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ABSTRACT

Evolutionary dgorithms (EAs) can be used as optimisation mechanisms. Based on the modd of
natural evolution, they work on populations of individuds ingead of on single solutions. In this
way, the search is peformed in a padld manner. During the last decades, there has been an
increedng interest in evolutionary agorithms to solve scheduling problems. One important feature
in these dgorithmsis the sdection of individuas.

Selection is the operation by which individuas (i.e. their chromosomes) are sdlected for mating. To
emulate natural sdection, individuas with higher fitness should be sdected with higher probability,
and thus it is one of the operators where the fitness plays an important role. There are many
different models of sdection (some ae not biologicdly plaushble). Commonly, proportiond,
ranking, tournament selection and stochadtic universal sampling are used.

EAs consdered in this work are improved with a multiplicity festure to solve the job shop scheduling
problems (JSSP). The agorithm gpplied here, multiple crossovers on multiple parents (MCMP),
condders more than two parents for reproduction with the possbility to generate multiple children.
This approach uses a permutation representation for the chromosome. The objective of this work is
to compare the dgorithms peformance usng different sdection mechanisms and to andyse the
different crossover methods developed to gpply MCMP with a permutation representation.

Keywords: evolutionary agorithms, representation, selection, crossover operator, multiplicty
features.
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1. INTRODUCTION

Evolutionary agorithms (EAS) are optimisation and search procedures inspired by genetics and the
process of naura sdection. Evolutionary dgorithms operate on a population P of potentid
solutions (called individuals @; T 1, where I represents the space of dl possible individuas) of the
optimisation problem, which smultaneoudy sample the search space. The gpplied paradigm is the
aurvival of the fittest individua to produce better and better gpproximations to a solution. The
qudity of an individud is measured by a fitness function /' - I ® R. After initidision of the
population P, a loop begins which condds in sdection and recombination of its individuds until
some termination criterion is reached. Each un of the loop is caled a generation and P(r) = (a;' ...,
am) 1 I™M(where mis the population size) denotes the population a generation ¢. At each generation,
a new set of approximations is created by the process of selecting individuals according to teir
level of fitness in the problem doman and breeding them together usng operators borrowed from
natural genetics. This process leads to the evolution of populations of individuds that are better
auited to ther environment than the individuds that they were created from, just as in naturd
adaptation.

The sdection operator is intended to improve the average qudity of the populaion by giving to
individuals of higher quaity a higher probability to contribute with its genetic materid for the next
generation. Selection thereby focuses the search on promisng regions in the search space
Recombination changes the genetic materid in the populaion ether by crossover or by mutation in
order to exploit new pointsin the search space.

A wdl-known property of a sdection operator is selective pressure, which can be defined as the
probability of the best individud being sdected relative to the average probability of sdection of dl
individuals. During the sdection step of an EA, copies of the better ones replace the worst
individuds. Consequently, pat of the genetic maerid contaned in these worg individuas
disappears forever. This loss of diversity is defined as the proportion of the population that is not
sdected for the next generation [3]. When the sdection mechanism imposes a strong sdective
pressure then the loss of diverdty can be high and to prevent a premature convergence to a locd
optimum then, ether a larger population Sze or adequate crossover and mutation operators are
needed. On the other sde of the coin a smdl sdective pressure can excessvely dow the
convergence rete.

Improvements in evolutionary dgorithms have been found by usng differet vaiants of a
multiplicity fegture [7, 8, 9, 10]. Multiple Crossovers on Multiple Parents (MCMP) supplies a
baance in exploitation and exploration because the searching space is efficiently exploited (by the
multiple application of crossovers) and explored (by a grester number of samples provided by
multiple parents). MCMP provides a means to exploit good features of more than two parents selected
according to their fitness by repeatedly applying one d the scanning crossover (SX) variants [5,6]: a
number n; of crossovers is gpplied on a number n, of sdected parents. From the n, produced
offgoring, a number n; of them are sdlected, according to some criterion, to be insarted in the next
generdtion. Such a sngle population evolutionary agorithm is powerful and peforms wel on a
broad class of problems, in particular with job shop scheduling problems (JSSP).

In generd, the task of scheduling is the dlocation of jobs over time when limited resources are
avalable, where a number of objectives should be optimised, and severd condraints must be
satisfied. A job is determined by a predefined set of operations, and the result of a scheduling
dgorithm is a schedule that contains the start times and dlocation of resources to each operation
[4]. The specification of an appropriate schedule representation is a decisve factor to get a good
perfformance from an evolutionary dgorithm. The man difficulty in scheduling problems is to
determine which chromosome representation is the appropriate one to be used. One suitable
representation is known as job based representation, which conssts of a list of jobs and a schedule



Is constructed according to the sequence of jobs. Here we ded with permutations, consequently
adequate genetic operators should be used in order to produce feasible offspring [11].

Evolutionary dgorithms enhanced with MCMP were successfully applied to the job shop
scheduling problem (JSSP) under others representations [13,15, 16, 18, 19]. It was shown that a
greater number of crossoversfor agiven number of parents provide better results.

This work ams a showing the effect of goplying different sdection mechaniams to a set of ingtances
of different degree of complexity, for the JSSP. Moreover, the MCMP approach is included in the
dgorithm and modified SX methods [6] are conddered in order to produce feasble offspring.
Furthermore, SX methods are contrasted with Adjacency Based Crossover (ABC) [6], which is
specidly built for this kind of representation. For the two crossover methods we used the variants
Uniform (U-XX) where dl the parents have the same chance to be donors and Occurrence-Based
(OB-XX) where the gene vaues are sdected according to the number of occurrences. Detals and
examples of each of each crossover methods can adso be found in [17].

In the next section, a fast review of the diverse sampling mechanisms implemented is carried out.
Section 3 gives a description for each method and a detail of the experiments. Results under different
combinations are explained in section 4. Findly, section 5 reports the conclusions of thiswork.

2. SAMPLING MECHANISMS
2.1. Proportional Selection
In proportiona sdlection, an individud «; is chosen a random for mating from a population of Sze m
according to the following probability:
f(a;)

a fla)

j=1

This is the smplest sdection scheme dso known as roulette-wheel selection or stochastic sampling
with replacement. Here, individuds are mapped to contiguous segments in the red interva [0,1] in
such a way that a segment corresponding to an individuad has a Sze equd to the individud fitness.
Then a random number in such interva is generated and the individua whose segment encompasses
the random number is selected.

Psel(ai) =

2.2. Rank-based selection
In linear ranking, the sdective pressure can be controlled more directly than using proportiona
sdlection and consequently the search process can be accelerated remarkably. Whitley [21] pointed
out that ranking acts as a function transformetion asigning a new fitness value to an individua
based on its peformance relative to other individuds The Baker's origind linear ranking method
assigns a sdection probability tat is proportional to the individuad’s rank. Here, according to Béck [1]
the mapping rank: I®{1,...,m isgiven by:

"il {l...,n’}:rank(ai)=i o "ji {ZI.,...,m-ZI}:f(aj)E,3 Sfla )
where £3 denotes the £ redation or the 3 rdation for minimization or maximization problems,
respectively. Consequently the index i of an individud «; denotes its rank. Hence, individuas are
sorted according to their fitness resulting «a; the best individua and am the worst one. Assuming that
the expected vaue for the number of offspring to be dlocated to the best individud is h,,,, =nN®(a;)
and that to be dlocated to theworst oneis hy,;, =nN®(an) then

1 -1
Pse/(al-):— max (hmax_ hmm)xlfn_—l

As the following congtraints must hold
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Psel(ai) 3 0 " i é.PSel(al) :1

i=1
itisrequiredthat: 1 £ h £ 2and h

max min = 2-h max "
The sdlective pressure can be adjusted by varying h,,... As remarked by Baker [2] if h,,,, =2.0then al
individuas would be within 10% of the mean and the population is driven to convergence during every
generation. To restrain selective pressure, Baker recommended a vaue of h,,,, =1.1. This vaue for
hiax closeto 1 leadsto Py, (a;) @L/m dmost the case of random selection.

2.3. Tournament Selection

In tournament selection ¢ individuds are randomly diosen from the population and then the best-fitted
individual, designated as the winner, is sdected for the matting pool. The parameter ¢ is known as the
tournament gze and usudly it is fixed to ¢ = 2 (binary tournament). If ¢ = 1 then there is no sdection a
dl: each individud has the same probability to be selected. As long as ¢ increases the sdlective
pressure is augmented.

As Blickle [3] &ffirms tournament sdection can be implemented efficiently having the time
complexity O(m because no sorting of the population is necessary but, as a counterpart, this adso leads
to a high variance in the expected number of offspring resultant from mindependent trids.

As showed by Back [1], the selection probability for individud a; , (i T {1,....m} ) for g-tournament
sectionisgiven by:

Psei(a,) :%((m- i+1) - (m- i)q)

2.4. Stochastic Universal Sampling (SUS)

The idea, introduced by Baker PJ, is to meke a sngle draw from a uniform didribution and use it
for determining the exact number of copies from each parent. In this method the individuds are
mapped to contiguous segments of a line, such that each individud’s segment is equd in Sze to its
fitness exactly as in proportional selection. But here equaly spaced pointers are placed over the line
as many as individuas have to be sdected. If 7 is the numbers of the individuas to be sdected, then
the distance between the pointers is 1/n and the postion of the firgt pointer is given by a endomly
generated number in the range [0, Un].

3. EXPERIMENT DESCRIPTIONS

The experiments were developed for a set of sdected instances of the JSSP, under permutation

representation. EA runs were made for each combination of crossover methods and sdection

mechanisms. Moreover for each of these combinations, trids were obtained varying n; (number of

crossovers) and n, (number of parents). Findly, 50 EA runs were made for each experiment, and the

results were averaged.

To digtinguish EAs by sdlection mechanisms, six different EA”s resulted:

PS-EA: this EA formed the mating pool using proportiona selection.

RS-EA: EA working with rank based sdection.

TS-EA: EA with tournament sdection.

TpS-EA: in this dgorithm the tournament sdlection was modified in the way of sdecting the

individuas to compete: the ¢ individuas were chosen by the use of proportiona sdection.

= SUS-EA: EA plusSUS.

= RndS-EA: this EA chooses randomly the sdection mechanism generdtion by generdtion.
All previous methods were considered.



Elitism to retan the best-vaued individud was implemented. The population sze was fixed a 100
individuals. USX, OBSX, OBABC and UABC were implemented and for insation in the next
generation the best child was chosen (23 = 1). Number of crossovers and parents were set to: 1 £ »n;
£ 4and 3 £ n, £ 5, regpectively. For mutation, an interchange operator was used. The agorithms
evolved for a minimum of 500 generations, after that a control on the progress of the population
mean fitness began: if this value remained within a determined range for 20 consecutive generations
the algorithm stops. Probabilities for crossover and mutation were fixed at 0.7 and 0.2, respectively.
These vaues were determined as the best combination of probabilities after many initid trids
Proportiond sdection and SUS were applied in the conventiona way. In the case of raking
section, h,,,, was set to 1.1. In tournament sdlection, the Sze ¢ was fixed to 2. Four instances [12],
with known optima mekespan were used (table 1).

Table 1: Selected instances

Instance Size Optimum
la01 10" 5 666
la06 15° 5 926
lal2 20" 5 1039
lal5 20" 5 1207

Thefollowing relevant performance variables were chosen:

»  Ebest = (Abs(opt val - best vaue)lopt val)100
It is the percentile error of the best found individua when compared with the known, or estimated,
optimum value opt_val. It gives us ameasure of how far the best individud is from that opt_val.

=  Epop = (Abs(opt_val- pop mean fitness)/opt_val)100
It is the percentile error of the population mean fithess when compared with opt val. It tdl us
how far the meen fitnessis from thet opt val.

»  Avg ebest/Avg epop . average of ebest/epop vaues for a particular approach.

4. RESULTS

In what follows, results on la06 and lal2 instances will be discussed as demongtrative ones because
amilar conclusons can be derived from the other instances sdected. In the next tables boldfaced
values correspond to the best-found values for each performance variable considered.

Vdues in table 2 summarise average ebest vaues for /a06 indance, which were obtained as an
average of dl ebest vaues reached for each (n;, n,) combinaion. In this table boldfaced values
correspond to the best-found vaue for each crossover method. When U-Scan or U-ABC are
applied, both PS-EA and SUS-EA get a zero ebest vaue showing that the optimum is reached in dl
runs. This dso hgppens in RNdS-EA under U-Scan. Andysing OB-Scan, PS-EA has the minimum
average ebest followed by SUS-EA. An opposite Situation is observed in OB-ABC.

Reaults in table 2 also show that, both U-Scan and U-ABC obtain better ebest values than OB-Scan
and OB-ABC respectively, independently of the sdection methods. Most EAs employing U-Scan
obtained better results than those usng U-ABC.

Table 2: average ebest under EA approaches for /a06 instance.
PSEA RSEA | TpSEA | TSEA | SUSEA | RndSEA

U-Scan 0.00000 | 0.60295 | 0.00900 | 0.02700 | 0.00000 | 0.00000
OB-Scan | ¢.31497 | 0.50396 | 0.57595 | 0.53096 | 0.43197 | 0.46796
U-ABC 0.00000 | 0.44096 | 0.17099 | 0.08099 | 0.00000 | 0.14399
OB-ABC 0.44096 | 0.58495 | 0.77394 | 0.68395 | 0.39597 | 0.80994




Table 3: average ebest under EA approaches for lal2 instance.

PSEA RSEA TpSEA TSEA SUSEA | RndSEA
U-Scan 1.17902 | 3.20821 | 2.30189 | 1.78858 | 1.06673 | 2.21367
OB-Scan 3.10395 | 3.39269 | 3.05582 | 3.48893 | 2.84729 | 3.44883
U-ABC 1.53994 | 3.00770 | 2.22169 | 2.35002 | 1.65223 | 2.39012
OB-ABC 3.10395 | 3.30446 | 3.20019 | 3.37664 | 3.03978 | 3.44883

Table 3 summarises average ebest vaues for lal2 ingance. SUS-EA presents the lowest average
ebest for most crossover methods, with the exception of UABC where PS-EA reaches an inferior
vaue. According to these average ebest vaues, the best performer is SUS-EA using U SCAN (with
an eror vaue of 1.07%) followed by PS-EA using the same crossover (1.18%). Moreover, U-
SCAN crossover provides better results than the other agpproaches (four of the sx combinations of
crossovers and sdection mechanisms), independently of the sdection adopted. U-ABC fallows it
with two of the sx combinaions. U-XX crossover methods have reached better ebest vaues than
OB-XX crossovers, asin the previous instance.

In what follows a deeper andyss of ebet behaviour as a function of (r;,n;) combinations is
consdered. For this study, and guided by the results observed in previous tables, we concentrate in
U-Scan crossover, SUS and PS selection.

Table 4 shows ebest vaues for lal2 ingtance. In most cases, SUS-EA has lower errors than PS-EA.
But the deviation of best vaues respect to the average for PS-EA is genedly less than the
corresponding to SUS-EA. With regard to the mean ebest, both agorithms exhibited rather smilar
vaues. Now andysing these results according to the (r;, m) combinaions (number of crossovers,
number of parents), when n; is fixed to 2 or 3 lowest erors are reached for both adgorithms
independently of n,. When only one crossover is carried out, ebest vaues are quite big compared
with others n1 values.

Table 5 indicates the population errors for /al2 ingance. SUS-EA presents higher epop vaues than
PS-EA in the mgority of the cases. When r; changes from 2 to 3, a strong difference is observed in
the corresponding epop vaues for both agorithms. Moreover, if the number of crossover gpplied is
3 or 4, epop and ebext vdues are Smilar, indicating that most individuas belonging to the find
population are quite smilar, in qudity, to the best individua found so far.

Figures 1 and 2 show how individuds are spread in find populaions when the number of parents is
fixed, and the number of crossovers changes (dmilar picture is presented in remaning find
populations). When the number of crossovers is increased, populaions including individua

Table 4: ebest values for /al2 instance. Table 5: epop values for /al2 instance.
w | PS-FA SUS-EA w |y PS-EA SUS-EA
ebest [Avg ebest| dev Ebest |avg ebest] dev epop |avg_epop| dev epop |avg_epop| dev
1 [1.73244) 3.30703 7.11641/1.63619 3.55727)10.12566 1 [16.8241921.27944(32.2879517.06895/21.84160[29.71571
; L2 0.76997| 2.4754§ 7.39012(1.4437Q 2.67569 8.37635 3 |2 |5.39742|15.86333[32.3252412.15493/16.65155[22.69353
3 [1.15496| 2.56015 7.848050.67373 2.5563( 9.91424 3 [1.34191|11.05726|59.49887 1.53106 |10.76689(53.50390
4 |1.73244) 2.6641( 6.73838(0.67377 2.6718(10.53964 4 |1.73244| 6.43885 |45.83055 1.15496 | 8.02566 [52.66961]
1 [1.34745 3.4398910.481881.2512( 3.3166510.44951 1 [13.08437]20.21564(32.3473915.00076/19.36752[27.80081
4 | 2 [0-76997] 2.423449.629230.38499 2.66987 7.99952 4 | 2 |9.55332|14.29027|21.0861010.58736(14.77719|25.46321
3 [0.76997| 2.70452 9.10315/0.48123 2.7699710.90458 3 [0.76997| 6.82334 |57.21803 1.34745 | 8.91348 [53.791086
4 [0.96246( 3.02406 9.81895/0.67372 2.8161710.08497 4 |0.96246| 3.75289 [25.79113 0.82803 | 5.01895 [43.71177
1 [1.82868 3.738219.955742.02117 3.6361911.04409 1 [12.29599|18.65617/27.6052513.44596/18.90383[27.23307
5 1.2 0.86622 3.1106811.20211/0.67379 2.7699710.56233 5 |2 |4.79249|14.15772[31.7494611.08114)14.44205/20.87464
3 [0.76997| 3.0298410.341591.2512( 2.912429.41516 3 |1.16718]| 6.96309 |51.07711] 1.42729 | 8.08333 [55.75630
4 |1.44370 3.31089.79171}1.63619 3.4071210.19604 4 |1.44370] 3.71299 |21.946971.63619 | 3.73865 [13.53900




1700 1700

1600 - 1600 -

1500 - 1500 -

1400 - 9 o 1400 1o

1300 i S S o 1300 1 246 5

1200 - Qigg@ 5 °°Qf%° foa A 1200 4 %Oo&> % o% ng &Q%”d%ﬁb@o@

1100 awls L.._.&-.....ﬁ..“’ =N 1100 @22 S o200 220

1000 . . . 1000 : : : : !
0 20 2 60 80 100 0 20 40 60 80 100

| (4.1) 4 (4,2) O (43) =(4,4)

Figure 1: Find populations for PS-EA for the Figure 2: Find populations for SUS-EA for the
same n; and different n;. same n; and different n;

with more similar makespan are observed, independently of the selection method adopted. When n;
is equa to 4, the makespan of individuas remains between 1050 and 1100 for PS-EA, but for SUS-
EA a more concentration around a 1050 vaue is observed. This fact is confirmed by epop vaues in
the (4,4) combination (table 5). The gene conformation shows that these individuals represent the
same schedules. In both agorithms, the greatest dispersion is presented when »; is set to oneWhen
two crossovers are applied, the greatest concentration of makespan vaues are between 1150 and
1300, but dso individuas with makespan near to 1050 are observed in the mgority of the
populaions. A smilar Stuaion happenswhen n; isset to 3.

Figures 3 to 6 outline the reaionship between the population mean fitness (fluctuating curves) and
the best individud fitness (bottom curves) through the evolution process for lal2 indance. The
horizontal axis plots the generation number while the verticd axis plots the mekespan vaues.
Fgures 3 and 4 show this relation for a fixed number of parents and variable number of crossovers.
Although the curve corresponding to population mean fitness in (4,4) combination presents the
same fluctuation as others through generation changes, it exhibits a bigger smilarity to the curve
corresponding to the best individud found, in both agorithms. Contrasting vaues from table 4 and
5 for the same combination, this srong Smilarity can adso be perceved. Curves representing (2,4)
and (3,4) population mean fitness for PS-EA (figure 3) fluctuate between smilar vaues during the
firg hdf of the evolution, but in the last pat (3,4) combination is below others. For the same
dgorithm, (1,4) combination presents the biggest distance between best and average curves.
Examining SUS-EA (figure 4), the (1,4) curve representing population mean fitness is above to the
(24) one until haf of the evolution, but he inverse Stuation is observed in the rest of the evolution.
For the (34) combination, the population mean fitness curve remains close to that representing the
makespan of the best individud.
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Figure 5: Evolution of the best and average
vaues for the same n; = 2 and different »;
for PS-EA.

Figure 6 Evolution of the best and average
vduesfor the same n; = 2 and different n»
for SUS-EA.

An earlier stop of the evolution (near generation 500) can be observed in the (4,4) combination for
both dgorithms. This means that the population mean fitness vaue remained within a determined
range for 20 consecutive generations, and no further improvement was found.

Figures 5 and 6 introduce the reationship between the number #; of crossover and n, of parents by
fixing n; and changing n, for the lal2 ingtance, we opt for N=2 regarding best ebest vaue in Table
4. In both dgorithms it can be obsarved a bigger difference in the fluctuation limits of population
mean fitness vaues for the didinct (n;,n,) combinations. For both agorithms, the (2,3) association
reaches a stagnation of the mean and best makespan in early generations.

Now a genotype andyss follows. Figures 7 and 8 were obtaned from the chromosoma
conformation of al best individuds found in each run. From there, we want to andyse how the
jobs, in function to ther length, are postioned in the chromosome for optimum or near optimum
solutions to a paticular ingtance, trying to find a pattern of dlocation of jobs in the chromosome.
Moreover, this gives us an idea about the genotype diverdty of the best individuads found. Jobs in
these figures are sorted according to their tota processng time, which is cdculated as the sum of
the duration of al operations for a particular job. The Xaxis represents chromosome positions, the
Y-axis shows the number of occurrences of a job in a given postion and the Zaxis represents the
different jobs.

The genotype didributions of best individuds, found under both PSS EA and SUS-EA (ingtance
la06, figure 7), have a strong Smilarity. The shortest job (job 2) appears frequently at the end of the
chromosome. Short jobs are didributed at the firsg haf podtions while average length jobs are
generdly located in the second haf pogtions. Long jobs appear with more frequency a the
beginning of the chromosome.

Figure 7: Job digtribution for /a06 ingance



Figure 8: Job didribution for /a2 instance
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Figure 9: Variety of jobsin each postion of the chromosome for la06 and lal2 ingtance

For the lal2 ingance (figure 8), again a high smilitude is observed in the genotype didtributions of
best individuals under both sdlection methods. Shortest jobs are more frequently placed in the find
postions, while longest jobs are located a the beginning of the chromosome. Each average length
jobs present the same particular pattern of distribution under both selection methods.

Figure 9 shows the standard deviation observed for each chromosome postion regarding the
frequency of jobs postioned in each one. The horizonta axis represents the different postions and
the vertical axis, the deviation vaue. SUS-EA curves are above the corresponding PS-EA curves in
both ingtances, showing a higher variation. But dl these curves ae following the same pattern:
higher variation & the ends of the chromosome and lower variation in the central pogstions. This

indicates that job digtributions are independent of the selection method adopted: this is the task of
the evolutionary dgorithm.

5. CONCLUSIONS

This contribution had presented some aspects of the behaviour of an evolutionary dgorithm used to
solve the JSSP for a st of ingtances of diverse complexity. The EA joined a multirecombingtive
goproach (MCMP) with different selection methods. Also, an andyss to determine the most
suitable crossover method to be applied to the adopted permutation representation was carried out.

For both crossover methods studied (scamning or adjacency based crossover), there is an indication
that for any (n;,n,) associaion, uniform approaches had better performance than those based on
occurrence. Particularly, contragting the results obtained for the uniform gpproaches, USX shows a
better qudity of resultsthan UABC.

Regarding (n;,n,) combinations, best results are obtained when two or three crossovers are applied,
independently of the number of parents. Worst results correspond to the implementation of a single
crossover. Findly, when four crossovers are applied the results obtained are better than when a



sngle crossover is applied; in most cases the average makespan of the find population is equd or
rather smilar to the makespan of the best individud. As soon as the number of crossover is
increased, the individuds beonging to the find population tends to be more smilar from the point
of view of both makespan vadue and gene conformation. Then a mechanism to incorporate diversity
to the evolution might be considered.

Contragting the different sdlection methods, the vaues achieved showed a better performance for
both SUS and Proportional Selection over other methods, without a clear concluson on which one
outperforms the other.

The promising results on these smalest indances encourage us to deep invedigation. To improve
rellts in larger ingtances, further work will include diverse multirecombination schemes to add
diverdgty without losing the adgorithm search ability, and the sudy of the adjusment of sdlection
method according to the evolution. Another important aspect to study is how the jobs are postioned
in the chromosome through the evolutionary process, this can complement the formae-based [14,
20] evolutionary search methods.
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