

Hint: A planning-based tool for framework instantiation

Federico U. Trilnik and J. Andrés Díaz Pace
ISISTAN Research Institute, Facultad de Cs. Exactas, UNICEN University

 Campus Universitario, (B7001BOO) Tandil, Buenos Aires, Argentina
Also CONICET - Argentina

E-mail: { ftrilnik, adiaz }@exa.unicen.edu.ar

Abstract. Object-oriented frameworks are, perhaps, the most important reuse technology today
available. This is so, because they enable the reuse of both code and design. However, the effective
use of frameworks to instantiate new applications represents one of the most limiting factors of this
reuse technology. Therefore, tools to support the process of framework instantiation are
increasingly necessary. In this line, we present Hint, an environment for assisting the instantiation
of Java frameworks based on software agent technology. Actually, Hint is the evolution of a
previous work in the subject, and it was built around a software agent that starts asking the user to
select the functionality needed for a new application and after that elaborates a sequence of
programming activities that should be carried out in order to implement it. In order to enable the
agent to do its work, the framework must be documented following the Smartbooks documentation
method. The most relevant contribution of this work is the use of planning techniques to guide the
execution of instantiation activities according to the framework design.

Keywords: object-oriented frameworks, framework documentation, software agents, planning.

1. Introduction
Framework usability is one of the most limiting factors of framework-based reuse technology.
Frameworks [8] embody a generic design for a family of applications, and they can be seen as a
tradeoff between a general and a flexible solution. A general solution can deal, without changes,
with different variants of a given problem. On the other hand, a flexible solution is one that through
small changes on its organization, can be adapted to solve those variants. Flexible design structures,
that is, structures that enable the adaptation of a general behavior, represent the essence of a
framework. However, these structures often imply more complex designs and, therefore, designs
harder to understand. For this reason, much effort has been dedicated in the last ten years to the
development of more powerful documentation techniques and tools, in order to facilitate the
framework understanding process [2]. Nevertheless, none of the developed techniques [6][10] can
be completely adapted to the different types of framework users, especially if considering the
variations on knowledge and experience these users usually have [9]. On one side, expert users may
prefer to know about design details, and be able to make their own decisions. Many times this kind
of users can adapt the framework in unexpected ways. On the other side, and perhaps the most
important one, novice users may just want to be aware of higher-level aspects. This kind of users
should be able to adapt the framework without the need of understanding overwhelming details of
design rationale. However, this is not always the case, producing a negative impact on the benefits
that frameworks can bring to enhance software development.

This limitation led us to look for more intelligent tools that could effectively help users in the
instantiation of a given framework. In this context, an ideal supporting tool should allow a
framework user to describe the required functionality for a specific application and then the tool
should automatically generate an application implementing it. Unfortunately, it is not always
possible to provide that kind of tools, mainly because in order to instantiate an application, some
programming activities are usually needed, depending on the application domain or framework

maturity. For this reason, an intermediate approach is to think about tools having the necessary
knowledge to show the user what should be done to implement a given application using the
framework. In this sense, intelligent agent technology represents an interesting alternative to
explore. Intelligent Software Agents [1] is a research area were important advances have been
achieved in the last years [5], providing new ways for analyzing, designing and implementing
software systems. Loosely defined, an intelligent agent is a software component that embodies
knowledge about a given subject or domain and uses this knowledge in an autonomous way to
satisfy its design goals.

In this work we introduce Hint, a Java tool designed to provide semi-automated support to the
process of framework instantiation based on an assistance intelligent agent [14]. This agent uses
specific knowledge to assist the process of framework instantiation through least commitment
planning techniques [15]. The agent provides a developer with the list of functions that can be
implemented using the framework. Once the user has selected the functionality he is interested in,
the agent uses the instantiation knowledge to derive an instantiation plan. The plan consists of a
sequence of instantiation tasks (e.g., subclassing, method implementation, an so on) that the user
should carry out in order to have implemented his desired application. The knowledge needed for
implementing this functionality must be provided by the designer using the Smartbooks method for
documenting frameworks. Smartbooks extends traditional techniques for framework documentation
with rules that describe the way a given functionality can be obtained using the framework. These
rules can be expressed using an UML-like visual notation, giving the opportunity of being
integrated with other existent documentation tools. To carry out the process of plan creation we
have developed a specialized planning algorithm, called PHint. In this paper we present the main
characteristics of the tool, with special focus on developed planning algorithm.

The rest of the paper is organized as follows. Section 2 covers the Smartbooks documentation
method. Section 3 presents the architecture of the Hint environment and describes PHint, the
planning algorithm used by Hint. Finally, section 4 rounds up the conclusions of the work.

2. SmartBooks: Defining the Instantiation Knowledge
As we mentioned before, the functionality of Hint is based on the information provided by the
framework designer through the Smartbooks documentation method [14]. Smartbooks considers the
instantiation of frameworks as an activity based on a well-defined amount of basic instantiation
tasks, for example: class specialization or method overwriting, among others. The method
prescribes that the framework designer should describe the functionality provided by the
framework, how this functionality is implemented by different framework components, and provide
rules to somehow constraint the way the framework is specialized. This special documentation
constitutes what is called instantiation rules.

By means of instantiation rules, the Hint agent is able to provide information that guides the
framework user through the process of application development. This guidance is focused on the
intended functionality for the new application, so the user is oriented to define what his application
is supposed to do. Relying on the information about application functionality, the agent can
elaborate a plan for framework instantiation, and then the user has just to execute (perhaps
including some modifications) the list of tasks that composes the plan.

Instantiation rules can be graphically specified using a UML [13] extension called TOON (Tasks
and Object-Oriented Notation), to express framework structures and instantiation activities

associated with them. All these rules are directly associated with the concept of tasks, as
programming activities to be carried out by the developer in order to correctly instantiate a target
framework. The execution of these tasks will effectively generate code implementing the desired
functionality.

2.1 Instantiation Rules
This kind of rules documents different ways to implement predetermined functional requirements
and in the same time provides support to assist the user in this process. Instantiation rules can be
divided into two categories:
• Framework-specific rules: These rules are written by the framework designer and describe

instantiation knowledge particular of each framework
• Generic rules: These rules, on the other hand, describe knowledge common to the instantiation

process of many frameworks, and they are used as building blocks to express framework-specific
rules.

FunctionalProxyIF
<<Interface>>

<task> ImplementInterface<task> DefineMethod

<task> Opt ionalUpdateMethod
<task> DefineVariable

createFunctionalProxy(Component,ComponentProxy,Method,´composition´)

[Component]

[Method]()

[ComponentProxy]
myComponent

new()
[Method]()

Figure 1. Example of an instantiation rule for the Aspect-Moderator framework using TOON

Figure 1 shows a simple example of an instantiation rule for the Aspect-Moderator framework [4],
described using TOON. This example is explained in more detail in [3]. The white squares represent
classes and the black ones represent instantiation tasks. The text on the upper left corner states the
functionality described by the rule. In the example, the rule specifies that in order to have a
functional proxy for a component, the proxy class should implement the FunctionalProxyIF
interface and wrap the component. More precisely, the diagram prescribes that four tasks should be
carried out by the user:
1. An ImplementInterface task that has to produce a subclass of FunctionalProxyIF.
2. A DefineVariable task, which must add a myComponent attribute in the proxy class.
3. A DefineMethod task in charge of overriding the method Method() in the component (to
incorporate additional behavior).
4. And finally, an OptionalDefineMethod task if any update to the constructor is required.

The kind of tasks presented in the example can be seen as basic tasks or programming tasks,
because they refer to programming activities associated with framework code. These tasks are
classified as pending or waiting tasks, according to their role on the planning process. Table 1
shows a sample of other programming tasks supported by the environment.

Table 1. List of some programming tasks supported by Smartbooks

Task Type Description
DefineClass Pending It adds a new class definition (from an existing base class)

DefineMethod Pending It adds a new method into a given class
DefineAttribute Pending It adds a new attribute into a given class

UpdateClass Pending It modifies the definition of a class
UpdateMethod Pending It modifies the definition of a method

UpdateAttribute Pending It modifies the definition of an attribute

ImplementInterface Pending It makes a class to implement a given interface

Warning Pending It shows a warning message explaining some framework constraint

AskSelection Waiting It presents several alternatives and asks the user for a choice

GetUserInput Waiting It asks the user to enter a string

SelectClass Waiting It asks the user to specify a class

SelectMethod Waiting It asks the user to specify a method of a class
SelectMethods Waiting It asks the user to specify a set of methods of a class

Internally, an instantiation rule is represented in the form precondition-effects. A rule states which
preconditions are needed for the effects to be true. In every step of the planning algorithm, the
planner tries to make true the preconditions of the rule whose effects (or at least one of them) are
goals. It is important to note that the body of the rule is only evaluated when all their preconditions
are true. Figure 2 shows the representation of the instantiation rule presented in the example (see
figure 1).

Figure 2. Instantiation rule representation.

Task: createFunctionalProxy
 Input: ComponentProxy, Component, Method
 Output: []
 Preconditions: definedClass(ComponentProxy), definedClass(Component),
 proxyDefinitionOption(´Composition´)
 Postconditions: definedMethod(ComponentProxy, Method), wrapped(ComponentProxy, Component)
 Body:
 do implementInterface(ComponentProxy, ´FunctionalProxyIF´)
 do defineVariable(ComponentProxy, ´myComponent´)
 do defineMethod(ComponentProxy, Method, ´This method should call Method in Component´)
 do optionalUpdateMethod(ComponentProxy, ´new´)

3. The Hint architecture
Hint is a special tool in charge of collecting all the Smartbooks documentation and assisting the user
through the process of framework instantiation. The tool architecture comprises several components
with different responsibilities. For the sake of simplicity, we just give an outline of them. A detailed
description of these issues is given in [14]. The components are the following:
• A documentation tool used by framework developers to write the framework documentation.
• A rule generator based on the framework description, which generates a Prolog representation of

the rules.
• A functionality collector (wizard) to help the framework user describe the functionality required

for the application currently being developed.
• A planning module using least commitment planning techniques to build instantiation plans.
• A task manager keeping track of the tasks involved in instantiation plans.

During the planning phase, a specially designed UCPOP-like algorithm is used. In the next sub-
sections both the planning algorithm and the task manager component are described in more detail.

3.1 The Planner
This module provides some of the most important functionality of the Hint environment. From a list
of functional requirements, it elaborates a list of required instantiation tasks based on the
instantiation knowledge provided by the framework designer, particularly from the functional rules.
The central component of the Planner module is the PHINT planning algorithm. This algorithm was
developed to support the Smartbooks method on the basis of a well-known planning algorithm, and
it was specifically adapted to fulfill the requirements of the framework instantiation domain.

One of the main requirements for the planning algorithm was to avoid making decisions before they
were really needed. For example, if two tasks can be executed in any order, the algorithm should
not impose any arbitrary sorting, but it should allow the user to choose which one executes first, or
even executes them in parallel. This technique of delaying decisions as much as possible is known
as least commitment planning. One of the most popular algorithms in this category is the UCPOP
algorithm [15], which was quite well suited to be used in the framework instantiation domain.
Nevertheless, there are some special properties of the domain that made necessary the design of the
PHINT algorithm:
• If there is not enough information to generate a plan to completely implement the required

functionality, the planner must generate a plan that can guide the framework instantiation
according to the information available

• Planning inputs can be changed or new information can be added, and the plan should be updated
accordingly.

It may be possible that, for a given set of functional requirements, the planner cannot find a suitable
instantiation plan. Two reasons can produce an unsuccessful planning: either the functionality
cannot be implemented using the framework or the documentation available is not enough to
determine how this functionality can be implemented. In both cases, the planner should generate a
partial plan for those requirements which enough information available. Once this partial plan has
been generated, the user can choose to change the initial requirements so that a complete plan can
be produced instead, or to begin executing the plan. Even in the later case, he can decide to return to
the starting point and change the requirements after executing some tasks of the plan. In this
situation, the planner should be able to build a new plan for the modified requirements, taking into
account all the information provided by the user in the previous plan. If the user executed some
tasks of the old plan, and those tasks are also part of the new plan, they must be reused. That is, the
user should not be asked to execute twice the same task or to answer the same questions again.
Because of these properties, PHINT is said to produce partial and incremental planning.

One additional difference with traditional planning algorithms, like for example UCPOP, is that
PHINT allows the final plan to contain unbound variables, i.e. variables without an associated
value. This results useful in situations where it is required to leave some decisions to the framework
user, like for example the class name attribute of a task executed in a given step of the instantiation
process.

3.1.1 PHINT
The PHINT algorithm works based on the rule representation presented in Section 2. The algorithm
is, basically, a loop that tries combinations of goals. If a plan cannot be built for the complete set of
goals, the algorithm takes instead a subset of these goals. PHINT works using backtracking, and
eventually it will check every combination of goals until producing a plan for a given subset or
returning an empty plan. A plan is built for a proper subset of the original goals, in the case that the
framework documentation is not enough to completely describe how to implement the total required

functionality. In other words, a complete plan for every goal is not possible, but some user tasks for
implementing some goals are generated anyway.

PHINT takes three arguments as inputs:
1. A plan (initially null)
2. A set of goals to be satisfied
3. A set of rules describing actions that can be used to satisfy the goals

These rules correspond with traditional planning operators, which are additionally provided with an
executable body where the tasks associated with the operator are hooked. In this way, any operator
comprises a set of preconditions for executing the action, a set of postconditions that hold when the
action is effectively executed, plus a body of Smartbooks tasks. In figure 3 we can see a partial
graphical representation of the planning execution.

The plan itself is composed by six elements (they all are empty in the initial plan):
1. A list of instantiated actions
2. A list of partial orderings
3. A set of causal links
4. A list of variables with their corresponding values (bindings)
5. A list of pending tasks created through the planning process
6. A list of goals that are not considered in the plan

Algorithm 1 shows the basic steps of PHINT. The first step of solvePlanning tests if the agenda is
empty, and if so, it returns the current plan. If the agenda has more items, the algorithm selects a
goal from it and tries to satisfy it. There are several possibilities for the selected goal, as it can see
from the case options. If the goal corresponds either to a single operator (a predicate) or a special
equality operator, it will be processed later by solvePredicate or handleOperator respectively. In
solvePredicate we deal with the selection of actions matching these goals (preconditions). The next
steps handle multiple goals. In the case of a conjunction of goals, the algorithm tries to get an
acceptable plan for every goal of the conjunction by calling solvePlanning recursively. If any of
these goals fails, the algorithm undoes its actions accordingly. In the case of a disjunction of goals,
the algorithm is just interested in one of the goals to be true. As soon as this happens, the whole
expression is true and the planning proceeds with other goals. When all the preconditions of a given
action have been considered, its corresponding tasks are evaluated.

definedClass(’componentProxy’) proxyDefinitionOption(’Composition’)

createFunctionalProxy
definedMethod(‘componentProxy’, ‘method1’) wrapped(ComponentProxy, Component)

selectDefinitionOption
proxyDefinitionOption(’Composition’)

defineComponentClass

definedClass(‘componentA’)

definedClass(‘componentA’)

definedMethod(‘componentProxy’, ‘method1’)

documentNewMethod

selectedAspect(Aspect) selectedClass(‘componentA’)
…

……

Figure 3. Planning execution example

;

A
a
u
p
a
p
in
th
w
th
n
to
a
re
th
class PHint {
…
 boolean solvePlanning(<actions, order, causalLinks, bindingTable>, agenda) {
 if (agenda.hasNextItem()) {
 currentGoal = agenda.removeFirstItem();
 switch (currentGoal) {
 case OPERATOR:
 ok = handleOperator(currentGoal,agenda);
 break;
 case SIMPLE_GOAL:
 ok = solvePredicate(<…>,currentGoal,agenda);
 break;
 case CONJUNTION:
 agenda.addFirst(currentGoal.conjuntionItems());
 ok = solvePlanning(<…>,agenda);
 if (!ok) agd.remove(currentGoal.conjuntionItems());
 break;
 case DISJUNTION:
 agenda.addFirstItem(currentGoal.firstItem());
 satisfied = solvePlanning(<…>,agenda);
 if (!ok) {
 agenda.removeFirstItem();
 agenda.addFirstItem(currentGoal.secondItem());
 ok = solvePlanning(<…>,agenda);
 if (!ok) agenda = agenda.removeFirstItem();
 }
 break;
 case FINISHED_PRECONDITIONS:
 // When preconditions are done, it proceeds to execute tasks
 ok = Planning.executeTasks(currentGoal.getAction(), bindingTable)
 if (ok) {
 ok = solvePlanning(<…>,agenda);
 if (!ok) {
 tasks = currentGoal.getAction().getExecutableTasks();

Planning.undoExecutedTasks(tasks, bindingTable);
 }

 }
 } // End switch
 if (!ok) agd.addFirstItem(currentGoal);
 return (ok);

 } // End first if
 else return (true);
 } // End solvePlanning
…
} // End class PHint

Algorithm (part 1)

lgorithm part 2 describes both handleOperator and solvePredicate. In handleOperator, the
lgorithm handles codesignated and non-codesignated relationships among variables, and then
pdates the binding table accordingly. Finally, solvePlanning is called again to continue with the
lanning. Things are a little more complicated with solvePredicate. Here, PHINT looks for an
ction that satisfies the current goal. With this purpose, it takes the set of actions whose
ostconditions include the current goal, and then evaluates the actions until one of those fits well
to the current plan. This part corresponds with the choose function of classical planning. Note that
e algorithm looks firstly for an action being previously instantiated, that is it tries to find if the
ork was already done by some action of the plan. If one of these previous actions can be used,
en it is selected. In the case none of the instantiated actions is useful, the algorithm looks for a

ew action describing how to satisfy the current goal. It takes the first action available, but if it fails
 satisfy a goal in the future, the algorithm will backtrack to this point and a different action (if

ny) will be taken. At last, we need to be sure that the selected action meets the ordering
quirements of the plan, by executing solveWithAction. If the action is an old action, it just requires
e elimination of the current goal from agenda. It also updates the list of bindings and the list of

actions. On the other hand, if it is a new action, its preconditions are added to agenda. Again,
bindings and actions are updated. The algorithm checks the action for ordering and protection of
causal links, so that the necessary relationships are added to the partial ordering list. Finally, the
algorithm makes a recursive invocation of solvePlanning.

class PHint {
…
 boolean solvePredicate(<oldActions, ...>, currentGoal, agenda) {
 // Actions already included in the current plan
 posibleActions = selectOldActions(currentGoal);
 // All the actions of the domain
 posibleActions = posibleActions U selectNewActions(currentGoal);
 solved = false;
 while ((!solved)&&(posibleActions.hasNext())) {
 action = posibleActions.next();
 solved = solveWithAction(<>,agenda,currentGoal,action);
 }
 return (solved);
 }

 private boolean solveWithAction(<oldActions, order, causalLinks, bindingTable>, agenda,
currentGoal, action) {
 // It verifies that a given action fits well into the current plan
 actionEffect = action.getEffects(currentGoal);
 newBindingTable = bindingTable;
 if (newBindingTable.propositionBinding(actionEffect,currentGoal) {
 // The order is updated
 newOrder = order U Order(action, currentGoal.getAction());
 // Links are checked for threats and possibly repaired
 // according with the added action
 repaired = repairLinks(threatenedLinks(action),action,newOrder);
 while (repaired && (oldActions.hasNext())) {
 // It also checks threats originated by existing actions
 oldAction = oldActions.next();
 repaired = repairLinks(threatenedLinks(oldAction),oldAction,newOrder);
 }
 if (repaired) {
 newCausalLinks = causalLinks U Link(action,currentGoal,currentGoal.getAction());
 newActions = addAction(actions, action);
 // It updates the goals of the agenda
 newAgenda = addGoals(agenda, action);
 solved = solvePlanning(<newActions, newOrder, newCausalLinks, newBindingTable>,
newAgenda);
 } else solved = false;
 return solved;
 } else return false;
 } // End solveWithAction

 private boolean handleOperator(operatorPredicate, agenda) {
 arg1 = operatorPredicate.firstArg();
 arg2 = operatorPredicate.secondArg();
 switch (operatorPredicate) {
 case NOT_EQUAL:
 ok = bindingTable.noCodesignate(arg1, arg2);
 if (ok) ok = solvePlanning(agenda);
 break;
 case EQUAL:
 ok = bindingTable.codesignate(arg1, arg2);
 if (ok) ok = solvePlanning(agenda);
 break;
 }
 return ok;
 } // End handleOperator
...
} // End class PHint

Algorithm (part 2)

class Planning {
 Set pendingTaskSet, waitingTasksSet;

 // Method invoked to execute tasks (used by PHint)
 boolean executeTasks(action, bindingTable) {
 executableTasks = action.getExecutableTasks();
 while (executionResult & executableTasks.hasNext()) {
 task = executableTasks.next();
 switch (task.getType()) {
 case DATABASE_QUERY: // SUBCLASS_OF, CHILD_OF, DONE, EXECUTED, EXIST_CLASS ...
 result = taskOperatorsManager.executeQuery(action,pred,executableTasks);
 break;
 case WAITING_TASK:
 executionResult = this.executeWaiting((WaitingTask)task);
 break;
 case PENDING_TASK:
 executionResult = this.storePending(task);
 break;
 }
 if (result) executedTasksStack.push(task);
 }
 if (!result) undoExecutedTasks(executedTasksStack.inverse(), bindingTable);
 return executionResult;
 } // End executeTasks

 boolean executeWaiting(waitingTask) {
 oldEquivWaitingTask = waitingTasksSet.getEquivalentTask(waitingTask);
 waitingTasksSet.addTask(waitingTask);
 if (oldEquivWaitingTask!=null) {
 waitingTask.setExecutionResult(oldEquivWaitingTask.getExecutionResult());
 } else {
 taskManager.executeWaitingTask(waitingTask);
 // It waits until the tasks is effectively executed by the user
 while (!waitingTask.isFinished());
 }
 // The result is bound with the returned variable
 result = waitingTask.bindResult(bindingTable);
 return result;
 } // End executeWaiting

 boolean storePending(pendingTask) {
 oldEquivPendingTask = pendingTasksSet.getEquivalentTask(pendingTask);
 // If an equivalent task doesn’t exists, it is stored in the set
 if (oldEquivWaitingTask==null)
 pendingTasksSet.addTask(pendingTask);
 return true;
 } // End storePending

 void undoExecutedTasks(executableTasks, bindingTable) {
 while (executableTasks.hasNext()) {
 task = executableTasks.next();
 switch (task.getType()) {
 case DATABASE_QUERY:
 taskOperatorsManager.undoExecutedQuery(task);
 break;
 case WAITING_TASK:
 task.undoBindings(bindingTable);
 break;
 case PENDING_TASK:
 pendingTasksSet.removeTask(task);
 break;
 }
 }
 } // End undoExecutedTasks

...
} // End class Planning

Algorithm (part 3)

Algorithm 3 keeps track of all the tasks generated as a result of executing PHINT actions. This part
is mostly independent of the particular type of planning algorithm used by the tool. The first
method, executeTasks, is responsible for executing those tasks that require an immediate response
(queries to the repository and waiting tasks) and also storing those tasks that may be later executed
by the user (pending tasks). In the case of queries, the algorithm simply accesses the classes
repository and returns the result of the evaluated query. Likewise, waiting tasks are managed by
executeWaiting. The algorithm waits until the user executes the task and provides a concrete result.
Then, planning is resumed and the control returns to PHINT. If the task is a pending task, it is just
added to a list by storePending and passed later to the TaksManager. Note that when both pending
and waiting tasks are generated, the planning checks with the current task set that these new tasks
are not actually duplicated (perhaps because some tasks were generated in previous stages).
Nonetheless, if any task is not successfully executed, the algorithm undoes partial execution results
(bindings and stored pending tasks) and goes back to solvePlanning in order to select another
candidate action.

The PHINT planning algorithm is an enhanced version of the original planning algorithm presented
in [14]. Planning is now implemented in Java, and it has been tuned in order to get a better
performance. Moreover, PHINT is able to take advantage of TOON diagrams, and it incorporates
this information to prune the number of action choices. The sequences of instantiation tasks defined
in these diagrams are seen as partially instantiated action sequences that should be met by the final
plan according to the framework prescriptions, thus avoiding an unnecessary overwork during the
planning process. In this line, we are currently analyzing different alternatives to become planning
more efficient and powerful.

3.2 Task Manager
During the instantiation process, the user interacts with the task manager to build applications. The
task manager is responsible for coordinating tasks, so that they may be executed, interrupted in
order to work on other tasks, or even cancelled at any time.

A task execution generally involves a form (associated with the task type) that the user has to fill in.
For example, a new-class task execution opens a form where the user specifies parameters such as
class name, super-class name and documentation notes. The user can also obtain information about
a given task, for example the specific rule that originates the task or other parameters. Finally, a
tasks rejection implies that the user had refused the proposed plan and, if possible, the planner
should provide an alternative plan where this task is not included.

The tasks generated by the task manager can be classified in two categories, optional tasks and
mandatory tasks. This distinction is used to difference between tasks that, according to the
documentation, are not indispensable to obtain the specified functionality and essential tasks.
Generally, optional tasks give information about programming activities to complement those tasks
that must be executed.

In addition, the task manager checks that tasks are not duplicated upon creation, so that the user
does not have to execute the same task twice. This is particularly important when instantiation plans
are revaluated, otherwise the user would have to do the same work many times. As a final remark,
we could mention that by means of the task manager interface, the user is able to change the rules
and goals, initialize and execute the planner. In figure 4 shows a possible execution snapshot of the
task manager (optional tasks appear in italic).

Figure 4. Task Manager during instantiation process execution.

4. CONCLUSIONS AND FUTURE WORK
The main contribution of this work is to show how the instantiation process can be represented as a
sequence of programming tasks, which are derived by a planning algorithm from the application
functional description. This plan can be dynamically updated accordingly to the developer actions
or when the initial conditions (that is, functional requirements and framework documentation) are
modified.

An effective improvement on the guidance of framework-based application development can be
achieved by centering the assistance on the application functionality. This is especially useful with
novel users, have little knowledge about the framework design. Nevertheless, the approach is
flexible enough to assist more expert users. If a user decides to ignore the suggested plan, the rules
are still useful to guide him/her to implement the application consistently with the framework
design.

We have also mentioned a visual formalism to specify the rules, as an extension of conventional
UML diagrams. At this moment, a basic CASE environment integrated with the Smartbooks engine
has been developed. We hope to improve these capabilities in the future, for example, adding more
UML models. As regards the use of agents and planning techniques to generate sequences of
programming tasks to guide a developer to implement applications on top of frameworks.
Moreover, the agent’s assistance agent can be extended to deal with more abstract design activities.
In this line, we have elaborated an example where the Smartbooks method is applied to aspect-

oriented frameworks [3, 7, 11]. There, we have discussed how the notion of programming tasks
may be expanded to higher-level activities supporting both design tasks and mapping to specific
implementation technologies.

We have started to explore the possibilities of enhancing the agent's reasoning capabilities with
more advanced learning techniques. For example, case-based reasoning (CBR) [12] could be
helpful to utilize old instantiation plans, adapting them to particular details of the new instantiation
problem.

Finally, one of the drawbacks of the proposed approach is the additional burden for the framework
developer. Any documentation technique implies some effort from developers, but in this case, the
more complete the instantiation guide provided the more details about the structure framework must
be specified. However, considering that framework developing is a hard and time-consuming task,
and its success is highly tied to framework usability, producing good framework documentation is
an activity that worths investing this effort.

REFERENCES
1. Bradshaw, J. Software Agents. AAAI Press, Menlo Park, USA. 1997
2. Butler G. and Denommée P. Documenting frameworks. In Proceedings of the Eighth Workshop on Institutionalizing
Software Reuse, 1997.
3. Campo M., Diaz Pace J. and Trilnik F. Smartweaver: An Agent-based Tool for Aspect-Oriented Development. In
proceedings of SECMAS 2002 (International Workshop on Software Engineering for Large-Scale Multi-Agent
Systems) in conjunction with ICSE 2002. Orlando, Florida (USA), May 2002.
4. Constantinides C., Bader A., Elrad T., Fayad M. Designing an Aspect-Oriented Framework. Computing Surveys
32(1es):41. 2000.
5. Demazeau, Y., Müller, J. (eds.). Decentralized AI – Proceedings of the First European Workshop on Modeling
Autonomous Agents in a Multi-Agent World (MAAMAW’89). Elsevier Science B.V. Amsterdam, Netherlands. 1990
6. Demeyer S., De Hondt K., and Steyaert P. Consistent framework documentation with computed links and framework
contracts. Computing Surveys, 1999. To appear in March 2000.
7. Díaz Pace A., Campo M. Analyzing the Role of Aspects in Software Design. Communications of the ACM, Vol. 44
No. 10. 66-74. October 2001.
8. Fayad M., Schmidt D., Johnson R. Building Application Frameworks: Object-Oriented Foundations of Framework
Design. Wiley Eds. 1999
9. Helm R., Holland I., and Gangopadhyay D. Contracts: Specifying Behavioral Compositions in Object-Oriented
Systems. In Proceedings of the OOPSLA/ECOOP ’90 Conference on Object-oriented Programming Systems,
Languages and Applications, pages 169–180, October 1990. Published as ACM SIGPLAN Notices, vol. 25, number 10.
10. Johnson, R. Documenting Frameworks using Patterns. In Proceedings of the OOPSLA ’92 Conference on Object-
oriented Programming Systems, Languages and Applications, pages 63–76, October 1992. Published as ACM
SIGPLAN Notices, volume 27, number 10.
11. Kickzales G., Lamping J., Mendhekar J., Maeda C., Videira Lopes C, Loingtier J., Irwin J. Aspect-Oriented
Programming. Proceedings of the European Conference on Object-Oriented Programming (ECOOP), Finlad. Springer-
Verlag LNCS 1241. June 1997.
12. Kolodner J. Case-based reasoning. Technical report, 1993. Also in Morgan Kaufmann Publishers, 1993.
13. Object Modeling Group. Unified Modelling Language Specification, version 1.4, September 2001.
14. Ortigosa A., Campo M. Towards Agent-Oriented Assistance for Framework Instantiation. Proceedings of OOPSLA
2000, October 2000.
15. Weld D. An Introduction to Least Commitment Planning. AI Magazine, Summer/Fall 1994.

