instance 
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Figure 9: Variety of jobs in each position of the chromosome for la06 and la12 instance 
 
For the la12 instance (figure 8), again a high similitude is observed in the genotype distributions of 
best individuals under both selection methods. Shortest jobs are more frequently placed in the final 
positions; while longest jobs are located at the beginning of the chromosome. Each average length 
jobs present the same particular pattern of distribution under both selection methods.  
 
Figure 9 shows the standard deviation observed for each chromosome position regarding the 
frequency of jobs positioned in each one. The horizontal axis represents the different positions and 
the vertical axis, the deviation value. SUS-EA curves are above the corresponding PS-EA curves in 
both instances, showing a higher variation. But all these curves are following the same pattern: 
higher variation at the ends of the chromosome and lower variation in the central positions. This 
indicates that job distributions are independent of the selection method adopted: this is the task of 
the evolutionary algorithm.  
 
 
5. CONCLUSIONS 
This contribution had presented some aspects of the behaviour of an evolutionary algorithm used to 
solve the JSSP for a set of instances of diverse complexity. The EA joined a multirecombinative 
approach (MCMP) with different selection methods. Also, an analysis to determine the most 
suitable crossover method to be applied to the adopted permutation representation was carried out.  
For both crossover methods studied (scanning or adjacency based crossover), there is an indication 
that for any (n1,n2) association, uniform approaches had better performance than those based on 
occurrence. Particularly, contrasting the results obtained for the uniform approaches, USX shows a 
better quality of results than UABC. 
Regarding (n1,n2) combinations, best results are obtained when two or three crossovers are applied, 
independently of the number of parents. Worst results correspond to the implementation of a single 
crossover. Finally, when four crossovers are applied the results obtained are better than when a 

SUS-EA PS-EA 



single crossover is applied; in most cases the average makespan of the final population is equal or 
rather similar to the makespan of the best individual. As soon as the number of crossover is 
increased, the individuals belonging to the final population tends to be more similar from the point 
of view of both makespan value and gene conformation. Then a mechanism to incorporate diversity 
to the evolution might be considered. 
Contrasting the different selection methods, the values achieved showed a better performance for 
both SUS and Proportional Selection over other methods, without a clear conclusion on which one 
outperforms the other.  
The promising results on these smallest instances encourage us to deep investigation. To improve 
results in larger instances, further work will include diverse multirecombination schemes to add 
diversity without losing the algorithm search ability, and the study of the adjustment of selection 
method according to the evolution. Another important aspect to study is how the jobs are positioned 
in the chromosome through the evolutionary process; this can complement the formae-based [14, 
20] evolutionary search methods. 
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