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Abstract

We describe the implementation of a first-order linearly typed as-
sembly language, HBAL, that allows the safe reuse of heap space for
elements of different types. Linear typing ensures the single pointer
property, disallowing aliasing, but allowing safe in-place-update com-
pilation of a functional programming language. HBAL was designed
as a target low-level language for Hofmann’s LFPL programs [5] that
run in a bounded amount of heap space.
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1 Introduction

When computing resources are limited, such as in embedded and real-time
systems or for applications to be run across the Internet, resource awareness
is crucial. The particular resource we are concerned with in this paper is heap
space. We describe the implementation of HBAL, a first-order heap-bounded
assembly language, whose type system allows for safe reuse of heap space for
elements of different types. HBAL is suitable for resource-aware computing
using proof-carrying code.

In C even a malloc-free program can use more memory than what was
assigned to the program initially. For example, a pointer can access an arbi-
trary memory location beyond the intended scope of the program. Since type
systems are a convenient and elegant way of expressing a semantic constraint
such as resource boundedness, in order to provide end-to-end static guaran-
tees of resource-boundedness, we use type-systems for both high-level and
low-level languages. In this context, the compiler translates typed high-level
code into typed low-level code, where the typing derivation of the low-level
code is the proof in proof-carrying code.

In our implementation the HBAL language is used to capture in-place
update compilation of a functional programming language with similar type
systems, providing a static guarantee of bounded heap-space usage. We im-
plemented a compiling function from Hofmann’s LEPL [3] into HBAL.

Typed assembly languages have been an active subject of study for sev-
eral years. Contributions include TAL [7, 8], STAL [9], DTAL [12], and
Alias Types [10, 11].

TAL began with higher-order functions and polymorphism, considering
System F as a high-level language. But TAL assumed a particular compilation
technique, continuation-passing style, which is not used by every compiler.
STAL addressed this by modeling stacks with stack polymorphism. DTAL
introduced the possibility for making some array bounds-checking optimiza-
tions, using dependent types. Alias Types allowed for areas of store to be
reused in ways that TAL prohibited, tracking aliasing of locations to allow
for safe memory management.

HBAL uses a deliberately restricted type system which reflects in the low-
level the state-of-the-art of a type-system approach to dealing with resource
bounds in a high-level language, following Hofmann’s work ([3, 4, 2, 5]).

HBAL uses linear typing to prevent aliasing, and includes pseudoinstr-
uctions for safely altering the types of heap locations. This means that we do
not need to assume an external garbage collector, and we can provide a static
guarantee that every program runs in a fixed amount of heap space. However,
HBAL is not incompatible with garbage collection, and it can be extended
to include malloc and free operations if desired. This could be done so that
the memory-allocation initialization part of an application could be typed
within the system.

This section and Section 2, where HBAL’s syntax and semantics are de-
scribed, are extracted from [1]. The new contribution, i.e. the implementa-
tion of the compiler LFPL-to-HBAL and the machine model for HBAL, is



described in Section 3. In Section 4 we provide some examples of HBAL
programs. Conclusions and some future work are depicted in Section 5.

2 The HBAL language

HBAL is a first-order linearly typed assembly language. In the HBAL type
system a word type (o) is either an integer or a pointer to a structured type
A (denoted as [A]), where A can be code, the type of instructions, a flagged
word type (07), a Cartesian product (A x A), a list (L(A)), a tree (T'(A)),
or a diamond (). The flag (2) can be 0 (uninitialized) or 1 (initialized).

The machine registers are called ry...r, and there are two dedicated
registers for the program counter pc and stack pointer sp. A context I' is
a finite mapping of registers r; to word types o, treated as a set of type
assignments r; : 0.

The initial context is denoted {}, but it contains the type assignment
ro : int. This register is used to always store the constant number 0, making
it unusable by the programmer.

When we write the extended context I',r; : o, it is understood that r;
does not already appear in I'. We assume that the program counter, register
pc, never appears in any context. The context I',, is defined to be the same
as I' except undefined on r;.

size(A) is the size of the type A as it is laid out in memory and A|c]
denotes the type of the cth word in the layout of A in memory.

When a pointer is read form memory into a register, the memory is made
inaccessible by uninitializing the pointer type. This prevents aliases, preserv-
ing the single pointer property. So, A“=! denotes A with the initialization
flag set on the cth word, and A4~ denotes A with the cth initialization flag
cleared. A=Y denotes the uninitialization of A.

There exists a subtyping relation on types, given by the contextual, re-
flexive, and transitive closure of the uninitialization operation, so B(A) <
B(AF9).

A program P consists of a sequence of instructions p and labels /.

puw=q | p; P |1 ;P
p load 7 <— rlc] | store r[¢] «+— r
arithi r «— r®c¢ | arith r +«— ror

bnz r [ | bez r [ | jmp I
call [ | ret I

salloc A | sfree ¢

use r A | discard r
fold-nily rf[¢] | fold-consy r[(]
fold-leafy r[¢] | fold-node, r|c]
caselisty r[c] | | casetreey rc] [

o=+ | = | x|/



HBAL has a small set of standard assembly instructions, together with
several pseudo-instructions. There are three kinds of pseudo-instructions;
they are either typechecking directives (use and discard) that will be erased
by the assembler, datatype constructors and destructors (fold-nil, fold-cons,
and caselist for lists, and fold-leaf, fold-node, and casetree for binary
trees), or hiding pointer arithmetic operations (salloc and sfree), because
it is not allowed to overwrite the stack pointer directly.

A program is a sequence of instructions and labels which defines a number
of mutually recursive first-order functions. The typing rules define a judg-
ment:

r=~r

which means that P is a well-typed assembly program in context I'.

A program must be given together with a signature, 3. The signature
assigns procedure types of the form A,..., A, — A for n > 0 to subroutine
labels and contexts to branch target labels.

Typing rules

The typing rules ensure the single pointer property that says that every loca-
tion can be reached from at most one live pointer in a register or on the heap.
As an example, we give the typing rules for 1load and store instructions.

Ale] = int' T\,,,r; : [A],r; : int b P
Iyrj @ [A] F load 1 «— rjlc] ; P

Alc] = [B]1 ri#sp Dy,rj o [A%%,r; : [B] F P
L,rj @ [A] & load 7, «— rjlc] ; P

A[C] = int”? P,TZ' : int,r]- : [AC::I] L P
[,r; : int,r; : [A] F store vrj[¢] «— r, ; P

Alel =[B)" ri#sp B#code I,r; : [A“7 P
L,ri : [B],r; : [A] & store vrj[¢] «— r, ; P

There are two rules for load and store because loading or copying a
pointer may violate the single pointer property, while loading or copying an
integer does not.

2.1 Semantics

Given an interpretation for HBAL types, which captures the way datatypes
are implemented in memory, and an operational semantics for the untyped
assembly instructions it was possible to prove a type soundness property.
The safety preservation theorem establishes that the execution of a typeable
HBAL program modifies structures on the heap safely.



First, it is necessary to define the function Asm(p) that translate pseudo-
instructions to sequences of untyped instructions which results from assem-
bling p. We assume that the assembler has resolved each label [ to a memory
location LAdr(l). Below we show its definition by giving a pseudo-instruction
on the left and its untyped expansion on the right.

salloc A arithi sp <— sp — (size(A))
sfree A arithi sp <— sp + (size(A))
call | arithi ry <— pc+6

store sp[m] +— ry
arith pc «— 1o + LAdr(l)

ret [ load pc «— sp0]
fold-nil, ryc] store r;[c] «— 0
fold-cons, r;[c] store 7fc] +— 1
caselisty 74[c] leons load 1 «— 1]

bnz 11 leons

fold-leaf 4 r;[(] store 7] «— 0
fold-node, r;[c] store 7ifc] +— 1
casetreey 7i[c| lnode load 1 «— 1]

bnz 71 lhode

Let Loc C Z stand for the set of memory locations on the machine,
Reg = {0,1,...,Rmax } be the register indices, Wrd be the set of machine
words that can stand for integers or locations, and Code be the set of machine
words which can stand for machine instructions, and Wrd is disjoint from
Code.

A machine configuration M is a pair (R, H) where H : Loc — Wrdw Code
is a heap configuration and R : Reg — Wrd is a register configuration, such
that R(0) = 0.

The unbounded stack assumption, that is, that every machine has the
space to grow its stack downwards indefinitely, is formalized by saying that
H is defined to be data for all values below R(sp), i.e., Vm < R(sp), H(m) €
Wrd. To ensure that the stack does not clash with the heap data or program
code, it is established that R(sp) < 0 while locations used for program and
heap data are positive.

The effect of each machine instruction (i.e., an untyped assembly language
instruction) on a machine configuration is defined as:

Definition 1 (Machine transitions) Given a machine M = (R, H)
we define M ~ M' = (R', H'), using the table below, by case analysis on the



instruction at H(R(pc)) € Code:

load 7; <— r[c] R' = R[i — H(R(j) + ¢)]
store rjlc] «— r;  H'= H[R(j) + ¢ R(i)]
arithi 7, +— 7,0 c¢ R =R[i— R(j) ® (]

arith r; «— r; 01, R = R[i — R(j) © R(k)]

jmp =z R' = R[pc — 7]
R if R(1) =0
) (A
bnz r;, x R _{ R[pc — x| otherwise

bez r;, =« stmilarly to bnz

First, M' differs from M by incrementing R(pc) according to the length of
the instruction. Then the transformation given in the table above is applied,
to give the new value H' or R for an instruction that affects the register or
heap configuration respectively.

In the definition above, the value of i for the load and arithmetic instruc-
tions is greater than 0. As we said, the operations on rq have no effect.

Given a machine configuration M = (R, H), the satisfaction relation
H =k m : A can be defined in such way that captures when the location m
represents a valid element of type A in heap H. This relation is defined in
[1].

Memory M is type safe (for P) at u if and only if:

e the typed program P = (pi,...,Pu,...,Pn) has been assembled in M
by applying the Asm(p;) function to each instruction p; € py,...,py,

e M satisfies the typing constraints necessary to execute the next in-
struction p,.

The next theorem establishes that a type safe machine can always progress
to a new machine by executing the next typed instruction.

Theorem 1 (Progress) Suppose M is type safe at u. Then there exists a
machine M' such that M ~»"smPu) 7.

The second theorem establishes that whenever a type safe machine pro-
gresses to a new machine, the new machine is also type safe, provided we
followed a typed path within the program P.

Theorem 2 (Safety preservation) Suppose M is type safe at u and M ~>AmP)

M'. Then either
e dp, such that p, ~ p, and M' is type safe at v, or

e R'(pc) ¢ dom(PAdr) (the machine has left P).

This theorem ends our presentation about the assembly language HBAL.
The following sections are about the implementation of a compiler LEPL-to-
HBAL and an interpreter for HBAL programs.



3 Implementation

As theorems 1 and 2 show, to guarantee safe execution of a HBAL program
P we must:

e Typecheck P once (I - P),

e Check that the memory satisfy the typing assumptions in the initial

context before each execution (I';n; = M).

We implemented a compiler LEFPL-to-HBAL and an HBAL machine model
that executes HBAL programs provided by the compiler. In the following sub-
sections we depict each module of our implementation, as shown in Figure

1. This system was implemented using Ocaml [6].

Compiler LFPL to HBAL

As shown in Figure 1, the compiler takes an LFPL program P as input and
outputs an equivalent HBAL program Py, an initial context I';,;;, and an
environment X.

The first-order functional language LFPL (Linear Functional Program-
ming Language) has the following grammar of types and terms:

Heap

An=N| O [L(A) | T(A) | A1 @ Ay | A + Ay

T

fer,...

C
€1 %X €2

7677.)

if e then €' else ¢

inl(e)
inr(e)
€1 X €9
nil

cons(ey, ez, €3)

leaf(e)

nOde(ela €2, €3, €4, 65)
match e; with nil=-ey|cons(d, h,t)=e3
match e; with leaf(a)=-¢e;|

node(dl, ds, a,l, ’I“):>63

match e; with 7 ® y=-e
match e; with inl(z)=-es|inr(z)=e3

(variable)

function application
integer constant
infix op., x € {+, —, x,=,< ...
conditional

left injection

right injection

pairing

empty list

cons with res. arg.

leaf constructor

node constr. w. two res. args.
list elimination

tree elim.
pair elim.
sum elim.

space in LFPL is explicitly manipulated through high-level con-

structs; to construct a value of a recursive datatype, the programmer must
supply an argument of type ¢ for every sub-instance of the recursive type.
More about the LEPL language can be found in [3].



P |LFPL to HBAL

Compiler Assembler

Unsaf e Code

Figure 1: Compiler and Machine Model implementation for HBAL.

The compiler translates a LFPL program P into a HBAL program Py
and constructs the initial context I';,;; and environment . All of these are
sent, to the typechecker as input.

This part of our implementation could be consider as the code producer,
the untrusted part of the generation of mobile code.

Typechecker

The compiler’s output is given to a typechecker that decides if the HBAL
program Py is type safe in the environment 3 with an initial context [';,;.
If it is safe, the program and the context are given to an assembler.

Assembler

This module applies the function Asm(p) to each pseudoinstruction in the
program Py, obtaining an erpanded untyped assembly program. After that,
each instruction of the expanded program is assembled, i.e. stored in a cell
of an array, and each label is replaced by its address.

The initial context I';,; and the assembled program Asm(Py), are pro-
vided to the machine model.

Machine Model

The first task of the Machine Model is to check if the heap configuration
of the machine where the program will be executed verifies the restrictions
imposed by the initial context (H = [jy;). If the initial machine M = (R, H)
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Figure 2: Intended execution of the first example.

is memory safe, then the evaluation module is called to execute the program
Asm(P) on M.

The execution of Asm(P) on the machine M = (R, H) is safe, because
since H | T'jpi, by definition, M is safe for P at the first instruction, and
by theorems 1 and 2, each step in the execution of Asm(P) progresses to a
new safe machine.

The typechecker, assembler, and machine model modules are considered
as the code consumer, and they are part of the TCB (Trusted Computing
Base). The code provided by the compiler is safe, if it passes the analyses for
safe code and safe memory.

It is worthy of mention that once the program Py is determined as code
safe and assembled, each new execution in the same TCB only requires the
memory safe verification, which only involves checking the types of live reg-
isters against the current memory.

4 Examples

In this section we give some examples of HBAL programs that show the kind
of errors that can be avoided by applying our typechecker.

Note that in this implementation the flagged word type notation was
changed from o! to o+ (initialized) and from ¢° to o- (uninitialized).

Preventing reading of uninitialized locations

The following HBAL program stores an integer (1) in the heap address
pointed by r5 and the next address, and the same integer in the register
r3. But an attempt to copy in the register r3 the value stored in the r5[2] is
detected by the typechecker as a violation of the first 1oad typing rule.

The notation 75[c| is used to denote the value stored in the heap at the
address pointed by the register r5 with offset ¢. A graphical explanation of
this program intended execution is given in Figure 2.

sign
main:{sp: [[code]l+]+,r5: [int+ * int+]+}
<>



100 J[code] 101 jcode]

Figure 3: Intended execution of the second example.

100

main:

arithi r4 <- r0 + 1;
store r5[0] <- r4;
store r5[1] <- r4;
load r3 <- r5[1];
load r3 <- r5[2];
ret main;

<>

The value stored in r5[2] can be confidential information, then the problem
can be considered as a privacy violation, or junk, in such case the problem
can be seen as a safety concern.

Preventing malicious diversion of control

In procedure calls the calling convention gives this type to the stack pointer:
sp 1 [A1 X - x A, % [code]' x A=)

The stack frame contains space for the return value of type A, followed
by the return pointer, and then the subroutine arguments at the top. Figure
3 shows graphically the stack after a procedure call with three arguments.

The next program illustrates an attack attempting to divert control to a
different return address.

sign
main:{sp: [int+*int+*int+*[code]+*int-]1+}
<>

main:

load r2 <- spl0];
arithi r3 <- r2 + 1;
store r2[3] <- r3;
ret main;

<>

This program is rejected by the typechecker because the store operation
attempts to alter a code address.



5 Conclusions

In this work we describe the implementation of a first-order linearly typed
assembly language, HBAL. The HBAL language allows safe reuse of heap
space for elements of different types. Linear typing ensures the single pointer
property, disallowing aliasing, but allowing safe in-place-update compilation
of programming language. HBAL was designed as a target low-level language
for Hofmann’s LFPL programs that run in a bounded amount of heap space.

The described implementation includes a LEPL-to-HBAL compiler, the
typechecker, and a machine model that execute HBAL programs. The system
was implemented using the Ocaml language. The typechecker and machine
model can be used as a Trusted Computing Base by a code consumer in an
environment that uses mobile code.

The implementation is simplified by the fact that HBAL has a clear dis-
tinction between its syntax and its operational semantics: the store is not
mentioned in its syntax or static semantics and the well typedness of a HBAL
program is independent of the memory contents. Since it is unrealistic to ex-
pect to know the content of the memory where mobile code will be run to
be able to establish its safety, this approach splits the concerns as one might
expect. The typechecker can build a safety proof for execution on any safe
memory, and the machine model only needs to check that the initial memory
is safe for each run.

The compiler and typechecker can be used on-line, with examples of well
behaved programs and programs with errors, at the web page:

http://www.cs.stevens-tech.edu/"abc/hbal/

Further research could integrate into HBAL a general scheme for defining
high-level types apart from just lists and trees. Besides, some constructors
could be added to allow a more flexible layout in memory, such as null point-
ers and a caseptr discriminator.

The implementation presented in this paper could be extended to compile
different languages to HBAL. This extension may include languages without
resource awareness that produce programs that are not memory safe. In such
case the typechecker will work as a filter accepting only safe programs from
the high-level language.
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