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ABSTRACT 
 
Determining an optimal schedule to minimize the completion time of the last job abandoning the 
system (makespan) becomes a very difficult problem when there are more than two machines in the 
flow shop. Due both to its economical impact and complexity, different techniques to solve the 
Flow Shop Scheduling problem (FSSP) has been developed. Current trends addressed to multire-
combination, involve distinct evolutionary computation approaches providing not a single but a set 
of acceptable alternative solutions, which are created by intensive exploitation of multiple solutions 
previously found. 
 
Evolutionary algorithms perform their search based only in the relative fitness of each potential 
solution to the problem. On the other hand specialised heuristics are based on some specific features 
of the problem.  
 
This work shows alternative ways to insert knowledge in the search by means of the inherent infor-
mation carried by solutions coming from that specialised heuristic or gathered by the evolutionary 
process itself. The present paper compares the performance of multirecombined evolutionary algo-
rithms with and without knowledge insertion and their influence in the crossover rate, the popula-
tion size and the quality of results when applied to selected instances of the FSSP.  
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1. INTRODUCTION. 
 
In the Flow Shop Scheduling Problem (FSSP), a number of operations must be done on every job  
and these operations have to be done in the same order on all jobs. Frequently, the main objective to 
be minimized here is the completion time of the last job to abandon the system, called the makespan 
[8,10]. This problem has been proved as NP-hard for even a very small number of resources. Hence 
conventional and evolutionary heuristics have been developed by many researchers to solve the 
FSSP. In the category of conventional heuristics we can mention GUPTA, PALMER, NEH, and 
CDS. [6, 8,10]. 
 
Attempting to provide a better balance between exploration and exploitation [7], a new feature 
known as multirecombination applies several crossover operations on the set of (2 or more) parents. 
By means of multirecombination (MCPC and MCMP) [2, 3, 4, 5] better results were achieved. This 
implies higher quality of the best solution found throughout the evolutionary process, as well as an 
improved final population surrounding near optimal solutions. This later property also provides a 
sort of fault tolerance, because if eventually the dynamics of the system impedes using the best so-
lution found then a set of alternative high-quality solutions are available. The multirecombined 
methods were applied to FSSP [1, 13] and contrasted on a series of suitable experiments against 
previous successful approaches of Tsujimura and Reeves [12]. A variant MCMP-SRI (multiple 
crossovers on multiple parents, stud and random immigrants) was recently proposed. Here, a stud 
(breeding individual) is selected from the old population, for recombination with a set of randomly 
generated parents. The members of this mating pool subsequently undergo multiple crossover op-
erations.  
 
For this work we designed alternative ways to insert knowledge in MCMP-SRI. In the first ap-
proach (MCMP-SRI-E1) the elitist individual always shares the mating pool with the random im-
migrants. In the second approach (MCMP-SRI-E2) the elitist individual is selected as the stud in 
every alternative generations. In the third approach (MCMP-SRSI-E) the elitist individual and the 
four seeds generated by GUPTA, PALMER, NEH, and CDS algorithms share the mating pool with 
the random immigrants. The following sections discuss these new proposals and the results ob-
tained. 
 
2. STUDS, RANDOM IMMIGRANTS AND SEEDS 
 
Now we will describe in detail the schemes designed for multirecombination.  In MCMP-SRI [9], 
the process for creating offspring is performed as follows (see figure 1). From the old population an 
individual, assumed as the stud, is selected by means of proportional selection. The number of n2 
parents in the mating pool is completed with randomly created individuals (random immigrants). 
The stud mates every other parent, the couples undergo crossover and 2*n2 offspring are created. 
After each crossover operation offspring and parents compete for survival. The best of these 2*n2 
individuals is stored in a temporary children pool. The crossover operation is repeated n1 times, for 
different cut points each time, until the children pool is completed. Finally, the best offspring cre-
ated from n2 parents and n1 crossover is inserted in the new population. Usually mutation is not ap-
plied because enough genetic diversity is afforded by the random immigrants. In an evolutionary 
process the elitist individual is the best solution found so far, and is retained by forcing its presence 
during subsequent generations until a better individual is found. This individual sums up the best 
characteristics of a solution gathered through the learning process of evolution. In MCMP-SRI-E1 
the elitist individual is always present in the mating pool and shares it with the random immigrants. 
In this way the elitist individual continuously contributes with its genetic material each time the 

 



stud mates it. In MCMP-SRI-E2 the elitist individual is selected as the stud in every alternate gen-
eration. In other words, during an even generation the elitist individual is selected as the stud and 
mates every other random immigrant of the mating pool while in odd generations the stud is re-
trieved, as usually, as an individual of the evolving population by proportional selection. In 
(MCMP-SRSI-E) the elitist individual and the four seeds (GUPTA, PALMER, NEH, and CDS) 
share the mating pool with the random immigrants and all of them are recombined with the stud, 
which comes from the evolving population. 
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 Fig. 1. The stud and random immigrants multirecombination process.
 
 
 
3. EXPERIMENTS AND RESULTS 
 
To contrast the different approaches we selected four first instances extracted from Taillard´s FSSP 
benchmarks [11], for each of the following problem sizes: 20x5, 20x10, 20x20, 50x5, 50x10, 
50x20. For each instance a series of 10 runs was performed. After a set of initial trials it was veri-
fied that better performance was achieved in the approaches inserting knowledge by always cross-
ing over every pair of parents. Also, a non-null mutation probability value was necessary to avoid 
premature convergence induced by the elitist individual and the seeds. These trials allowed to re-
duce considerably the population size and consequently the computational effort. According with 
this, the following parameters setting was defined: 
 

Approach max_gen pop_size Pc Pm n1 n2 
MCPC-SRI 100 100 0.65 0 6 8 

MCPC-SRI-E1 100 10 1.0 0.3 10 14 
MCPC-SRI-E2 100 10 1.0 0.3 10 14 
MCPC-SRSI-E 100 10 1.0 0.3 10 14 

 
As an indication of the performance of the algorithms the following variables were chosen: 
 
Ebest: (Abs(opt_val – best value)/opt_val)*100. It is the percentile error of the best found individ-
ual in one run when compared with the known (or assumed) optimum value opt_val. It gives us a 
measure of how far the best individual is from that opt_val. 
 

 



MEbest: It is the mean value of the error, over the total number of runs for each instance of a given 
problem size. 
 
AvMEbest: It is the average value of the mean error, over the total number of runs, instances and 
problem sizes. 
 
Figure 2, summarizes the results. Here MEbest and Mean AvMEbest are indicated for each algo-
rithm applied to the selected instances of each problem size. 
 
 

 
Problem 

size 
MCMP- 

SRI 
MCMP- 
SRI-E1 

MCMP- 
SRI-E2 

MCMP- 
SRSI-E 

20x 5 4.225 1.299 1.249 1.855 
20x 10 7.998 3.661 5.497 3.650 
20x 20 6.290 1.842 4.944 2.855 
50x 5 3.614 1.192 2.365 1.642 

50x 10 12.227 9.696 8.986 6.736 
50x 20 13.514 11.062 11.159 8.134 

Avg 7.978 4.792 5.700 4.145 
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Fig. 2. MEbest and AvMEbest values for each method on different problem sizes for the FSSP  
 
The comprehensive average results obtained from a large series of experiments on different prob-
lem sizes for FSSP shows that any of the versions inserting   knowledge into the EA outperform the 
versions where this knowledge is not included. For different problem sizes the best performers are: 
MCMP-SRI-E2 in 20x5, MCMP-SRI-E1 in 20x20 and 50x5 and MCMP-SRSI-E in 20x10, 50x10 
and 50x20. The overall best performer resulted MCMP-SRSI with an average mean error of 4.1%.    
 
4. CONCLUSIONS 
 
Previous multirecombined evolutionary approaches for solving the FSSP attempted to improve the 
algorithms performance by balancing exploration and exploitation in the searching space. As that, 
they merely are blind search algorithms, which only make use of the relative fitness of the solutions, but 
completely ignore the nature of the problem. The issue here is how to introduce knowledge, which is specific 
to the problem?. If optimality conditions for the solutions are known in advance we can restrict the search 
operating only on solutions which hold these conditions. When optimality conditions are unknown, the an-
swer is to provide information which is gathered by the evolution process itself and resides in the elitist indi-
vidual, or to import this knowledge from solutions that come out from heuristics specifically designed for the 

 



problem under consideration. Both kinds of knowledge-based intermediate solutions contain some of the 
features, which are present in the best (optimal or quasi-optimal) solution at the end of the evolutionary pro-
cess. 
 
The mere presence in the population of the best individual found so far does not guarantee that it will be 
selected for mating. Consequently, in the first two variants we reinforced the contribution of the elitist indi-
vidual. In MCMP-SRI-E1 we compelled the presence of the elitist individual in the mating pool of multiple 
parents. In this way, each time it is recombined with the stud, we ensure a contribution of this individual in 
the offspring that eventually go to the next generation. In the second variant MCMP-SRI-E2 we forced the 
elitist individual to act as the stud every alternate generation, making stronger its contribution. As a conse-
quence the average mean error increased. This should be reviewed. Finally in MCMP-SRSI-E we combined 
self and foreign knowledge by allocating in the mating pool the elitist individual together with the seeds. 
This latter approach resulted to be the best performer in average. 
 
As all approaches inserting knowledge outperform the previous approach, with lesser computational effort, 
further work will be dedicated to find alternative ways to help, through knowledge insertion, the evolutionary 
search for different scheduling problems. 
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